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Abstract: Monitoring and predicting the key variables is significant in industrial processes. However, it is not effective in 

extracting temporal features of variables and predicting them accurately due to the high dimensionality and the long term of the 

input sequence. Therefore, this paper proposes an input-output driven cross-attention for the transformer network (IDCA-Former), 

which takes historical labels into account as a part of the input sequence. Then, cross-attention is conducted to compute the 

similarity between historical labels and original input data to capture more potential information. Moreover, sliding windows are 

designed by setting the input length of historical labels. The proposed IDCA-Former is applied for light naphtha prediction in the 

hydrocracking process. Extensive experiments show that IDCA-Former performs better in time series forecasting compared to 

other methods. 
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1. INTRODUCTION 

With the fast development of information technologies and the 

increased demands of customers, the process industry is going 

to be more intricate and high standard (Sun and Ge, 2021). Thus, 

how to monitor industrial processes efficiently and accurately 

is becoming more significant in modern industry. Usually, the 

stable and safe operations can be reflected by a few key factors 

or indicators in the production process. To control the entire 

procedure in real time, on-site staff must focus on the timely 

monitoring of some key variables. However, under the actual 

production environment , these variables cannot be monitored 

in real time, making it challenging to implement the process 

control and optimization. Hence, it is necessary to establish an 

efficient and reliable prediction model for these key variables. 

Due to the development of data-driven methodologies, many 

soft-measurement approaches have been applied for process 

variable prediction. In contrast to physical sensors, soft 

measurements offer several advantages, like fast response, low 

maintenance costs, and real-time estimation . For example, to 

solve the problem of process variables that are far apart in 

topology but have high correlations (Yuan et al., 2024), a 

variable correlation analysis-based convolutional neural 

network (VCA-CNN) was proposed for far topological feature 

extraction. Moreover, a new quality-driven regularization (QR) 

was proposed for deep networks to learn quality-related 

features so that some important information related to quality 

variables may not be discarded (Ou et al., 2022). However, the 

data collected from industrial plants are usually complex and 

nonlinear, which means that the simple models cannot handle 

these samples well. Currently, various types of methods based 

on deep learning are utilized in this field. For instance, a 

multiphase attention-based recurrent neural network (MPA-

RNN) was suggested to capture the decomposed information 

and extract spatial relationships (Geng et al., 2022). To handle 

dynamic time sequences with heterogeneous sample interval, 

attention-based interval-aided networks (AIA-Net) were 

proposed (Yuan et al., 2023), which considered the sampling 

intervals between sequential samples so that the temporal 

information could be better represented. Moreover, a channel 

based on gated recurrent unit (GRU) network was proposed 

(Zhang et al., 2023) to tackle the problem of inconsistent 

sampling rates in the process industry.  

However, as the time sequences become longer and longer, 

these models may show poor performance, especially in long 

prediction tasks. That is mainly because the recursive structures 

of models like LSTM and GRU lead to long-distance 

dependency and the current outputs are influenced by the 

historical state, making it difficult to predict long-term 

sequences. 

Transformer is currently widely used in modeling time series, 

and its powerful attention mechanism performs well in 

capturing similarities between data samples of time series. Also, 

the inputs of transformer do not depend on the state of the 

former temporal sequences, which is suitable for parallel 

computing. Therefore, the effectiveness of transformer has 

been successfully demonstrated in time series prediction. For 

instance, a frequency enhanced decomposed transformer 

(FEDformer) was developed to solve the problems of 

expensive computation and the inability to capture the global 

view of time series (Zhou et al., 2022). To fully exploit the 

characteristics of time-series data and avoid some fundamental 

limitations of transformer, exponential smoothing attention 

(ESA) and frequency attention (FA) were adopted by replacing 

self-attention, which improved both the model accuracy and 

efficiency (Woo et al., 2022).  A self-attentive mechanism 

based on deconstruction and dot product (DDPformer) in 

transformer was proposed to highlight the features of the partial 

head in the multi-headed attention mechanism (Xie and He, 

2022). However, industrial process variables may have close 

spatiotemporal relationships among these variables as the 

dimensionality becomes higher and higher, and these 

correlations are often difficult to be extracted directly.  

Additionally, the aforementioned methods did not consider the 

connection between input variables and output variables, which 
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often has a prompt effect on the former during the model 

training process. 

In this paper, an input-output driven cross-attention for 

transformer network (IDCA-Former) is proposed to solve this 

problem. In IDCA-Former, historical labels are considered as a 

part of the input sequence to extract features. Then, cross-

attention is designed to calculate the similarity between 

historical labels and input variables. Extensive experiments 

have demonstrated the outperformance of quality variable 

prediction in oil hydrocracking processes compared with the 

other methods. 

