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Abstract: Differentiating between various types of faults and classifying them based on their 
importance is essential for process fault detection and diagnosis. This classification helps 
operators to prioritize their actions based on the severity of the faults. This paper proposes 
a reservoir computing-based slow feature analysis (RCSFA) to model complex and nonlinear 
industrial processes and study its application in fault classification while integrated with a 
graph neural network (GNN) and majority voting ensemble causality detection. To make the 
algorithm robust to unseen faults, real-time operator feedback is included by utilizing operator 
eye tracking. The practical applicability of the proposed method and its application in fault 
classification is studied through an industrial application. 

Keywords: Fault detection, Operator feedback, Slow feature analysis, Graph neural network, 
Majority voting, Reservoir computing neural network. 

1. INTRODUCTION 

The safety and reliability of industrial processes are of 
paramount importance, especially within the oil indus­
try (Baker et al., 2020; El Kouche et al., 2012). To uphold 
these objectives, an effective approach is through fault 
classification, which plays a crucial role in maintaining 
the integrity of process operations (Wang et al., 2020). 
By implementing process monitoring and fault detection 
algorithms (Yin et al., 2022; Divya et al., 2023; Memarian 
et al., 2023), we can identify faults within the system. 
However, it is not enough to simply detect faults; it is 
equally critical to differentiate and classify them accu­
rately. This classification process empowers operators to 
make informed decisions and take appropriate actions 
based on the specific type of fault, enabling effective plan­
ning and execution of maintenance activities. 

In the context of chemical processes, faults refer to unde­
sirable deviations from normal operating conditions, often 
characterized by gradual growth or incipient behavior. 
Traditional fault detection and classification (FDC) algo­
rithms have been developed to address these faults, provid­
ing operators with timely notifications based on compre­
hensive information. Nevertheless, conventional classifica­
tion methods sometimes suffer from the inclusion of unnec­
essary information, resulting in increased computational 
costs and false diagnosis. Therefore, the development of 
an efficient FDC algorithm that optimizes the utilization 
of relevant information and incorporates a robust model 
capable of accurately representing underlying faults is 
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crucial. Causal analysis emerges as a diagnostic approach, 
leveraging pertinent information to enhance fault detec­
tion and classification accuracy. 

Causal analysis is commonly employed in fault detection 
and classification to improve the accuracy of diagnostic 
procedures. Various approaches exist for causal analy­
sis, including transfer entropy, Granger causality, autoen­
coder, and Bayesian inference. However, each method has 
its own strengths and limitations in detecting causal rela­
tionships. To mitigate the potential for erroneous causality 
analysis, majority voting ensemble causality detection al­
gorithm integrates information from multiple algorithms 
simultaneously. These algorithms make decisions based on 
the most frequently occurring results from various causal­
ity detection methods, thereby reducing false causality 
detections (Pastorino et al., 2021). In this paper, a ma­
jority voting ensemble algorithm utilizing random forest, 
support vector machine (SVM), and autoencoder models 
for causal detection is proposed. Section 2.2 provides a 
concise overview of majority voting ensemble algorithms. 

As mentioned earlier, the fault model should be compatible 
with the gradual development commonly observed in pro­
cess faults. While slow feature analysis (SFA) offers a linear 
feature-based model capable of extracting features based 
on the slowness principle, it does not provide an accurate 
representation for processes with multiple modes or non­
linearity. Therefore, in this study, a reservoir computing­
based slow feature analysis is proposed to extract slowly 
varying features from nonlinear processes. Section 2.3 
briefly discusses SFA in this context. 

To the best of the author's knowledge, this study repre­
sents the first integration of the statistical feature model 
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within a reservoir computing neural network, facilitat­
ing seamless integration with other machine learning al­
gorithms. This study provides a novel fault detection 
and classification algorithm based on reservoir computing, 
leveraging the power of graph neural networks for fault 
prediction and classification. The remaining sections of 
this paper are organized as follows. Section 2 provides a 
concise overview of key concepts, including the reservoir 
computing neural network, majority voting ensemble al­
gorithm, slow feature analysis, and graph neural network. 
This background information enhances the reader's under­
standing of the proposed fault detection and classification 
algorithm. In Section 3, the proposed algorithm is elabo­
rated and its structure is presented in detail. To validate 
the effectiveness of the approach, an industrial case study 
is presented in Section 4, showcasing the practical appli­
cation of the proposed fault detection and classification 
algorithm. Finally, in Section 5, conclusion summarizing 
the contributions and implications of the proposed algo­
rithm is provided. 

