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1Eindhoven University of Technology, Eindhoven, The Netherlands
2Delft University of Technology, Delft, The Netherlands

(e-mail: {m.t.akan, c.r.portilla, l.ozkan}@tue.nl, lozkan@tudelft.nl).

Abstract: In the heat treatment processes, offline utilization of first-principles models is well-
established. These models tend to be complex, computationally demanding, and rely heavily on
empirical relations. The fidelity of these models degrades over time due to changes in the process
resulting in plant-model mismatch, which is typically attributed to an incorrect constitutive
relation of a physical mechanism in the model (i.e. fouling in the heat exchangers). In this
paper, we propose two hybrid modeling approaches, namely Sparse Identification of Nonlinear
Dynamics with Control and least square estimation, to learn the dynamics of the discrepancy
between the measurement data and the simulation model. The hybrid modeling approach is
implemented on a heat exchanger network (HEN) example and it is shown that the accuracy of
the first principles dynamic model is improved.
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1. INTRODUCTION

Process systems inevitably degrade over time, leading
to reduced production performance and quality. Regular
checks of component health and performance indicators
are required. However, in cases where the degradation
process is complex due to limited prior knowledge about
its mechanism, deriving a robust fouling model based
on first principles becomes challenging. Furthermore, the
worldwide total cost of fouling in industrial operations is
estimated to be in the order of 0.1 − 0.3% of the Gross
National Product (Boxler (2014)), and Bansal and Chen
(2006) indicate that in the dairy industry, the total cost of
the fouling and fouling-related cleaning processes is about
80% of the total production cost.

Traditionally, degradation assessment in process industry
involves observing relevant states linked to the degradation
mechanism. Methods like the Extended Kalman Filter
(EKF) can monitor the evolution of parameters related to
fouling (Jonsson et al. (2007)). However, solely observing
process states isn’t sufficient for accurate future predic-
tions; it is crucial to comprehensively model the entire
process by uncovering unknown degradation mechanisms.

Given the complexity of degradation mechanisms, a data-
driven (DD) model is often preferred for discovering degra-
dation dynamics. However, it still necessitates prior knowl-
edge of the degradation physics. Hybrid modeling (HM),
which combines DD and first principles (FPs) approaches,
addresses this challenge (Rajulapati et al. (2022)). In cases
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where FPs are only partially known, approaches like resid-
ual modeling and FP-constrained modeling are commonly
employed. For instance, a recent study by Kaheman et al.
(2019) proposes an HM approach using DD methods to
discover the discrepancy model between known FPs and
measurement data. Techniques such as sparse identifi-
cation of nonlinear dynamics (SINDYc) (Brunton et al.
(2016)) and deep learning for model discovery (DeepMoD)
Both et al. (2021) are examples of this approach, as they
utilize sparse estimation over a broad range of candidate
basis functions for model discovery.

In this work, we assume that the consecutive equations
related to the thermal interactions in the heat exchanger
are well-known. In contrast, the equation(s) related to the
heat exchanger fouling dynamics are unknown. Hence, a
discrepancy between the prediction based on the available
model and the plant measurements occurs.

To this end, we employ the residual modeling approach
to minimize the discrepancy between the measured data
and the available model. As it is elucidated in Ebers
et al. (2022), various modeling frameworks would be used
to disambiguate the (un-) deterministic effects of the
discrepancy via SINDY, Dynamic Mode Decomposition
(DMD) of Tu (2013), Gaussian Process Regression (GPR)
of Rasmussen (2003), and Neural Networks (NN). Out
of these methods, it is reported that SINDY has the
lowest computational cost, whereas NN has the highest.
On the other hand, DMD - a linear model discovery
method - struggles to create an accurate discrepancy
model resulting in lower forecasting performance as the
nonlinear parameters increase.

Considering these, we use SINDYc-based hybrid modeling
Kaheman et al. (2019) with the Complementary Pairs
Stability Selection (CPSS) method Shah and Samworth
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(2012) for developing a residual model. Furthermore, we
propose another hybrid model based on the least square es-
timation method. With these hybrid modeling approaches
a model with improved forecasting performance is ob-
tained.