The remainder of the paper is as follows. In Section Ⅱ, the 

structure of the self-attention mechanism and transformer are 

introduced briefly. Next, the details of the IDCA-Former are 

thoroughly presented in Section III. Finally, the proposed 

IDCA-Former is applied to the oil hydrocracking process for 

experiments in Section Ⅳ. The summaries are presented in 

Section V. 

2. ATTENTION MECHANISM AND TRANSFORMER 

ARCHITECTURE 

2.1 Self-Attention mechanism 

As the key component of transformer, attention mechanism is 

designed to calculate the similarity between two vectors. The 

structure of self-attention is shown in Fig.1(a). 

 

Figure 1. Self-Attention Mechanism:(left)scaled dot-

product attention(right)multi-head attention. (Liu et 

al., 2023) 

Assuming that the query matrix (𝑄), key matrix (𝐾), and value 

matrix ( 𝑉 ) can be obtained by the input sequence 𝑋 , 

respectively. Then the dot-product operation is carried out to 

get the similarity between 𝑄 and 𝐾 . Here, the scale factor √𝑑𝑚 

is used to avoid large values of the inner product (Li, Wang and 

Mcauley, 2022). Finally, after normalizing by 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 

function and multiplying with the value matrix, the output is 

obtained. The specific calculations are described as:  

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝐾𝑇𝑄

√𝑑𝑚
)V (1) 

 𝑄 = 𝑋(𝑊𝑞)𝑇 (2) 

 𝐾 = 𝑋(𝑊𝑘)𝑇 (3) 

 𝑉 = 𝑋(𝑊𝑣)𝑇 (4) 

where √dm  represents the dimension of the mapped vector, 

Softmax(∙)  represents the normalization function, Wq , Wk , 

Wv represent the parameter matrices. 

To capture different aspects of features, multi-head attention 

extends from self-attention mechanism. In this technique, the 

Q, K, and V matrices are segmented into separate groups to 

obtain [𝑞1, 𝑞2, … , 𝑞ℎ], [𝑘1, 𝑘2, … , 𝑘ℎ], [𝑣1, 𝑣2, … , 𝑣ℎ], where h 

is the number of heads. Each sub-matrix performs similar 

operations as dot-product attention and is subsequently linked 

by joint function. The calculation proceeds as: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . , ℎ𝑒𝑎𝑑ℎ) (5) 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖), 𝑖 = 1,2. . , ℎ (6) 

where 𝐶𝑜𝑛𝑐𝑎𝑡(∙) represents joint function to connect vectors, 

and ℎ𝑒𝑎𝑑𝑖 is the result of each head. 

2.2 Transformer model 

The components of transformer can be summarized as four 

modules: input module, encoder module, decoder module and 

output module. Specifically, they include embedding block, 

attention block, residual connection layer, feedforward layer 

and output block (Liu et al., 2023). The overall structure of t 

transformer is shown in Fig.2. 

 

Figure 2. The framework of transformer. (Liu et al., 2023) 

Assuming that the input sequence is embedded by the input 

embedding layer and positional embedding layer. Next, the 

embedded sequence goes through the encoder module: firstly, 

the multi-head attention mechanism computes attention scores 

to get information from the input sequence; Then, the residual 

connection layer is designed to preserve the original 

information; Finally, the feed-forward module works, and the 

output of the encoder is obtained after the residual network. 
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Decoder module consists of masked multi-head attention 

mechanism, multi-head attention mechanism, residual 

connection layer, and feedforward neural network layer. The 

input sequence of the decoder module first goes through the 

masked multi-head attention mechanism, which aims to mask 

the prompt effect of future information. Subsequently, the 

obtained results are fed into multi-head attention mechanism to 

provide information about the value matrix, while information 

of the query matrix and key matrix comes from the output of 

the encoder. After going through the feedforward neural 

network and residual connection layer, the output of the 

decoder is obtained. Finally, the output probabilities are 

calculated by linear and softmax layers. 

3. INPUT-OUTPUT DRIVEN CROSS ATTENTION FOR 

TRANSFORMER 

3.1 Input-output driven cross attention for transformer 

In the IDCA-Former network, the correlations between input 

variable data and historical labels are taken into account. To 

this end, both of them are combined as input sequences and 

embedded by the input embedding layer as well as the 

positional embedding layer, respectively. Moreover, cross-

attention is designed to obtain similarity between input variable 

data and historical labels. The overall framework of IDCA-

Former is shown in Fig. 3. 

 

Figure 3. The structure of IDCA-Former. 

