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Abstract: While designing excitation signals for identification of industrial processes, it is
important to obtain desired model accuracies, reduce the experimental time and limit the output
amplitudes within the specified bounds to avoid serious disruptions of the nominal process
operation. In this work, we design a multi-frequency multi-amplitude square wave (multi-square)
input based on a nominal model by minimizing the experiment length and placing constraints
on the model accuracy (in the frequency domain) and the output amplitudes. A separate design
is carried out for each input where the resulting optimization problem has the same structure
as a semi-definite program but with the decision variables restricted to integers corresponding
to the number of half-periods of each square-wave. For processes with multiple inputs, the
corresponding designs are carried out sequentially. The violations in the output constraints either
due to model-plant mismatch or unmeasured disturbances should be mitigated by appropriate
closed loop control actions. The efficacy of the proposed design is shown by means of a simulation
case study.

Keywords: Experiment design, System identification, Multi-square, Sequential excitation,
Output constraints

1. INTRODUCTION

For a commercial MPC project the most time consuming
step is to carry out experiments and subsequently from
collected data identify models (Ogunnaike, 1996). For an
automation vendor the time spent on site is probably the
most costly part of the project. With this motivation, this
paper aims at minimizing the length of the identification
experiment. Furthermore, if the process plant is in oper-
ation it is important, if possible, to still produce sellable
product during the experiment, why constraints on the
process variables are important.

Optimal input design for dynamical systems has a long
history. Drawing from work in statistics, e.g. (Wynn, 1970),
the foundations were laid out in the 1970s, essentially
for linear time-invariant (LTI) single-input single-output
(SISO) systems. Key issues were parametrizations of the
input (often a sum of sinusoids were used) enabling
desired metrics of Fisher information matrix to be achieved,
computational techniques, and the development of different
general purpose criteria (Mehra, 1974; Goodwin and Payne,
1977; Zarrop, 1979). A new direction for optimal input
design opened up in the 1980s when expressions for
the high order asymptotic variance of estimated transfer
functions became available, thanks to the work of Ljung
and co-workers (Ljung, 1985; Yuan and Ljung, 1984;
Ljung and Wahlberg, 1992). These expressions allowed
for frequency by frequency design of the input spectrum
(Yuan and Ljung, 1985; Ljung, 1999) and through the

multi-input multi-output (MIMO) extension of the variance
theory (Zhu, 1989), also input design for MIMO systems
could be done (Zhu, 2001). Employing these methods,
the design criteria were extended to application related
criteria (Gevers and Ljung, 1986; Ljung, 1999). With
computational tools for semi-definite programming (SDP)
becoming widely available around the turn of the century,
the focus shifted back to input design based on finite order
variance expressions as many such problems could be cast as
SDPs in the input spectrum (Cooley et al., 1998; Lindqvist
and Hjalmarsson, 2000; Jansson and Hjalmarsson, 2005).
These techniques were also amenable to LTI MIMO systems.
Building on this framework, least-costly input design was
introduced where, instead of optimizing a model quality
criterion based on a constrained experimental budget,
the objective function and constraint were interchanged,
leading to the minimization of the experimental budget
subject to quality constraints (Bombois et al., 2006). A
general perspective on application oriented input design is
given in Hjalmarsson (2009).