In this paper, Section 2, presents the background in-
formation on the hybrid modeling approach. Section 3,
discusses the problem by introducing the enthalpy-based
modeling of a fouled counter-flow heat exchanger network
and the fouling model discovery methodology based on the
residual modeling strategy. The results of the simulations
are presented in Section 4. Finally, the conclusion and
perspectives are derived in Section 5.

2. BACKGROUND INFORMATION

2.1 Sparse Identification of Nonlinear Dynamics for Control

We consider the nonlinear dynamical system

ẋ(t) = f(x(t),u(t);µ), (1)

with state x(t) = [x1(t) ... xn(t)] ∈ Rn, control input
u(t) = [u1(t) ... uq(t)] ∈ Rq, parameters set µ, and smooth
dynamics f(x(t),u(t);µ) : Rn×Rq → Rn. Let X ∈ Rm×n

and U ∈ Rm×q are the states and inputs dataset made of
m measured time steps of the state x(t) and input signal

u(t). The time derivatives Ẋ ∈ Rm×n, if not measured
directly, are computed by numerical differentiation.

The system in Eq. (1) can thus be approximated as:

Ẋ ≈ Θ(X,U)ξ, (2)

where a large basis functions library Θ(X,U) and sparse
coefficients vector ξ represent the parameters that make
the linear combinations of basis functions the true system.

However, for most of the dynamical systems, the com-
plete system dynamics - ODE structure - is unknown.
Based on this representation, an unknown ODE structure
corresponds to having an unknown sparse vector ξ for a
specific library Θ(X,U). This unknown sparse vector can
be estimated using sparsity estimators. For example, Lasso
(ℓ1 − norm regularized least-square minimization) can be
employed for this purpose:

ξ = argmin
ξ

(∥∥∥Ẋ−Θ(X,U)ξ)
∥∥∥
2
+ λ ∥ξ∥1

)
. (3)

Using this method, a sparse ξ corresponding to the opti-
mal linear combinations of the basis functions in library
Θ(X,U) that gives good model performance can be identi-
fied by tuning the penalization parameter - λ - using k-fold
cross-validation.

However, even optimal tuning of λ cannot distinguish
between signal variables and noise variables in most of
the cases. To address this problem Meinshausen and
Buhlmann (2010) introduced a promising variable selec-
tion method called Stability Selection (SS). The SS al-
gorithm computes a stability measure for each variable
based on its frequency of selection in bootstrapped estima-
tions. Variables with stability measures below a predefined
threshold are filtered out, leading to an improved variable
selection performance of the base estimator. Moreover, this
method exhibits low sensitivity to the choice of the regu-
larization parameter. In our research, we use an enhanced

extension of SS, named Complementary Pairs Stability
Selection (CPSS) algorithm (Shah and Samworth, 2012)
instead of Lasso in Eq. 3.

2.2 Hybrid Modeling via Residual Modeling

Consider a dynamical system, fo

ẋ0(t) = fo

(
x0(t),u(t);µo

)
. (4)

The mechanistic model output for this system is given as

ẋM (t) = fm (x(t),u(t);µm) , (5)

where the noisy measurement is x(t) = x0(t) + ϵ.

Parameter error, µo ̸= µm, model inadequacy, fo ̸= fm,
and measurement noise contribute to the plant-model
mismatch, expressed as:

δẋ(t) =ẋ(t)− ẋM (t)

=fo(x(t),u(t);µo)− fm (x(t),u(t);µm)
(6)

We collect the error data from a model and represent it as
a matrix, denoted as δẊ = [δẋ(t1) ... δẋ(tm)]⊤ ∈ Rm×n.

Next, we construct a library of candidate functions
Θ(X,U). Our choice of functions in this library is typically
based on our prior knowledge about the (sub)model of the
discrepancy.

The problem of finding a sparse representation is then
formulated as follows:

δẊ ≈ Θ(X,U)ξ.

To sparsely represent the discrepancy model using the
given data δẊ, X and U by discovering ξ, the SINDYc
approach or its extension with CPSS can be employed.

Fig. 1. Compensating the model discrepancy via learning

The graphical representation of the residual modeling
approach is presented in Fig. 1. The identification box
represents the identification method that takes the system
states, inputs, and the difference between the mechanistic
model’s estimated state derivatives and the true system
state derivatives to learn the discrepancy dynamics be-
tween the true system and the mechanistic model. Later,
the discovered discrepancy dynamics are used to compen-
sate for the mechanistic model to create a hybrid model.