To capture more information from the combined inputs, the 

model is fed with the historical labels X𝑦 ∈ ℝ𝑛𝑦×𝐷𝑦  and the 

input data X𝑑𝑎𝑡𝑎 ∈ ℝ𝑛𝑑𝑎𝑡𝑎×𝐷𝑑𝑎𝑡𝑎 , where 𝑛𝑦  and 𝑛𝑑𝑎𝑡𝑎 

represent the length of the historical label and the input variable 

data, respectively. D𝑦  and D𝑑𝑎𝑡𝑎  represent the dimensions of 

the label output and the input variable data, respectively. Then, 

they go through the input embedding module. This step is to 

map the input sequence to the dimensions required by the 

model. The calculation process is as: 

 𝑋𝑦
𝐸 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑦) = 𝑋𝑦W𝐸

𝑦
+ b𝐸

𝑦
 (7) 

 𝑋𝑑𝑎𝑡𝑎
𝐸 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑑𝑎𝑡𝑎) = 𝑋𝑑𝑎𝑡𝑎W𝐸

𝑥 + b𝐸
𝑥  (8)  

whereX𝑦
𝐸 ∈ ℝ𝑙×𝑑𝑚and X𝑑𝑎𝑡𝑎

𝐸 ∈ ℝ𝑙×𝑑𝑚  represent the embedded 

matrices after linear mapping. l represents the sequence length 

after sliding windows. 𝑑𝑚  is the dimension required by the 

model. W𝐸
𝑦

∈ ℝ𝐷×𝑑𝑚 ,  b𝐸
𝑦

∈ ℝ𝐷×𝑑𝑚  represent the weight and 

bias of mapped linear layers of the label data, respectively. 

W𝐸
𝑥 ∈ ℝ𝐷×𝑑𝑚 ,  b𝐸

𝑥 ∈ ℝ𝐷×𝑑𝑚  represent the weight and bias of 

mapped linear layers of the input data, respectively. 

To further represent the positional relationship of each 

sequence component, positional embedding is introduced. The 

calculation is as: 

 𝑋𝑦
𝑃 = 𝑋𝑦

𝑃 + 𝑃𝐸(𝑋𝑦
𝑃) (9) 

 𝑋𝑑𝑎𝑡𝑎
𝑃 = 𝑋𝑑𝑎𝑡𝑎

𝑃 + 𝑃𝐸(𝑋𝑑𝑎𝑡𝑎
𝑃 ) (10) 

 PE(𝑝𝑜𝑠, 2𝑖) = sin (𝑝𝑜𝑠/100002𝑖/𝑑𝑚) (11) 

 PE(𝑝𝑜𝑠, 2𝑖 + 1) = cos (𝑝𝑜𝑠/100002𝑖/𝑑𝑚) (12) 

where X𝑦
𝑃 ∈ ℝ𝑙×𝑑𝑚  and X𝑑𝑎𝑡𝑎

𝑃 ∈ ℝ𝑙×𝑑𝑚 represent the 

corresponding positional embedding matrices, pos represents 

the position of every vector. 2i and 2i+1 represent the even and 

base dimensions in 𝑑𝑚, which ensures that each dimension has 

an independent corresponding sin-cos component. 

Then, X𝑑𝑎𝑡𝑎
𝐴𝑡𝑡1 ∈ ℝ𝑙×𝑑𝑚  is obtained after X𝑑𝑎𝑡𝑎

𝑃  going through the 

multi-head attention layer and residual connection layer. The 

multi-head attention mechanism is based on the attention 

mechanism that uses multiple heads to deal with different 

information separately. The calculation is as: 

 𝑋𝑑𝑎𝑡𝑎
𝐴𝑡𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) (13) 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . , ℎ𝑒𝑎𝑑ℎ) (14) 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖), 𝑖 = 1,2. . , ℎ (15) 

where W𝑂 ∈ ℝ𝑑𝑉×𝑑𝑚 represents output matrix, ( )Concat   

represents the joint function. 

Then X𝑑𝑎𝑡𝑎
𝐴𝑡𝑡  and X𝑦

𝑃  participate in the computation of cross 

attention. In this mechanism, X𝑑𝑎𝑡𝑎
𝐴𝑡𝑡  provides information about 

the query matrix 𝑄𝑑 , and X𝑦
𝑃  provides the information about 

key matrix 𝐾𝑙  and value matrix 𝑉𝑙 . The specific process is 

shown in Fig. 4. 

 

Figure 4. Detailed attention of model IDCA-Former. 