2. PRELIMINARIES 

In this section, the required preliminaries about reservoir 
computing neural networks (RCNN), majority voting en­
semble algorithm, slow feature analysis (SFA), and graph 
neural networks (GNN) are provided for a better under­
standing of the proposed algorithm. 

2.1 RESERVOIR COMPUTING NEURAL NETWORK 

The rapid advancements in artificial intelligence (AI) and 
its wide-ranging applications in the oil sands industry have 
spurred numerous efforts to address prevailing industrial 
challenges (Gupta and Shah, 2022). Reservoir computing 
neural networks have gained significant popularity as a 
class of powerful machine learning tools. However, their 
application in the process industry remains limited. 

Reservoir computing is a type of recurrent neural network 
(RNN) that employs fixed, random internal dynamics and 
hidden layers to process inputs and generate outputs that 
follow a specific distribution, like Glorot uniform, normal, 
and truncated normal distributions. Notably, the parame­
ters of the internal layers are not updated during training, 
resulting in a faster and simpler training process. Unlike 
traditional RNNs, reservoir computing neural networks do 
not encounter the issue of vanishing gradients due to their 
fixed internal layers. Consequently, the modeling process 
achieves improved convergence. The network generates 
outputs by training the readout layer, typically the last 
hidden layer, to predict the desired outputs based on the 
internal states. Reservoir computing neural networks have 
been successfully applied in various domains, including 
time-series prediction (Kutvonen et al., 2020), control sys­
tems design (Zhu et al., 2019), and in combination with 
other machine learning techniques (Mlika et al., 2023). 

In RCNN, the outputs (Yt) are generated using the input 
(Xt) through the reservoir layers and their neurons (Rt) 
as depicted in Fig. 1. The generative equations for RCNN 
are provided in Eqs. (1) and (2). 

Fig. 1. Representation of reservoir computing neural net­
works 

rt= (1 - >.)rt-1 + >. tanh(A.rt-1) + WinXt + b (l) 

Yt = Wout X rt + C (2) 
where rt is the reservoir state correlating the current state 
to its previous time (t - 1). Xt and Yt are the input and 
output, respectively. b is a bias that is usually a constant 
vector. A is the sparse weighted adjacency matrix for the 
reservoir layer. Win and Waut are linear input and output 
weight matrices, respectively. >.(0 < >. :S 1) is the leaking 
factor that defines the reservoir's dynamics. 

The previous studies (Jaeger, 2007) have demonstrated 
that choosing >. close to 1 maximizes the memory capacity 
of the model. The rationale for setting the leaking factor 
close to 1 is based on the desire to preserve information 
from the recent past without letting the reservoir states 
change too rapidly, which could cause the network to forget 
important temporal information. A leaking factor close to 
1 means that the reservoir's state is updated in a manner 
that closely integrates its current state with incoming 
inputs, allowing the network to maintain a rich dynamical 
memory of past inputs. This is essential for tasks that 
require the network to leverage long-term dependencies 
and temporal patterns in the data. On the other hand, 
the nonlinearity of the model is defined using the spectral 
radial (p) of A representing the forgetting factor, which is 
defined in Eq. (3). 

(3) 

where Ai 's are the eigenvalues of matrix A. Selecting 
appropriate values for >. and p involves striking a balance 
between memory capacity and nonlinearity in the model. 

2.2 Majority Voting Ensemble Algorithm 

The majority voting ensemble is a technique that lever­
ages the collective wisdom of multiple models to make 
predictions on a given dataset. In this approach, several 
models are trained independently, each providing their 
own predictions. These individual predictions are then 
combined by means of a majority vote to determine the 
final prediction. 

The strength of majority voting ensembles lies in their 
ability to mitigate inaccuracies present in individual mod­
els. By aggregating the predictions from multiple models, 
the ensemble can produce a more robust and accurate 
prediction compared to relying on a single model alone. 

The application of majority voting ensembles spans var­
ious domains, including health care (Qin et al., 2017), 
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economics (An et al., 2019), and process control (Meng 
and Kwok, 2013). 