3. PROBLEM FORMULATION

Initially, we present the true model of the system based
on an enthalpy-based counter-flow heat exchanger network
modeling with milk fouling effects incorporated. Subse-
quently, we describe the discrepancies in the mechanistic
model resulting from the inadequate incorporation of the
fouling effect into the process. Later we employ two data-
driven methods to characterize the discrepancy dynamics.
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3.1 Enthalpy Based Heat Exchanger Modeling

We consider a counter-flow heat exchanger (CFHEX)
model based on the enthalpy dynamics modeling approach
of Zitte et al. (2018) and assume that the tube and
shell components have constant volumes (V and V̄ [m3]),
densities (ρ and ρ̄ [kg/m3]) and pressures (P and P̄
[kg/m3]).

As a result of these assumptions PV remains constant
which results in no delay in inlet/outlet flow rates and the
total energy of the compartments is equal to the enthalpy
of the compartments. Considering that the total amount
of enthalpy in the (i, j)th compartments are given by:

Hi,j = ρV h(Ti,j), h(Ti,j) =cp(Ti,j − Tref ) + href ,

H̄i,j = ρ̄V̄ h(T̄i,j), h(T̄i,j) =c̄p(Ti,j − Tref ) + href ,
(7)

where h (J/kg) is the specific enthalpy and Ti,j and T̄i,j

(K) are the temperatures of the (i, j)th compartments of
the cold and hot ports.

Fig. 2. Graph representation of CFHEXs in series where
the number of sections (ns) and CFHEXs (nh) are
3 and 2, respectively. Red, blue, and orange ports
represent the hot water in the shell, the cold milk
in the tube, and the heat transfer, respectively.

H̄i,j and Hi,j are the enthalpy in the section j of HEX i
for hot and cold fluids. A nonlinear dynamic model for a
heat exchanger is given by the enthalpy balance:

d

dt
H̄i,j(t) = −λi,j(t)

[(
H̄i,j(t)

ρ̄V̄ c̄p
−

href

c̄p

)
−
(

Hi,j(t)

ρV cp
−

href

cp

)]
+ Q̄(t)

(
h̄
in
i,j(t) −

H̄i,j(t)

ρ̄V̄

)
,

d

dt
Hi,j(t) = λi,j(t)

[(
H̄i,j(t)

ρ̄V̄ c̄p
−

href

c̄p

)
−
(

Hi,j(t)

ρV cp
−

href

cp

)]
+ Q(t)

(
h
in
i,j(t) −

Hi,j(t)

ρV

)
,

(8)

where 1 ≤ j ≤ ns and 1 ≤ i ≤ nh, hin
i,j(t) =

Hi,j−1(t)
ρV for

2 ≤ j ≤ ns and h̄in
i,j(t) =

H̄i,j+1(t)

ρ̄V̄
for 1 ≤ j ≤ ns − 1,

λi,j(t) (W/K) is the overall heat exchange coefficient, Q
(kg/s) is the mass flow rate, the subscript in refers to the
inlet, and the bar, .̄, refers to the variables on the shell
side of the heat exchanger while no bar indicates the tube
side.

In 8, we also have:

λi,j(t) =
1

1
λ0

+Rf
i,j(t)

, (9)

where λ0 is the heat transfer coefficient of both fluids
and Ri,j(t) is the thermal resistance of the fouling for
jth section of HEX i. Note that if there is no fouling,
Ri,j(t) = 0, and λi,j = λ0.

We consider a fouling model for milk at Ultra-High-
Temperature (UHT) pasteurization proposed by Fryer

(1988) that simply represents a nucleation-and-growth
process and correlates as a function of surface temperature
(T s

i,j(t)) and the Reynolds number (Rei,j(t)):

d

dt
Bii,j(t) =

kd
Rei,j(t)

e
−E

RTs
i,j

(t) − krBii,j(t), (10)

where Bii,j(t) = λ0R
f
i,j(t) is the Biot number, kd and kr

are deposition and removal rate constants, the reaction
activation energy (J/mol ), R is the universal gas constant
(J/(mol K)). The surface temperature is calculated as:

T s
i,j(t) = 0.5

(
Ti,j(t) + T̄i,j(t)

)
.

