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Abstract: This paper presents a hybrid model-based fault detection strategy for heating,
ventilation, and air conditioning (HVAC) systems, focusing on air handling units (AHUs).
Addressing the substantial energy inefficiencies in commercial buildings due to undetected
HVAC faults, this research combines first-principles knowledge with data-driven techniques to
enhance fault detection accuracy. First-principles based residuals (differences between expected
and observed behaviors) are integrated with data (temperature measurements in different
locations of AHU) to perform principal component analysis (PCA) (pre-processing step). Pre-
processed data (principal component scores) are then utilized to perform clustering analysis
using K-means and DBSCAN approaches. The proposed approach is tested against two common
faults in AHUs and its performance is evaluated compared to a purely data-driven method.
The results indicate that the hybrid method, which synergizes residual knowledge from first-
principles models with data, significantly outperforms the purely data-driven approach. This is
demonstrated through performance analysis using metrics like the adjusted rand index (ARI)
and normalized mutual information (NMI). The research underscores the potential of the hybrid
method in improving fault diagnosis of HVAC systems, helping to conserve energy by ensuring
efficient and reliable operation.

Keywords: Fault Detection, HVAC Systems, Principal Component Analysis (PCA), K-means,
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1. INTRODUCTION

The building industry plays a substantial role in energy
usage, accounting for approximately 40% of worldwide
energy consumption, with an anticipated annual growth
rate of 1.5%. (Mirnaghi and Haghighat (2020)). Heat-
ing, ventilation, and air conditioning (HVAC) systems,
in commercial buildings, significantly contribute to this
consumption, where overlooked operational faults lead to
substantial energy inefficiencies and compromise occupant
comfort (Yang et al. (2014)). Approximately 30% of com-
mercial building energy is wasted due to latent system
failure, making HVAC fault management critical to energy
conservation (Tun et al. (2021)). Increasing energy de-
mands and inefficiencies in HVAC systems have intensified
the development of various fault detection and diagnosis
(FDD) strategies to improve efficiency and comfort. These
methods are categorized into history, qualitative, and
quantitative-based approaches (Katipamula and Brambley
(2005)).

Fault diagnosis in HVAC systems is founded on integrat-
ing domain knowledge—qualitative or quantitative, and a
strategic search for faults through normal operational tem-
plates or symptom-focused methods (Venkatasubramanian
et al. (2003a)). Qualitative methods rely on if-then-else
logic in data-scarce situations, but lacking in fundamen-

tal system physics, they can become unwieldy with com-
plex behaviors (Isermann (2005)). Conversely, quantitative
methods use mathematical models based on physical laws,
employing analytical redundancy to detect faults through
deviations between model predictions and actual system
behavior(Venkatasubramanian et al. (2003c)).

The shift towards data-driven methodologies in FDD for
HVAC systems has been driven by the complexity and
non-linearity of such systems, making the development
of accurate mathematical/physical-based models chal-
lenging and time-consuming (Venkatasubramanian et al.
(2003b)). Data-driven and machine-learning approaches
offer a promising alternative, particularly principal compo-
nent analysis (PCA) and clustering techniques such as K-
means and density-based spatial clustering of applications
with noise (DBSCAN) for fault detection. They leverage
system data to construct precise system representations,
circumventing the limitations of traditional model-based
methods (Hassanpour et al. (2020); Li and Wen (2014)).
PCA excels in isolating key features by identifying or-
thogonal components, making it instrumental in detecting
faults. At the same time, K-means and DBSCAN provide
robust frameworks for the unsupervised diagnosis of oper-
ational anomalies in HVAC systems, reflecting a significant
evolution in the field of FDD research (Wu et al. (2010);
Mu et al. (2020)).
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Hybrid approaches, integrating first-principles knowledge
with data, have developed as a powerful strategy for
FDD in HVAC systems (Gálvez et al. (2021)). Building
upon our previous work (Hassanpour et al. (2020)), which
introduced a hybrid FDD system for HVAC systems,
this paper advances the methodology by incorporating
unsupervised clustering techniques for fault detection.
This approach utilizes the residual knowledge from first-
principles models with data-driven analytics, specifically
focusing on the application of clustering for unsupervised
fault detection and diagnosis, addressing the limitations of
prior implementations.

2. PRELIMINARIES

2.1 Air Handling Unit: First-Principles based Residuals

Air Handling Units (AHUs) are critical in HVAC systems
for regulating temperature and ventilation in large build-
ings. They come in two types: constant air volume (CAV)
and variable air volume (VAV) air-conditioning systems.