During the first decade of this century, the major focus had
been on LTI systems with convex optimization techniques
employing the relaxation that instead of the input sequence,
the input spectrum is designed. The input sequence is
subsequently generated by filtering white noise through a
filter obtained via spectral factorization of the designed
input spectrum. This means that for such methods it is
difficult to incorporate amplitude constraints in the input
design formulation. A remedy to this is proposed in Hägg
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et al. (2013) where MPC is used to generate the input such
that both input and output constraints are maintained
at the same time as that desired spectral properties are
obtained. Direct design of the input sequence has also been
considered, where amplitude constraints can be included.
Such techniques are greatly simplified by considering that
the decision variables are restricted to a finite alphabet,
for example in terms of allowed input amplitudes or sub-
sequences of the input (De Cock et al., 2016; Forgione
et al., 2014). An early attempt to convexify also amplitude
constraints is given in (Manchester, 2010). Similar to the
linear case, the input design problem can be relaxed into
a convex problem for nonlinear models by considering
the probability density of the input sequence, or a linear
parametrization thereof, as decision variable (Valenzuela
et al., 2015). Computational complexity tends to become
very high for this family of methods. An alternative
minimization method for the direct design of an input
sequence that yields a desired Fisher information matrix is
suggested by Parsa and Hjalmarsson (2021). The technique
is applicable to FIR models and thus allows direct input
sequence design in an application oriented framework. Also
particle filter methods have been proposed for input design
(Gopaluni et al., 2011). The bulk of methods considering
amplitude constraints are restricted to SISO systems.

Despite the vast literature on optimal input design, there
appears to be no work that minimizes the experiment time
while having constraints on the process outputs.

2. PROBLEM DESCRIPTION

The main goals of this paper can be formulated as:

• Construct excitation signals to minimize the experi-
ment time needed to obtain a dynamic model with a
given accuracy.

• Alternatively, construct excitation signals to obtain
the most accurate model with a given experiment
time.

Ideally, it would be nice to define the excitation in terms
of the control performance. Some attempts have been
done for SISO systems (Hjalmarsson, 2005; Barenthin and
Hjalmarsson, 2008; Hjalmarsson and Ninness, 2006), but
this is considered as too difficult a task for the multivariable
case here.

For the forthcoming control design and closed loop control
it is, from a robustness perspective, important that the
transfer function is accurate at frequencies slightly under
and up to the phase crossover frequency.

Frequencies higher than the crossover are of less interest for
control since it is assumed that the process gain decreases
significantly for these frequencies, and is well above the
bandwidth of the closed loop system. It can be debated
if excitation at high frequencies are meaningful. While it
can be argued that information at high frequencies are
extrapolated to other frequencies when the true system
and the used model both are of low order, with the true
system in the model set, these assumptions are rarely met
in practice. Instead such excitation may have a negative
impact. Therefore excitation and evaluation of accuracy is
recommended to take place below the crossover frequency.

The required standard deviation of the estimated model is
here defined relative to the static gain

R(ω) = r|G(0)|, ∀ω
Other requirements would also be possible, e.g. relative to
frequency varying gain R(ω) = r|G(ω)|, up to the cross-over
frequency. For higher frequencies it is recommended to have
a fixed bound because the gain of the frequency response
is so low that a relative bound will be unnecessarily tight.
Here r = 0.03 is used which would give a 3σ limit of about
9% relative error at low frequencies.

3. CHARACTERISTICS OF THE INPUT SIGNAL

As a starting point for the experiment design we assume
that a seed model is available. This seed model can be
obtained in different ways. If it is a model re-identification
in an already running MPC installation, the model used
in the MPC will naturally serve as the seed model. If we
are dealing with a new MPC project there are at least two
ways to estimate a model: Either one can screen historic
operating data to find intervals suitable for identification
(see Bittencourt et al. (2015) for a SISO model approach),
or an initial simple experiment has to be performed.

From the step response of the seed model, it is possible to
obtain information related to its frequency characteristics.
We will use t90 which is defined as the time when a step
reaches 90% of its final value. If needed, an adequate
sampling interval Ts could also be chosen from the step
response of the seed model using recommendations in
standard text books.

Based on t90 it is possible to approximate the lowest
frequency where it is relevant to excite the system:

ωlo =
2π

2t90
(1)

which corresponds to a period time Tp = 2t90 for a square
wave excitation signal. For a delay dominated SISO system,
this choice would correspond to a frequency somewhat
lower than the phase cross-over frequency, i.e. where it
from robustness would be good to have an accurate model.

3.1 Choice of Excitation Signal

Here square wave input signals are used for the excitation.
A square wave signal has the Fourier series expansion

u(t) =
4A

π

∑
m∈I

1

m
sin(ω0mt) (2)

where A is the amplitude, ω0 is the base frequency of the
square wave, and I = {1, 3, 5, . . .}. Hence, the square wave
has its main energy at the frequencies ω0 and 3ω0, and the
energy is then decaying for higher frequencies.