One can also represent the fouling model in Eq. 10 as:

d

dt
Rf

i,j(t) =
kd

λ0Rei,j(t)
e
− E

RTs
i,j − krR

f
i,j(t) (11)

It is assumed that the fouling only occurs in the cold fluid
(i.e. the inner pipe). Hence, the Reynolds number for the
cold fluid is calculated as:

Rei,j(t) =
4Qi,j(t)

πDν
(12)

where D is the diameter of the pipe (m), ν is the kinematic
viscosity (Pas).

3.2 Discrepancy in HEN Model

We address the process uncertainty arising from the inad-
equate modeling of the dynamic system in the mechanistic
model. The reason for such uncertainty is the complex
dynamics of the varying λ parameters which are functions
of the fouling. We propose to enhance the available mech-
anistic model by learning the model of the discrepancy -
δẋi,j(t) - between the available mechanistic (with super-
script M) model ẋM

i,j(t) and the observed value ẋi,j(t).

Consider the true dynamical system -f0- given as:

ẋ0
i,j = fo(x

0
i,j(t), ui,j(t);µo) (13)

where the state of the section j of HEX i at time t

is given by x0
i,j(t) =

[
H̄0

i,j(t), H
0
i,j(t)

]T
and ui,j(t) =[

Q̄(t)h̄in
i,j , Q(t)hin

i,j

]T
. For Eq. 8 the true model can be

represented as:

ẋ
0
i,j(t) =

λi,j(t)

 −1

ρ̄V̄ c̄p

1

ρV cp
1

ρ̄V̄ c̄p

−1

ρV cp

+

−Q̄(t)

ρ̄V̄ c̄p
0

0
−Q(t)

ρV cp

 x
0
i,j(t)

+ λi,j(t)href

(
1

cp
−

1

c̄p

)[
−1

1

]
+ ui,j(t)

(14)

The states of the system and their derivatives sampled at
times t1, ..., tm are given by: Xi,j = [xi,j(t1) . . . xi,j(tm)]T

and Ẋi,j = [ẋi,j(t1) . . . ẋi,j(tm)]T where xi,j(t) is the noisy
measurement as xi,j(t) = x0

i,j(t) + ϵ.

Assume that the given structure of the Ordinary Differen-
tial Equation (ODE) that describes the process in HEX
and the geometric information of the HEX are known
whereas no information about the true fouling model is
available. The mechanistic model is represented with no
fouling (Ri,j(t) = 0). Hence, we can represent the mecha-
nistic model output for this system as:

ẋM
i,j(t) = fm(xi,j(t), ui,j(t);µm). (15)

Similarly, the mechanistic model takes the form of Eq. 14
with λi,t(t) = λ0.
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The states of the system and their derivatives sampled
at times t1, ..., tm that are estimated by the mechanistic
model are given by: ẊM

i,j = [ẋM
i,j(t1) . . . ẋ

M
i,j(tm)]⊤.

The model discrepancy, δx(t), can be expressed by sub-
tracting Eq. 15 from Eq. 8 and taking href = 0.

This is given as:

δẋi,j(t) =ẋi,j(t)− ẋM
i,j(t)

=δλi,j(t)


−1

ρ̄V̄ c̄p

1

ρV cp
1

ρ̄V̄ c̄p

−1

ρV cp

xi,j(t),
(16)

where

δλi,j(t) = λi,j(t)− λo =
λo

1 + λoR
f
i,j(t)

− λo

in which Rf
i,j(t) is the fouling resistance and it is function

of Rei,j(t) and T s
i,j(t).

Using the relations in Eq. 7, Eq. 16 can be rewritten and it
can be simply represented as a function of the temperature
difference between compartments:

δẋi,j(t) =δλi,j(t)

[
−T̄i,j(t) + Ti,j(t)
T̄i,j(t)− Ti,j(t)

]
=δλi,j(t)∆Ti,j(t)

[
−1
+1

]
.