Utilizing the methodology by Seem and House (2009), this
paper employs model-based residuals for fault detection
in AHUs. These residuals are crucial indicators in our
hybrid FDD approach, reflecting the system across four
operational states:

• State 1 (Heating): Heating coil valve controlled
to maintain supply air temperature and dampers
positioned for minimum outdoor air.
• State 2 (Cooling with Outdoor Air): Dampers

modulate to maintain supply air temperature at set-
point. The heating and cooling valves are closed.
• State 3 (Mechanical Cooling with 100% Out-
door Air): Cooling valve controlled to maintain
supply air temperature with dampers positioned for
100% outdoor air.
• State 4 (Mechanical Cooling with Minimum
Outdoor Air): Cooling valve controlled to maintain
supply air temperature with dampers positioned for
minimum outdoor air (ventilation requirement).

Each state is associated with specific sensor readings:
supply air temperature (Ts), return air temperature (Tr),
outdoor air temperature (To), and mixed air tempera-
ture (Tm). First-principles modeling is performed to de-
velop/calculate the residuals based on each state of the
AHU. These residuals provide a comparison between mea-
sured and expected conditions and highlight any discrep-
ancies indicating faults.

In our FDD approach, we examine two common faults with
their respective residuals:

• Fault 1: 2C offset in the return air temperature
sensor.
• Fault 2: 2C offset in the mixed air temperature

sensor.

The residuals for State 1 and State 2 are given as:

r5 = fdesign −
Tm,1 − Tr,1
To,1 − Tr,1

(1)

r6 = TS,2 − Tm,2 −
ˆ̇Wfan

ˆ̇mS ĉp
(2)

In these equations:

• fdesign is the estimated fraction of outdoor air that
should typically mix with the return air to form
the mixed air under design conditions. The value of
fdesign is determined to be 0.3 based on the numerical
experiments.

• Tm,1 and Tm,2 represent the mixed air temperatures
in States 1 and 2, respectively.

• Tr,1 is the return air temperature in State 1.
• To,1 is the outdoor air temperature in State 1.
• TS,2 is the supply air temperature in State 2.

• ˆ̇Wfan denotes the design power of the supply fan,
which is required to move the conditioned air through-
out the building and is given as 7.14 kW.

• ˆ̇mS is the mass flow rate of supply air, crucial for
determining the amount of air delivered to the condi-
tioned space, with a design value of 10.53 kg/s.

• ĉp is the specific heat of the moist air mixture at
constant pressure, essential for calculating the energy
needed to condition the air, with a design value of
1.02 kJ/(kgC).

These parameters are used in the residuals to assess
whether the AHU is operating within the expected param-
eters or if an anomaly could indicate a fault. The correct
operation should result in residuals close to zero, whereas
significant deviations may point to specific faults in the
system.

2.2 Data-driven methods

PCA Principal Component Analysis (PCA) is utilized
as a method for dimensionality reduction, particularly
addressing multicollinearity among process variables. The
essence of PCA lies in representing high-dimensional data
in a lower-dimensional space, especially when the data is
proximal to a linear manifold within the high-dimensional
space. By identifying and projecting data onto this linear
manifold, PCA preserves the essential characteristics of
the data with minimal variability in orthogonal directions.
The principal components (PCs) are sorted such that the
first component captures the maximum variation in the
original real variable space, followed by each subsequent
component accounting for the maximum remaining varia-
tion. The fundamental equation in PCA is as follows:

X = TPT + E (3)

where X is the original data matrix, T is the matrix
of scores, P is the matrix of loadings, and E is the
residual matrix. This equation decomposes the data into
a product of scores and loadings, with residuals capturing
the unexplained variation in X.

K-means Clustering K-means clustering, a promi-
nent unsupervised learning algorithm, was originally pro-
posed by MacQueen et al. (1967). This method is noted
for its simplicity and efficacy. The primary objective of K-
means clustering is to partition a dataset X of size N ×M
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into K disjoint subsets C1, . . . , CK . The optimization aim
is to minimize the clustering criterion F , often represented
by the sum of squared Euclidean distances between each
data sample xi and the corresponding cluster center mk of
each subset CK .

A crucial element in K-means clustering is the selection
of the ideal number of clusters. The elbow method is
frequently utilized for this purpose. This method entails
graphing the explained variance as a function of cluster
quantity and selecting the curve’s elbow point as the
cluster count. This method is heuristic but widely accepted
for its simplicity and effectiveness in identifying the point
where the increase in the number of clusters does not
significantly improve the fitting.