One reason for using square waves is that it is essentially
a sequence of step changes which is a well known and
accepted test signal in process industry. Furthermore, in a
situation where output amplitude constraints are essential,
a square wave is preferred over, for example, a sinusoid
since as noted in (2) the contribution from the fundamental
frequency has amplitude 4A/π, despite that the square
wave amplitude is only A. Then as an extra bonus we get a
number of harmonics too. You simply get a lot of excitation
compared to the signal amplitude. While PRBS has the
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similar property, a multi-square provides a much better
handle on exactly which frequencies at what amplitudes
that are injected.

Therefore in this paper, an appropriate number of such
square waves having optimal length and amplitude (given
by input design) are concatenated to form an input
sequence for performing the identification experiment.

3.2 Choice of Frequency Range and Candidate Square
Waves

It is important that the excitation takes place in a frequency
interval where an accurate model is desired, otherwise
unnecessary long experiments will occur.

The lowest characteristic frequency of interest is given
by (1). In fact for a single-input multiple-output (SIMO)
system, the lowest excitation frequency would be chosen
as the lowest of the ωlo among the individual transfer
functions in the corresponding input column of the transfer
function matrix.

The highest frequency of interest is chosen as

ωhi = 10ωlo

In addition the highest frequency for use is limited to
ωhi ≤ π/(2Ts), i.e. half the Nyquist frequency which means
that the square wave with the highest frequency will have
at least two samples in each half period.

The following candidate square waves are proposed for the
excitation:

[ωlo, 2ωlo, 3ωlo, · · · , ωhi]

Among these, the frequencies to be used will be determined
using optimization which decides how many half periods
of each candidate frequency that are needed to obtain the
desired model accuracy.

The requested covariance profile was defined in Section 2.
The evaluation frequencies are recommended to start
slightly lower than the base square wave frequency. Here
eight frequencies in [0.6ωlo, 10ωlo] were used.

3.3 Choice of Input Signal Amplitude

As stated in the introduction, for the experiment design it
is required that the input signal amplitudes are chosen such
that the outputs remain within the desired zones during
the experiment.

Appropriate amplitudes can be obtained from the seed
model by simply simulating the individual transfer func-
tions in one column of the model (corresponding to one
input signal). Given a number of square wave candidates,
the amplitude for each of these could be determined directly
from the simulated outputs, such that

|yi(t)| = |y0i (t)A| ≤ zi, ∀i,∀t
where y0i (t) is the output from the seed model for a square
wave input with amplitude 1, A is the amplitude for the
actual square wave, and zi are user requested bounds for
each output (sometimes in the sequel referred to as zone
limits).

If the individual transfer functions in a column of a MIMO
system have a large variation in gain it may not be possible

to obtain good models for each of them. This is especially
pronounced in a zone-limit scenario where it is not possible
to increase the amplitude of the excitation signal without
exceeding the allowed zones.

4. ACCURACY OF ESTIMATED TRANSFER
FUNCTIONS

This section discusses ways to predict the accuracy of
estimated transfer functions given a certain experiment.

4.1 Standard Theory for OE Model

From, for example, Ljung (1999), the asymptotic covariance
of the parameters for an identified transfer function can be
estimated by

P̂N = λ̂N

[
1

N

N∑
t=1

ψ(t, θ̂N )ψT (t, θ̂N )

]−1

where ψ are derivatives of the prediction with respect to
the parameters, and the noise variance is estimated by

λ̂N =
1

N

N∑
t=1

ϵ2(t, θ̂N )

For a sequential combination of two square wave sequences
it follows that

P̂N = λ̂N

[
1
N

(∑N1

t=1 ψ1(t, θ̂N )ψT
1 (t, θ̂N )+

+
∑N

t=N1+1 ψ2(t, θ̂N )ψT
2 (t, θ̂N )