2.3 SLOW FEATURE ANALYSIS 

Slow feature analysis (SFA) was first introduced by 
Wiskott and Sejnowski (Wiskott and Sejnowski, 2002). 
Slow feature analysis maps input data (X) into lower 
dimensional feature space to generate slow features. These 
features are trying to capture the slowly varying informa­
tion from the data. The representation of the SFA model 
is provided in Eqs. (4)-(7). 

minb.(sj) 

S.t. < Sj, >t= 0 

< 82 >t= 1 Jt 

Vi-/=- j, < Si,Sj, >t= 0 

(4) 

(5) 

(6) 

(7) 

The SF A model tries to minimize the variation of slow 
features by constraining them to follow zero mean and 
unit variance. In addition, slow features are mutually 
independent. The outcome of the slow feature analysis is 
a set of features where s1, is the slowest and s2, is the 
second slowest, etc. 

2.4 GRAPH NEURAL NETWORK 

The Graph Neural Network (GNN) is a deep learning 
algorithm designed for structured data analysis. Recently, 
several types of GNNs have been proposed to address 
the challenges associated with structured data, such as 
the Graph Convolutional Network (GCN), Graph Atten­
tion Network (GAT), and Graph Isomorphism Network 
(GIN) (Park et al., 2022; Yuan et al., 2020). In GNN, the 
inputs consist of an adjacency matrix and features. The 
features represent nodes, and the adjacency matrix helps 
create connections between nodes, forming edges (Zhou 
et al., 2020). One important application of graph neural 
networks is in fault detection and diagnosis (Li et al., 
2020). 

To update the forward-pass propagation in GNN, Eq. (8) 
is employed for each node. 

sil+l) = u (sil) x wP) + L s;1) x wJ1l) (8) 
jEN(i) 

where l and Si represent the hidden layer and hidden state 
of the node, respectively. W1 and W2 are the parameters 
of the neural network. N(.) denotes the neighbors of the 
node. This equation implies that each node's state depends 
solely on the information received from its neighbors, 
thereby capturing the causal relationship among variables. 
This approach effectively avoids incorporating redundant 
information from high-dimensional input variables. 

3. PROBLEM FORMULATION 

In this section, a fault detection and classification algo­
rithm that is based on the reservoir computing slow feature 
analysis and the majority voting ensemble is presented. 
The algorithm consists of three steps, feature extraction, 
causality analysis, and fault classification. In the rest of 
this section, these steps are elaborated. 

3.1 FEATURE EXTRACTION 

In this step, the slow features are extracted from the 
input data using a reservoir computing-based SFA model. 
Fig. 2 illustrates the proposed model, which employs reser­
voir computing for slow feature extraction. The input 
data is fed into the Reservoir Computing Neural Network 
(RCNN) to extract the slow features in the encoding 
section. Subsequently, these slow features are used to 
reconstruct the input data in the decoding section. In 
order to maintain model accuracy, it is crucial to minimize 
the error between the input data (X E nmxT) and the 
reconstructed input (X). Additionally, to ensure that the 
extracted features are indeed slow features, the optimiza­
tion problem described in section 2.3 must be solved. 
Thus, a multi-objective optimization problem needs to be 
addressed to obtain the slow features. The formulation of 
the optimization problem is presented in Eq. 9. 

Objective function 1 : min(x - x) 
0 

Objective function 2: minb.(sj) 
0 

Constraints :< Sj, >t= 0 

< 82 >t= 1 
Jt 

Vi-/=- j, < Si,Sj, >t= 0 

(9) 

where 0 is the set of parameters for linear regression 1 
and linear regression 2. S E nqxT is the slow feature 
where q :S: m. T is the total number of measurements. 
The optimization problem defined in Eq. (9) can be 
further simplified to a constraint-free objective function 
as represented in Eq. (10). 

mJn ~ (t IIXt - Xtll~ + T ~ 1 t, IISt - St-111~ 

+ t,ct, ,,.,)' + t, (t,c s,.,- ,,)' -1)' + c10) 

+ t,,t, (t,c,,., - ,,)(,,., -,;)n 

In the given equation, Xt represents the measurements at 
time t, while St represents the slow features at time t. si,t 

denotes the value of feature i at time t, and Si represents 
the mean value of ith slow feature.The first term in the 
equation represents the reconstruction error, while the last 
three terms are the constraints of Eq. ( 9). The second term 
defines the slowness principle. This optimization problem 
can be effectively solved using numerical solvers. 