(17)

By simply subtracting the mechanistic model output from
the measured output, we can have the model error data
as:

δẊi,j = [δẋi,j (t1) . . . δẋi,j (tm)]
T
= Ẋi,j − ẊM

i,j .

The only prior information considered is that the dynamics
of δλi,j(t) depend on the values of T s

i,j(t) and Rei,j(t). The
surface temperatures are not measured values, but they
can be calculated for each pair of compartments using Eq.
7. Similarly, the Reynolds numbers for the cold pipe can
be calculated using the Eq. 12.

Keep in mind, that the temperature difference vector
(∆Ti,j), the surface temperatures vector (Ts

i,j), the
Reynolds numbers vector (Rei,j), the flowrate vector of
the cold fluid (Qi,j), and the time vector t are all sampled
at times, t1, ..., tm.

3.3 Hybrid Model I (HM I): Discrepancy Identification via
SINDYc with CPSS

By processing the measured data, we can have δẊi,j ,
∆Ti,j Ts

i,j , and Rei,j with these we can approximate

δẊi,j using a candidate function library Θ(∆Ti,j ,T
s
i,j ,Rei,j)

and the sparse parameter vector of the corresponding
features ξ.

If the data matrix is populated with relevant enough
candidate functions, the model discrepancy measurement
can be approximated as multiplication of the data matrix
via a sparse matrix as:

δẊi,j ≈ Θ(∆Ti,j ,T
s
i,j ,Rei,j)ξ. (18)

Accuracy of the approximation of δẊi,j via Eq. 18 de-
pends on design of the data matrix, Θ(∆Ti,j ,T

s
i,j ,Rei,j).

Therefore, we propose to approximate the model discrep-
ancy - L.H.S. of Eq. 16 - with the basis functions inspired
by the function on the R.H.S. of the same equation. This
is achieved by choosing the columns of the data matrix
using Eq. 16 with different base functions δλi,j,k(t) as:

Θ(∆Ti,j ,T
s
i,j ,Rei,j) = [θ1 · · · θk · · · θp] , (19)

where θk = [θk(t1), · · · , θk(tm)]
T
,

with θk(t) =δλi,j,k(t)∆Ti,j(t)

[
−1
+1

]
,

where the candidate functions for the overall heat transfer
coefficient discrepancy - δλi,j,k(t) - are chosen from the set

δλset
i,j (t) = {δλi,j,1(t), · · · , δλi,j,k(t), · · · , δλi,j,p(t)}. We

describe δλi,j(t) as exponential functions that resemble
Arrhenius equations with functions of Ts

i,j and Rei,j :

δλi,j(t) ≈
K∑

k=0

ake
bkT

s
i,j(t) +Rei,j(t)

L∑
l=0

cle
dlT

s
i,j(t). (20)

The exponential functions proposed in Eq. 20 can be
defined by infinite summation of the power series as:

δλi,j(t) ≈
K∑

k=0

ak

∞∑
n=0

(
bkT

s
i,j(t)

)n
n!

+Rei,j(t)

L∑
l=0

al

∞∑
n=0

(
blT

s
i,j(t)

)n
n!

≈
∞∑

n=0

αn(T
s
i,j(t))

n +Rei,j

∞∑
n=0

βn(T
s
i,j(t))

n.

(21)

We create a finite set δλset
i,j (t), that includes the candidate

δλi,j,k(t) terms in Eq. 19, using the the power series of
(T s

i,j,k(t))
n and Rei,j,k(t)(T

s
i,j,k(t))

n with 0 ≤ n ≤ 1.

From Eq. 21 the candidate functions - δλi,j,k(t) - are
chosen from the set:

δλset
i,j (t) ={ 1, Rei,j(t), T

s
i,j(t), Rei,j(t)T

s
i,j(t) }.