)]−1

=[
1

N1+N2

(
N1

λ̂N

(
1
N1

∑N1

t=1 ψ1(t, θ̂N )ψT
1 (t, θ̂N )

)
+ N2

λ̂N

(
1
N2

∑N1+N2

t=N1+1 ψ2(t, θ̂N )ψT
2 (t, θ̂N )

))]−1

For our design, the averaged sums in the expression above,
which we may denote P̄1 and P̄2, will be pre-calculated
by simulating square waves through the seed model for
appropriately large values of N1 and N2. Large enough for
the sums to converge to resemble expected values. Hence
it follows that

P̂N =

[
1

N

(
N1

λ̂N
P̄1 +

N2

λ̂N
P̄2

)]−1

Introduce

Mj =
Nj

2

1

λ̂N
P̄j

which is the contribution to the covariance expression
from a half period of a square wave with the frequency
ωj = 2π/(NjTs). Then the covariance of the parameters
for an estimated transfer function is

P̂N =

[
1

N
(x1M1 + x2M2)

]−1

where N is the length of the experiment and xj is the
number of half periods of the square wave j. Note that
the above formulas generalize straightforwardly to more
than two square waves. Here we used two for simplicity
of illustration. Also, a specific Mj is determined for each
candidate square wave and for each output in the SIMO
system. The square wave amplitudes A are chosen as
outlined in Section 3.3.
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From Ljung (1999) the parameter covariance over an
experiment of N samples length is given as

cov θ̂N ≈ 1

N
P̂N ≈ (x1M1 + x2M2)

−1

To determine the derivatives ψ(t, θ̂N ), a model structure

and also the estimated parameters θ̂ are needed. To
illustrate this, consider that the model is a first order
discrete time OE model

y(k) =
b1 + b2q

−1

1 + a1q−1
q−d u(k) + e(k)

with parameters as

θ = [a1 b1 b2]
T

and further

φ(t, θ) = [−w(t− 1) u(t− d) u(t− d− 1)]
T

where w(t) is the simulated output from the model above
with e(k) = 0. Also introduce for use below the notation
A(q−1) for the denominator of the model, i.e.

A(q−1) = 1 + a1q
−1

The prediction is given by

ŷ(t|θ) = φT (t, θ)θ

and the derivatives of the predictor with respect to the
parameters

ψ(t, θ̂N ) =

(
dŷ

da1

dŷ

db1

dŷ

db2

)T

can be obtained by filtering φ(t, θ̂) through the filter
1/A(q−1), i.e.

A(q)ψ(t, θ) = φ(t, θ)

Further, the covariance of the frequency response magni-
tude is given by

cov |G(eiωTs)| = Γ∗(eiωTs) · cov θ̂N · Γ(eiωTs)

= Γ∗(eiωTs) · (x1M1 + x2M2)
−1 · Γ(eiωTs)

where Γ(eiωTs) is the derivative of the magnitude function
with respect to the model parameters.

Γ(eiωTs) =

(
d|G(eiωTs)|

da1

d|G(eiωTs)|
db1

d|G(eiωTs)|
db2

)T

Notice that the derivation above is described for a first
order model structure. If the true system is of higher
order this will lead to bias which is not accounted for
in these expressions. It is, however, straightforward to
redo the derivation for higher-order models or other model
structures. We have, for example, in subsequent work that
will presented in Sigurdsson et al. (2024) used higher order
Laguerre models to reduce the bias. This will lead to very
similar expressions in the next chapter, but of course lead
to slightly different optimal inputs.