3.2 CAUSALITY ANALYSIS 

After extracting the slow features in section 3.1, the 
proposed majority voting ensemble algorithm is utilized 
to identify causes and effects between the features. To 
identify the causes of a specific slow feature ( si), the 
surrogate datasets are generated as [si, Sjc;ii] in addition 
to the main dataset [si] where s#i is a lagged variable to 
study the causalities. These datasets are partitioned into 
two sections using partitioning size ( L). The first section 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

456



Fig. 2. Reservoir computing-based slow feature analysis 

is used for creating the models while the second section is 
used for calculating the MSE of the predictions using the 
models. These datasets are given to three different models, 
random forest (RF), support vector machine (SVM), and 
autoencoder (AE). In each model, the MSE is calculated 
for each dataset. If any of the surrogate datasets' MSE 
is smaller than the MSE for the actual dataset, the 
presence of the other slow feature helps improve the 
prediction accuracy. Thus, the augmented slow feature (s1) 
is considered as a "cause" for the specific slow feature (si)­
The final decision on identifying causes is based on the 
majority voting among those three models, i.e. the slow 
features are the cause for the specific slow feature (Si) if at 
least two models detect their causality. The schematic for 
the proposed majority voting ensemble causality detection 
algorithm is provided in Fig. 3. 

Fig. 3. Majority voting ensemble causality detection algo­
rithm 

3.3 FAULT CLASSIFICATION 

After extracting the slow features (nodes) in step 3.1 and 
creating their corresponding adjacency matrix (edges) in 
step 3.2, the graph representation can be constructed. This 
graph is then fed into a GNN as input, which establishes 
connections based on the adjacency matrix to learn the 
model. The GNN processes the graph and produces output 
that classifies faults based on prior fault information. 
Fig. 4 illustrates the schematic of the GNN and how the 
extracted slow features and the identified adjacency matrix 
are employed for fault classification. 

Fig. 4. Fault classification using graph neural network 

The graph neural network classifies the data into P + l 
different classes including normal condition and P dif­
ferent faulty conditions. The trained Graph Neural Net­
work (GNN) currently lacks the capability to detect and 
classify faults that have not been encountered before. To 
enhance the algorithm's resilience in handling such un­
foreseen faults, eye-tracking information from operators is 
integrated into the methodology. Operators continuously 
monitor various process variables, leveraging their exper­
tise to potentially identify faults. When operators spot a 
potential fault, it is flagged for further investigation once 
their gaze becomes stationary or exhibits a specific eye 
gesture. Consequently, a new fault category is introduced. 
The GNN model is subsequently retrained, incorporating 
this newly identified fault alongside the existing ones in the 
dataset (P+2 classes). The schematic of operator feedback 
is demonstrated in Fig. 5. 

PV 1 ~size pV 2 IMmkiwsii<i 

: - •• 11 fl1 

-

Fig. 5. Schematic of operator feedback using eye tracking 

4. CASE STUDY 

In this section, a real-life experiment was conducted to 
test the applicability of an algorithm for health monitor­
ing of pumps using ultrasonic flow meter measurements. 
Ultrasonic flow meters are devices that use high-frequency 
sound waves to measure the flow rate of fluids in pipes. 
They emit sound waves into the fluid and measure the 
time it takes for the waves to travel through the fluid and 
return to the sensor. These sensors are commonly used in 
the oil sand industry (Drenthen et al., 2009). 

The experiment focused on monitoring the pumps used to 
increase the pressure of oil passing through pipelines in the 
oil sand industry. The mechanical characteristics of these 
pumps make them prone to failure. The schematic in Fig. 6 
represents the system studied, but specific details such as 
tag names, devices, and process information have been 
removed and the data has been normalized for proprietary 
reasons. The system consists of four pumps: Ul, U2, 
U3, and U 4. Pumps Ul and U2 work with pumps U3 
and U 4, respectively, using bypass lines. Measurements 
from ultrasonic flow meters were collected for each pump 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

457



~~i--------..----1 -;{------1~i--------,t--1 --------1<----'r21~r21~ 

Fig. 6. Series-operation pumps 

Table 1. Computational time comparison be­
tween the proposed algorithm and RNN-based 

SFA 

Algorithm Training Time (s) 
Proposed Algorithm 1045 

Recurrent Neural Network-based SFA 1384 

over a period of three months, resulting in 30 different 
measurements per pump. The data was divided, with 65% 
used for training the algorithm and the remaining portion 
for validation. 