By following the above presented library construction
method and Eq. 19, the data matrix Θ(∆Ti,j ,T

s
i,j ,Rei,j)

can be constructed. Next, we approximate δẊi,j using the
linear combination of the columns of Θ(∆Ti,j ,T

s
i,j ,Rei,j)

with the vector ξ. In order to get the same discrepancy
dynamics structure for ξ in a sparse estimation, δẊi,j and
Θ(∆Ti,j ,T

s
i,j ,Rei,j) matrices of different compartments

are concatenated to create δẊ and Θ(∆T,Ts,Re). For
the plant of Fig. 2, the complete discrepancy model can
be approximated as:

δẊ1,1

δẊ1,2

δẊ1,3

δẊ2,1

δẊ2,2

δẊ2,3


δẊ

≈


Θ(∆T1,1,T

s
1,1,Re1,1)

Θ(∆T1,2,T
s
1,2,Re1,2)

Θ(∆T1,3,T
s
1,3,Re1,3)

Θ(∆T2,1,T
s
2,1,Re2,1)

Θ(∆T2,2,T
s
2,2,Re2,2)

Θ(∆T2,3,T
s
2,3,Re2,3)


Θ(∆T,Ts,Re)

ξ. (22)

The sparse regression problem presented in Eq. 22 can be
solved using the CPSS method.
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3.4 Hybrid Model II (HM II): Discrepancy Identification
via Least Square Estimation

We can also approximate the model discrepancy - L.H.S.
of Eq. 16, without constraining ourselves with the basis
functions inspired by the function on the R.H.S. of the
same equation. This way, HM II can be seen as a baseline
for HM I. We propose to approximate L.H.S. of Eq. 16
with a linear combination of 3 basis functions. The first
basis function is the difference between the measured
temperature in each section ∆Ti,j(t), similar to Eq. 19.
The second basis function is the cold flow rate given
by the input Qi,j(t) since we assume that fouling only
occurs in cold pipe. The last basis function describes
the accumulative effect of the fouling employing the time
vector, t. Therefore, the discrepancy is approximated as:

δẊi,j ≈ Θ(∆Ti,j ,Qi,j , t)ξ, (23)

where
Θ(∆Ti,j ,Qi,j , t) = [θ1 θ2 θ3] , (24)

where θk = [θk(t1), · · · , θk(tm)]
T
,

with θk(t) =δFi,j,k(t)

[
−1
+1

]
,

where the candidate functions - δFi,j,k(t) - are chosen from
the set:

δF set
i,j (t) ={∆Ti,j(t), Q(t), t }.

For the plant of Fig. 2, the complete discrepancy model
can be approximated using the concetanated vectros δẊ
and Θ(∆T, u, t) similar to the matrix in Eq. 22.

To find the best representative vector ξ, an optimization
problem is formulated as:

ξ = argmin
ξ

(∥∥∥δẊ −Θ(∆T,Q, t) ξ
∥∥∥2
2

)
. (25)

This optimization problem can be analytically solved as:

ξ = (Θ⊤Θ)−1Θ⊤δẊ. (26)

4. SIMULATION RESULTS

In this section, we compare the performance of the discrep-
ancy model approximation of two approaches w.r.t. that
of the true dynamics and the available mechanistic model
in a simulated experiment.

In Table 1 the system parameter values of the true model
are presented.

Table 1. Model Parameters

λ0 = 10 J/s/K ν = 2.4e− 4 Pas

kr = 0.0002 kd = 10

R = 8.314 J/mol/K E = 10000 J/mol

Tref = 298 K href = 0 J/kg

V = 0.002 m3 V̄ = 0.005 m3

ρ = 997 kg/m3 ρ̄ = 997 kg/m3

cp = 4185 J/kg/K c̄p = 4185 J/kg/K

Q = [0.005 0.007] kg/s Q̄ = [0.002 0.004] kg/s

hin = [8370 175770] J/kg h̄in = [175770 343170] J/kg

Fig. 3 presents the inlet-specific enthalpies (hin and h̄in)
and the flowrates (Q and Q̄) of the tube (blue) and shell
(red). In the simulation studies, we assume that all the
states are measured and output responses are corrupted by

Fig. 3. Input profiles for the identification experiments

white noise with an SNR level equal to 100, where the SNR
is defined as the ratio between the output signal power and
the output signal noise power for our case.

The state’s derivatives of the measured enthalpies are
approximated via the first-order numerical derivative (Eu-
ler’s method). To differentiate a signal without increas-
ing the noise power, we smooth the raw data using the
Savitzky-Golay filter.