5. EXPERIMENT DESIGN

The covariance of the magnitude of the frequency response
is given by the derivation in the previous section. In the
experiment design there are constraints on this covariance,
for each individual transfer function, Gi, and for each
frequency ω chosen for evaluation. It follows that

covGi(e
iωTs) = Γ∗

i (e
iωTs) ·

(∑
j xjMij

)−1

· Γi(e
iωTs)

≤ R2
i (ω) ∀ω ∀i

where Mij are parameter covariance contributions for the
square wave candidates defined in Section 4.1 and the
amplitudes have beforehand been determined as discussed
in Section 3.3. Further, xj are the integer number of half
periods for each square wave candidate. The inequality
above should be satisfied for all evaluation frequencies ω
and all transfer functions Gi in the actual column in the
multivariable transfer function. Using a Schur complement,
the constraint can be re-written to a matrix inequality as(

R2
i (ω) Γ∗

i (e
iωTs)

Γi(e
iωTs)

∑
xjMij

)
≥ 0 ∀ω ∀i (3)

This would be a linear matrix inequality (LMI) in the
decision variables xj if these were free variables. However,
here they are integers representing the number of half-
periods of each square-wave. Fortunately, it is still fairly
easy to solve the optimization problem with satisfactory
precision. Here YALMIP Löfberg (2004) is used with the
solver CUTSDP and the lower level MILP solver GLPK
(2012).

As discussed above two different optimization problems
can now be defined depending on the objective.

5.1 Shortest Experiment

To find the shortest possible experiment that gives the
desired accuracy of the estimated transfer functions, the
task is to select a number of half periods from a given a
set of square wave candidates with the period times Ni

and pre-specified amplitudes. The shortest experiment is
obtained by minimizing

nsqw∑
j=1

xjNj/2

subject to (3), where the free integer variable xj is the
number of half periods of square wave j.

Notice that one optimization is made per input signal.
Since we here assume identification of one SIMO system
per input signal, it does not matter in which order the
sequential inputs are applied.

5.2 Most Accurate Model in Given Time

An alternative (dual) formulation of the experiment design
problem is to find the most accurate model for a given
experiment length. This is obtained by minimizing z subject
to a modification of (3) where the covariance is scaled by
z, i.e (

zR2
i (ω) Γ∗

i (e
iωTs)

Γi(e
iωTs)

∑
xjMij

)
≥ 0 ∀ω ∀i

and subject to a constraint on the experiment length
nsq∑
j=1

xjNj/2 ≤ Nmax

where Nmax is the maximal experiment length expressed
in samples.

Since z is a scaling of the desired covariance profile R2(ω),
an optimal value of z > 1 means that accuracy has to be
sacrificed at the required experiment length. An optimal
z < 1, however, means that a shorter experiment would be
able to achieve the originally specified accuracy.
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Fig. 1. Step responses for true system and seed model

6. EVALUATION

The method presented in this paper has been tested for
many processes. Here due to space limitations we focus on
one example which has three inputs u(k) and three outputs
y(k) and is defined as

y(k) = G(q)u(k) +H(q)e(k)

where G(q) and H(q) are discrete time transfer functions,
and e(k) is a white noise vector with each element having
unit variance. Further G(q) is the discrete time counterpart
of

G0(s) =


3.9

23s+1 e
−9s 1.9

37s+1 e
−8s 0

5.1
26s+1 e

−6s 5.5
33s+1 e

−5s 0

0 0 4.9
15s+1 e

−2s


when sampled with Ts = 1 s, and the noise filter is given
by

H(q) = diag
(

0.04
q−0.2 ,

0.08
q−0.17 ,

0.04
q−0.25

)
For the simulations presented below the following seed
model is used

Gs(s) =


4.7

19s+1 e
−7s 1.5

39s+1 e
−10s 0

6.0
30s+1 e

−5s 7.0
31s+1 e

−7s 0

0 0 4.0
17s+1 e

−3s


The step responses for true system as well seed model are
presented in Figure 1.

For the experiment design it was assumed that for each
output there is an independent white measurement noise
with standard deviation

σ̂N = ( 0.05 0.1 0.05 )

which is in fact slightly higher than that of the coloured
noise. Furthermore for this example, it was assumed that
all three outputs have identical design constraints and the
same with the three inputs:

|yi(t)| ≤ 0.5; |uj(t)| ≤ 1;

To determine the shortest excitation sequence, the opti-
mization procedure based on OE model theory is repeated
three times, one for each input.