In cross attention, the computational procedure is shown below: 
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 Cross𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q𝑑 , 𝐾𝑙 , 𝑉𝑙) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝐾𝑙

𝑇Q𝑑

√𝑑𝑚
)𝑉𝑙 (26) 

 Q𝑑 = X𝑑𝑎𝑡𝑎
𝐴𝑡𝑡 (𝑊𝑞)𝑇 (17) 

 𝐾𝑙 =  X𝑦
𝑃(𝑊𝑘)𝑇 (18) 

 𝑉𝑙 =  X𝑦
𝑃(𝑊𝑣)𝑇 (19) 

Finally, the output of the encoder is obtained through feed-

forward neural network layer and residual connection layer, 

which are calculated as follows: 

 X𝑒𝑛𝑐 =  Norm(𝑋𝐴𝑡𝑡 + FeedForward(𝑋𝐴𝑡𝑡)) (20) 

 FeedForward(𝑋𝐴𝑡𝑡) = max(0, 𝑋𝐴𝑡𝑡W1 + b1) W2 + b2 (21) 

whereW1 , W2  represent the weight, b1 , b2  represent the bias, 

Norm(·)  represents normalization and max (·)  represents the 

maximization function. 

To explore the influence of history labels to variable data, 

sliding windows are designed to set the number of history 

labels. For a given sequence with history labels X𝑙𝑎𝑏𝑒𝑙 =
[X1 , X2, … , X𝑛] ∈ ℝ𝑛𝑙𝑎𝑏𝑒𝑙×𝐷𝑙𝑎𝑏𝑒𝑙 , setting the sliding window 

𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑘 , and then the sequence X𝑙 =

[X𝑙1, X𝑙2, … , X𝑙𝑝] , 𝑝 =
(𝑛−1)

𝑘
is generate, in which X𝑙1 =

[X1 , X2, … , X𝑙] , X𝑙2 = [X1+𝑘 , X2+𝑘, … , X𝑙+𝑘] , X𝑙𝑝 =

[X1+𝑝𝑘, X2+𝑝𝑘 , … , X𝑙+𝑝𝑘] , X𝑙 ∈ ℝ𝑝×𝐷 . When 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 , the 

sliding windows process can be represented in Fig .5. 

 

Figure 5. Detailed sliding window of IDCA-Former.

 

Figure 6. The process of IDCA-Former soft sensor modelling

 

3.2 IDCA-Formerbased soft sensor modeling 

The datasets are first divided into training data and test data. 

In the training step, variable data and historical labels are 

generated by data preprocesses. Next, they are embedded by 

the input embedding layer and positional embedding layer. 

Then they are fed into IDCA-Former for training to obtain the 

optimal hyperparameters. In this process, the loss values are 

computed to modify the weight and bias of the networks. 

After that, training parameters are tested on the test set. The 

sliding windows are designed for setting different lengths of 

historical labels. The entire modeling process is shown in 

Fig.6. The model evaluation metrics, the mean absolute error 

(MAE), the mean square error (MSE), the mean absolute 

percentage error (MAPE), the prediction root mean squared 

error(RMSE) and coefficient of determination R2 are 

calculated by the following: 

 MAE =
1

n
∑ yi − ỹi

n
i=1  (22) 

 MSE =
1

n
∑ (yi − ỹi)

2n
i=1  (23) 

 MAPE =
100%

n
∑ |

yi−ỹi

yi
|n

i=1  (24) 

 𝑅𝑀𝑆𝐸 = √
1

n
∑ (yi − ỹi)

2n
i=1  (25) 

 𝑅2 = 1 − ∑ (yi − ỹi)
2/ ∑ (y̅i − ỹi)

2n
i=1

n
i=1  (26) 

4. INDUSTRIAL APPLICATION 

In the petrochemical industry, the hydrocracking link is one 

of the petroleum refining processes. Carbon 5 (C5) is the main 

by-product in the naphtha cracking process, with a capacity 

of 14%-20% of the cracked ethylene industry. It is also a 

valuable resource for the comprehensive utilization of the 

chemical industry. 

At present, one of the most efficient ways to increase the 

economic efficiency of the petrochemical industry is by fully 

separating and utilizing C5 fraction resources. It is also 

significant for the development of petroleum industry (Yuan 

et al., 2021a). So it is necessary to monitor and predict C5. 
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The datasets used in this paper is from a chemical and refinery 

plant in China, and the data were recorded from 2016 to 2018. 

A total of 2580 data were recorded as samples in the datasets, 

which were divided into a training set and a test set in the ratio 

of 8:2. After model training, the optimal hyperparameters are 

obtained as shown in Table 1. 