Before the identification experiments, we generated 2
independent output measurement sets with the same noise
realization, using different input signals. The first set
is only used for identification methods. The second set
is kept as a test set to measure the performances of
the mechanistic and proposed hybrid models. Figures
presented in this section show the performance of the
models at the test set. The simulations experiments are
conducted over the series interconnected HEN at Fig. 2.

Over the constructed data matrix Θ(∆T,Ts,Re) in Sec.
3.3, we can perform identification via SINDYc extended
with CPSS as described in Sec. 2.1. The corresponding
identified discrepancy model via the sparse estimator for
the HM I is:

δ ˆ̇xH1
i,j (t) =2.5 · 10−6 ·Rei,j(t)T

s
i,j(t)∆Ti,j(t)

[
−1
+1

]
.

Similar to HM I, we can obtain the discrepancy model over
the constructed data matrix Θ(∆T,Q, t) in Sec. 3.4 via
Least Square Estimation to get the model for HM II. The
corresponding identified discrepancy model via the sparse
estimator for the HM II is:

δ ˆ̇xH2
i,j (t) =

(
1.92∆Ti,j(t)− 59.7Qi,j(t) + 8.34 · 10−4t

) [−1
+1

]
The resulting hybrid models take the form of:

ˆ̇xH1
i,j (t) = ẋM

i,j(t) + δ ˆ̇xH1
i,j (t),

ˆ̇xH2
i,j (t) = ẋM

i,j(t) + δ ˆ̇xH2
i,j (t).

Fig. 4 presents the comparison of the true and the pre-
dicted enthalpy derivatives of the mechanistic model, HM
I, and HM II. In the figure, due to lack of space, only the
trajectories that represent the milk outlet states (i.e. 3rd

the compartment of the 2nd heat exchanger in the cold
side, Ḣ2,3) are displayed. Besides, the outlet state is the
most relevant to the practical application in the process in-
dustry. From Fig. 4 we can realize that compensation of the
mechanistic model via the identified discrepancy dynam-
ics has improved estimation capacity w.r.t. the derivative
estimation of the mechanistic model, as expected.

Since the hybrid models are in the form of ODEs, we
can simulate the enthalpy trajectories of hybrid models,
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Fig. 4. Enthalpy derivative comparisons of the models at
the 2th HEX 3rd compartement

mechanistic models, and the true systems initiated with
any initial conditions and any test input signals. The
simulated trajectories for the outlet state of the cold side -
H2,3 - are presented in Fig. 5. This shows that an improved
forecasting performance w.r.t. the dynamic simulation of
the mechanistic model can be obtained in the hybrid
models that are compensated by the learned discrepancy
dynamics.

Fig. 5. Enthalpy comparisons of the models at the 2th HEX
3rd compartement

Fig. 6 presents the mean square error of the mechanistic
and hybrid modeling approaches w.r.t. the true state
values at all compartments. Simulation results of the first
4 compartments of HM I have higher accuracy w.r.t. the
HM II, while HM II has higher accuracy for the last two
states of the cold pipe compartments. Nevertheless, both
the developed hybrid models present an improved accuracy
for all compartments w.r.t. the mechanistic model

Fig. 6. Mean square error of the state predictions

5. CONCLUSION AND PERSPECTIVES

This paper introduced two hybrid modeling approaches to
address the disparity between existing knowledge on heat
exchanger dynamics and process measurements. The first
method utilizes surface temperature and Reynolds number
of the fluid in the cold tube to construct the data matrix
in the hybrid discrepancy model. The second method
constructs its data matrix using temperature difference

between hot and cold fluids, inlet flow rate of the cold tube,
and time. Both approaches enhance simulation accuracy
compared to initial heat exchanger dynamics.

We acknowledge the limitations of the proposed discrep-
ancy modeling methods. Both approaches assume that
internal states can be calculted based on measurable tem-
peratures, but in reality, only some outlet temperatures are
usually measured. Describing fouling phenomenon solely
with temperature and flow rates may be inadequate due
to complex biochemical interactions. Additionally, numer-
ical derivation amplifies noise effects in measured signals,
which we address by smoothing with a Savitzky-Golay
filter, though this may introduce bias.

The future work will focus on utilization of discovered
hybrid models on control of heat exchanger network and
improving the estimation of time derivatives by use of a
methodology similar to DeepMod.
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