DBSCAN Clustering DBSCAN algorithm, intro-
duced by Ester et al. (1996), is a density-based spatial
clustering method. In the context of DBSCAN clustering,
there are several key definitions. The ε neighborhood of
an object p in a dataset D is defined as the region with p
as its center and ε as its radius, encompassing all objects
within this distance:

Nε(p) = {q ∈ D|Dist(p, q) ≤ ε} (4)

where D is the dataset, Dist(p, q) is the distance between
object p and q. In simpler terms, it encompasses all objects
in dataset D that are within a distance of ε from object p.
A core object in D is one whose ε neighborhood contains
more objects than a threshold, MinPts:

|Nε(p)| ≥MinPts (5)

DBSCAN’s procedure involves conducting region queries
on each object to ascertain its ε neighborhood. Objects
with neighbors less than MinPts are marked as noise. Oth-
erwise, they form a cluster C1, and the process continues
for each neighbor. This repeats, creating new clusters Ci
until all objects are classified.

The essence of DBSCAN lies in identifying high-density
regions in the dataset, marked by small distances between
samples, and distinguishing these from lower-density ar-
eas. The algorithm’s efficiency and effectiveness rely on
the proper selection of parameters ε and MinPts, crucial
for defining high-density thresholds.

Numerical Metrics In the assessment of clustering
outcomes, two key numerical metrics are employed: the
Adjusted Rand Index (ARI) (Hubert and Arabie (1985))
and Normalized Mutual Information (NMI)(Strehl and
Ghosh (2002)):
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where nij is the number of elements common between
clusters i and j, ni and nj are the number of elements in
clusters i and j respectively, and n is the total number of
elements. ARI values range from -1 to 1, with 1 indicating a

perfect match, 0 suggesting random labeling, and negative
values implying dissimilarity worse than random chance.

NMI, a normalization of the Mutual Information (MI)
score, ranges between 0 and 1, indicating the level of
correlation between two clusterings. It is defined as follows:

NMI(U, V ) =
2I(U ;V )

H(U) +H(V )
(7)

where U and V are two clusters, I(U ;V ) represents mutual
information, and H(U) and H(V ) are the entropies of the
clusterings. An NMI of 1 implies perfect correlation, while
a value of 0 indicates no mutual information.

3. PROPOSED METHOD

The developed hybrid FDD scheme leverages model-based
residuals in conjunction with data-driven analytics to
enhance fault detection in HVAC systems, marking an
improvement in diagnostic processes.

1.png

Fig. 1. Flow Diagram of the proposed hybrid approach

Referring to Fig. 1, the process begins by collecting data
(normal and faulty data). This data is then categorized
into different states based on the operating state of AHU.
Following the methodology established by Seem and House
(2009), residuals for each state and transitional phase are
computed. For the scope of our study, which focuses on
specific faults, only states S1 and S2 are used, hence only
residuals r5 and r6 are needed.

These residuals are then stacked with the original data for
each state. Standard scaling is applied to normalize the
dataset. PCA is performed on the scaled data to determine
the principal components. Unsupervised clustering algo-
rithms, K-means, and DBSCAN are applied to the PCA
scores. The selection of the clustering method is based on
ARI and NMI metrics, ultimately achieving unsupervised
fault detection in the system.
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4. RESULTS AND DISCUSSION

As mentioned, two common faults (Fault 1 and Fault 2)
are used, in our analysis, to evaluate the performance
of different techniques. In addition, it should be noted
that the occurrence of these faults in States 1 and 2 is
considered. As shown in the flow diagram (Figure 1), the
dataset is categorized based on the AHU states. Each state
is further divided into three scenarios: the occurrence of
Fault 1, Fault 2, or the presence of both faults in the
dataset.

Initially, the efficacy of data-driven models in detecting
Fault 1 in State 1 is assessed. Subsequently, the per-
formance of our proposed hybrid method is evaluated,
demonstrating its capability to facilitate unsupervised
fault detection within the AHU of the HVAC system.

For the implementation of unsupervised data-driven clus-
tering fault detection, the datasets are mean-centered and
scaled to unit variance. PCA is then employed, on the
standardized data, to derive component scores. The re-
quired number of principal components is determined by
the cumulative explained variance, three for the purely
data-driven method and four for the hybrid approach.
The PCA scores are utilized to perform clustering using
K-means and DBSCAN algorithms, which enables the
distinction between normal and faulty operational clusters
by comparison with the space of true labels.