Table 1 The hyper parameters 

Symbol Description Value 

L𝑆𝑊 the length of sliding window 9 

d𝑚𝑜𝑑𝑒𝑙  the dimension of model 1024 

nℎ𝑒𝑎𝑑𝑠 the number of attention heads 6 

n𝑒𝑛 the number of encoder block 2 

batch the batch size 32 

d𝑓𝑓 the dimension of feedforward layer 2048 

kernel the size of the convolving kernel 8 

Comparing LSTM, GRU, and Logtrans models, the following 

experimental results are obtained as shown in Table 2. 

Table 2 Comparison performances with different models 

for predicting C5 in hydrocracking 

Method MAE MSE RMSE MAPE 𝑅2 

LSTM 0.2973 0.1879 0.4335 0.5285 0.8151 

GRU 0.2944 0.1881 0.4337 0.5355 0.8388 

LogTrans 0.3370 0.1838 0.4287 0.1527 0.8604 
IDCA-Former 0.1832 0.0741 0.2722 0.0868 0.9555 

From Table 2, it can be found that LSTM and GRU, although 

feasible in time series prediction, are not very effective to 

extract features in the long-term sequence. This is mainly 

because their recursive structure lead to serious time-

dependence problem. Moreover, the result of 𝑅2indicates the 

predicted value at the current moment depends on the state 

value at the previous moment. Compared with the method of 

LSTM, GRU is slightly better in prediction. Since LogTrans 

(Li et al., 2019) has an attention mechanism to compute the 

similarity between vectors and extract features, the 

performance of prediction becomes better. However, IDCA-

Former is found to reach a more ideal prediction accuracy 

after introducing sliding windows with history labels for 

feature learning and is more adaptable to the task of predicting 

long-term sequences. 

Fig. 7. Prediction results for C5 in 

hydrocracking:(a)LSTM;(b)GRU;(c)LogTrans;(d)IDCA-Former 

To exhibit the results more intuitively, Fig. 7 plots the curves 

between the real and predicted values of each model. It can 

be seen that the trends of LSTM and GRU generally go with 

the ground truth, but they predict not well in some areas. 

LogTrans shows a similar overall trend between real values 

and predicted values. However, the prediction effect of 

LogTrans is not good enough in some key turning points, 

while IDCA-Former outperforms better than these methods. 

In addition, to further explore how sliding window size will 

affect the history labels on the prediction performance, 

different sliding window sizes are designed to train the model. 

We set the length of label sliding windows from 0 to 7, and 

the input sequence number is 8. After extensive experiments, 

the results of prediction metrics under different sliding 

window sizes are shown in Table 3. 

Table 3 Comparison performances with different window 

sizes for predicting C5 in hydrocracking 

Window size MAE MSE RMSE MAPE 𝑅2 

0.0 0.4232 0.2624 0.5123 0.1896 0.7535 

1.0 0.2134 0.0931 0.3052 0.1006 0.9442 

2.0 0.2010 0.0878 0.2963 0.0957 0.9528 

3.0 0.1820 0.0807 0.2842 0.0873 0.9544 

4.0 0.1675 0.0779 0.2792 0.0823 0.9567 

5.0 0.1871 0.0779 0.2792 0.0890 0.9578 

6.0 0.1725 0.0709 0.2662 0.0831 0.9612 

7.0 0.1809 0.0710 0.2664 0.0861 0.9615 

When the sliding window length is set to 0, it indicates that 

the history label has no prompting effect on the input, so the 

performance is not good. When the sliding window size is set 

to 1, the result of 𝑅2 increases significantly, denoting that the 

history label shows a prompted effect on the input. As the 

sliding window size continues to increase, it can be seen that 

the model performs better than before, but the improvement 

is less. The curves between the true and predicted values are 

also plotted, as shown in Fig .8. 

5. CONCLUSION 

In this work, an input-output driven cross-attention for the 

transformer network (IDCA-Former) is proposed to represent 

the potential relationships between sampling variables 

recorded from industrial plants that often show high 

dimensionality and dynamics. In IDCA-Former, historical 

labels are taken into account to train the model. In this way, 

variable data and historical labels are combined as input 

sequence and sent into the embedding layer. Then cross 

attention mechanism is introduced to compute the similarity 

between them. Additionally, sliding windows are designed to 

explore the prompt effect of historical labels length on the 

prediction performance. Extensive experiments are 

conducted in hydrocracking process and the effectiveness of 

the proposed IDCA-Former are evaluated.
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Fig.8 Prediction results for C5 in hydrocracking:(a)Length=0;(b)Length=1;(c)Length=2;(d)Length=3; 

(e)Length=4;(f)Length=5;(g)Length=6;(h)Length=7;(i)Length=8;
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