Figure 2 shows the resulting optimal experiment. The
bottom three rows show the designed input signals and the

three top rows show the three outputs and their respective
zone limits. Each of the optimal sequential excitation
signals is followed by a section where the input is zero
to allow time for the system to respond completely to
the previous input (see vertical red line for the start of
next part of the experiment). For this particular example,
the three optimal excitation signals show slightly different
behaviours. The optimal first input is based on only one
rather high frequency, while the second is a combination of
one low and one high frequency. The optimal third input
is simply one step up, and one step down. In a way the
proposed method can be viewed as a systematic approach
to design a generalized step test to obtain the desired model
accuracy.

For outputs 1 and 2, the process outputs mainly stay
within the defined output zone constraints, except for some
samples where the noise causes the zone violation. The third
output, however, significantly exceeds the upper constraint.
This is caused by the seed model having much lower gain for
G33, which creates an overly optimistic amplitude in input
3. If this upper limit is a critical one, the experiment would
have to be carried out in closed loop. We have investigated
this too, using an MPC without setpoint but only soft
constraints for the zone limits. One simulation example of
this is presented in Sigurdsson et al. (2024).

Another observation is that the experiment is significantly
longer for the second input. A reason for this is that the
gain of G12 is lower than the other gains, and therefore the
amplitude for output one is lower and results in a lower
signal-to-noise-ratio, which leads to a longer experiment
to reach the desired accuracy. The fact that for the design
we overestimated the gain of G22 (which is limiting the
amplitude of input 2) as well as the noise standard deviation
both contribute in the same direction.

A final remark on the design is that knowing that G33

is not coupled to the upper 2 × 2 sub-system (which we
did actually assume knowledge of in our seed model), one
could of course reduce the experiment time by running the
u3 experiment simultaneously with one of the other two
experiments.

The three excitation signals were then used in an open-loop
Monte-Carlo simulation with 50 different noise realizations
for each input. Despite that OE was used for design,
ARMAX models were identified for the different data sets
to allow for a possible colour in the noise. Figure 3 shows
Bode magnitude diagrams for the estimated models. The
+-marks show the 3σ deviation from the nominal transfer
function. The frequency responses for the identified models
for the most part reside well between the markers why,
despite significant error in the seed model, the experiment
design was able to find excitation signals that lead to model
estimates which meet the desired frequency accuracy.

7. CONCLUSIONS

This paper describes a framework to design experiments
for process identification. Based on an approximate seed
model of the process and the required model accuracy of
in the frequency domain, together with allowed ranges for
inputs and outputs, an optimal experiment is obtained
using mathematical optimization.
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Fig. 2. Optimal input signals and resulting simulated noisy outputs. Horizontal green lines mark the output constraints,
while vertical red lines mark the border between sequential experiments

One simulation example was presented here where the seed
model was manually selected. However, the method has
been extensively tested on a number of test models where
also the seed model has first been estimated using, for
example, a preliminary step experiment. Although, the
procedure is approximate since it combines asymptotic
theory with finite experiment lengths, our test results
indicate that the method is robust and provides adequate
excitation in most cases. As was pointed out in the previous
section an experiment in input 3 could have been run
in parallel with the sequential one in inputs 1 and 2.
This opens up the general question whether simultaneous
excitation could potentially lead to a shorter experiment.
This, however, gives a much more complex optimization
problem since both experiment length as well as all input
amplitudes need to be free variables. Such a study is not
within the scope of this paper and will be presented in
Sigurdsson et al. (2024).

Since the optimal theory builds on knowledge of the true
process, the quality of the seed model will inevitably have
an impact on the achieved model accuracy. We would
propose to use an iterative procedure where the obtained
accuracy is evaluated using standard theory, followed by
additional experiments in inputs whose transfer functions
are still not good enough.

Estimation of the delay in the process is crucial and
several approaches have been tested. However, the proposed
experiment design considers only the standard deviation of

the process gain, not the phase shift. A different experiment
design approach would probably provide better excitation
for time delay estimation. Notice that processes with
integrating dynamics are not covered in this paper, and
need special treatment.
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