Despite the slight differentiation provided by the K-means
algorithm, its predetermined cluster count limits its di-
agnostic precision, particularly in areas of score space
overlap. The DBSCAN algorithm, without a predefined
cluster number, categorizes nine clusters, including noise
(Ci, i ∈ {1, . . . , 8}). This method of identification of noise
underscores the challenge of distinguishing between nor-
mal and faulty data; as such, a portion of data points may
be classified as noise. However, based on ARI and NMI
metrics presented in Table 1, DBSCAN exhibits better
performance, because it is influenced by the exclusion of
noise in the cluster-to-true label comparison.

In the hybrid approach, residuals are computed for each
state of the AHU and integrated into the dataset. Hav-
ing applied PCA on these datasets, the resultant compo-
nent scores are utilized to perform clustering. Figure 3
illustrates the effectiveness of this method. The top row,
color-coded by the true operational labels, demonstrates
a clear separation of normal and faulty conditions. This
separation is leveraged by clustering algorithms to accu-
rately cluster data points. The middle row, in this figure,
presents the K-means clustering results, where two clusters
are predefined (the number of clusters are determined
using the elbow method). The bottom figure depicts the
DBSCAN clustering, which includes Noise and clusters
C1 and C2. Compared to the pure data-driven approach,
the hybrid method significantly reduces noise points and
accurately captures the two primary operational datasets.
The efficacy of this method is further substantiated by the
ARI and NMI metrics presented in Table 1, illustrating the
superior performance of this clustering method compared
with the data-driven approach.

The performance of data-driven and hybrid clustering
methods, for all scenarios, is compared using the ARI and

2.png

Fig. 2. Data-driven based clustering approach for Fault 1
in State 1: (Top) Data samples are color-coded based
on the true labels, (Middle) K-means clustering per-
formance with two predefined clusters, and (Bottom)
DBSCAN clustering performance.

NMI metrics, and the results are listed in Table 1. Notably,
in state 1, the hybrid method demonstrates a significant
improvement over the data-driven approach, particularly
with the DBSCAN clustering algorithm, where it achieves
remarkably high ARI and NMI values. This represents a
significant improvement in fault detection accuracy and
reliability.
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3.png

Fig. 3. Hybrid-based clustering approach for Fault 1 in
State 1: (Top) Data samples are color-coded based
on the true labels, (Middle) K-means clustering per-
formance with two predefined clusters, and (Bottom)
DBSCAN clustering performance.

In contrast, for state 2, both methods show comparable
performance, suggesting specific scenarios where the data-
driven approach remains equally viable. However, using
a hybrid approach allows better differentiation of differ-
ent (normal and faulty) datasets using both clustering
techniques. In addition, across other scenarios, the hybrid
method enhances detection accuracy, reinforcing its ro-
bustness and adaptability in varied conditions. The overall

Table 1. Performance Metrics of Fault Detec-
tion Methods

State Fault
Data-driven

K-means DBSCAN
ARI NMI ARI NMI

1
1 0.5231 0.4768 0.6548 0.5994
2 0.0209 0.0049 0.0160 0.0120
1 and 2 0.3744 0.4451 0.4028 0.4832

2
1 0.8513 0.8966 0.9974 0.9931
2 0.3391 0.5522 0.9895 0.9763
1 and 2 0.5839 0.7258 0.9971 0.9976

State Fault
Hybrid

K-means DBSCAN
ARI NMI ARI NMI

1
1 0.9313 0.8852 0.9765 0.9569
2 0.9998 0.9999 0.9756 0.9434
1 and 2 0.9716 0.9447 0.9716 0.9447

2
1 0.9857 0.9725 0.9992 0.9977
2 0.8274 0.8161 0.9991 0.9971
1 and 2 0.9993 0.9981 0.9992 0.9980

analysis indicates that DBSCAN, whether employed in
data-driven or hybrid configurations, works better than
the K-means algorithm, underscoring its superiority in this
application domain. The hybrid method, with its integra-
tion of multiple techniques, emerges as not only efficient
but also reliable, adapting to various fault conditions with
improved precision. This adaptability is particularly valu-
able in HVAC systems, where accurate fault detection is
crucial for maintaining system performance and efficiency.

5. CONCLUSION

The research demonstrates that the hybrid-based clus-
tering method, integrating first-principles knowledge with
data, significantly outperforms the purely data-driven
clustering approach in the context of HVAC systems. This
method exhibits better diagnostic accuracy and reliabil-
ity, particularly in complex operational scenarios involv-
ing various fault conditions. The integration of model-
based residuals into the dataset and the use of clustering
techniques like DBSCAN and K-means enable the precise
identification and classification of both normal and faulty
operational states. The findings of this study highlight the
importance of combining multiple diagnostic methodolo-
gies for enhanced fault detection in HVAC systems, offer-
ing valuable insights for future developments in energy-
efficient building management and maintenance practices.
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