In addition to the flow meter measurements, an alarm 
log was also available, indicating the condition of the 
process (e.g., normal condition, low-low alarm, low alarm, 
high alarm, high-high alarm). The algorithm used the 
reservoir computing-based Slow Feature Analysis (SFA) 
model to extract slow features from the training data. The 
"BoTorch" library, a Bayesian optimization framework 
in "PyTorch," was employed for this purpose. Only the 
first six slow features, which explain 95% of the actual 
variability, were retained and shown in Fig. 7. 

The extracted slow features were then used to generate 
an adjacency matrix using the majority voting ensemble 
algorithm. This matrix represents the causal relationships 
between the pumps and is depicted as a graph in Fig. 8. 
Subsequently, a graph neural network was trained using 
the extracted slow features and detected causalities. 

The algorithm was validated using test data, and the 
results were evaluated using a confusion matrix shown in 
Fig. 9. The confusion matrix demonstrates the algorithm's 
performance in detecting faults and classifying them into 
the four available fault types. Table 1 provides a compari­
son based on the training time of the proposed algorithm 
and the RNN-based SFA which demonstrates a reduction 
in training time. 

To test the robustness of the algorithm to unseen faults, 
a class of new faults is manually introduced in test data 
with the label "Warning" operating around the normal 
condition and 43 alarms are generated relating to this 
label. The experimental operator's eye-tracking feedback 
is utilized to update the fault classification model. Once 
the experimental operator detects a deviation in process 
variables and captures the mismatch between their process 
knowledge with the model output, a "30-second" gaze 
pattern is utilized to retrain the GNN model using the 
new label and deviated portion of the process variable as 
depicted in Fig 5. As can be seen from Fig. lO(a), the 
updated algorithm performs well in classifying the new 
class compared to Fig. lO(b) where all introduced faults 
are misclassified. 

Overall, the algorithm showed promising results in fault 
detection and classification, indicating its effectiveness 
in monitoring pump health using ultrasonic flow meter 
measurements. 

Slow Features 

~ ' ·.·~ 
~ 
~ 
~ 
~ 
~ 

Fig. 7. Extracted slow features using RCSFA 

Fig. 8. Estimated graph using RCSFA and ensemble 
causality detection 

Normal Condition 15 

2000 

Low-Low Alarm 47 

I 
1500 

. Low Alarm 23 15 261 " ,e 1000 

High Alarm 10 248 

500 

High-High Alarm 137 

Predicted label 

Fig. 9. Fault detection and classification algorithm perfor­
mance 

5. CONCLUSIONS 

In this paper, a reservoir computing-based slow feature 
analysis model is proposed for extracting the slowly vary­
ing features from nonlinear data. The proposed model is 
integrated with the majority voting ensemble and graph 
neural network to detect the faults and classify them. 
The reservoir computing-based slow feature analysis and 
majority voting ensemble are able to extract the slow fea­
tures and obtain the nonlinear causal relationship between 
input variables. In addition, operator feedback is included 
by means of the operator eye tracking for real-time algo­
rithm updates to handle the problem of unseen faults. The 
proposed algorithm is tested on an industrial data set to 
demonstrate real-life applicability. The results presented 
through the industrial case study on pump health moni­
toring using ultrasonic flow meters verify the effectiveness 
of the nonlinear SFA model and the application of the 
proposed algorithm in detecting and classifying faults. 
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Normal Condition 15 

2000 
Low-Low Alarm 1 4 7 

Low Alarm 23 15 261 1500 

Warning 3 36 1000 

High Alarm 10 248 
500 
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(a) Classification algorithm performance in the presence of 
unseen fault with operator feedback 

Normal Condition 15 

2000 
Low-Low Alarm 1 47 

! Low Alarm 23 15 261 1500 . 
0 
,s Warning 8 11 21 1000 

High Alarm 10 248 
500 

High-High Alarm 0 137 

(b) Classification algorithm performance in the presence of 
unseen fault without operator feedback 

Fig. 10. Abnormalities observed by using the proposed 
algorithm in 
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