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Abstract:
This work focuses on developing a neurofuzzy detector capable of identifying a cyber attack of
false data injection into the outlet temperature sensor of a Fresnel-type solar field which has a
PI+FF controller to control the refered temperature. A digital twin of the Fresnel plant and its
controller are used for simulation purposes. The digital twin is situated in the domain of behavior
and rules, as it contains a set of models, including a partial differential equation (PDE) model
and a neurofuzzy model. Results from simulation are shown using three different scenarios: (1)
without fault, (2) a ramp and threhold with negative injection and (3) the last scenario with
positive injection. The presented fault data injection detector has solid performance with more
than 97% detection accuracy and precision.

Keywords: Solar energy, Fresnel solar collector, ANFIS, high pressure generator, absorption
cooler.

1. INTRODUCTION

The increasing digital connection of industrial automated
systems raises the threat of cyber attacks that may harm
people, pollute the environment, damage industrial plants,
and destabilize production. Cyber-security is a central
concern accordingly to the last IEEE Control Systems So-
ciety roadmap 2030. The roadmap points to three societal
drivers of technology in the following years: mitigation
and adaptation to climate change, smart infrastructure
systems, and resilience of societal-scale systems — fur-
thermore, Artificial Intelligence (AI) and Big Data are
technological trends. Therefore, there are opportunities
to develop safety-critical systems, resilient cyber-physical-
human systems, renewable energy processes as synergic
solutions to generate affordable and clean energy (Alleyne
et al., 2023).

In this context, digital twins are one of the technologies
that can be employed to mitigate cyber-attacks in indus-
try. A digital twin is a highly detailed digital replica of a
physical system or entity, with which it is bidirectionally
synchronized, allowing multi-scale tests and experiments
to be conducted virtually, thus avoiding the expense of
conducting them physically. Examples of DT for power

systems, where abrupt failures could arise from random
disturbances unknown to the virtual entity, such as human
interference, are shown in Chicaiza et al. (2024). Another
example of the use of this technology in a solar plant is
presented in (Rodŕıguez et al., 2023), which focuses on
deciding when to update the twin when the input data of
the physical entity are altered or corrupted.

This work contributes to developing a fault data injection
detector based on an AI technique while applying the
conceptual proof in a Fresnel Solar Collector (FSC) Digital
Twin (DT). Fault Data Injection (FDI) is a cyber at-
tack that injects corrupted data to manipulate a system’s
behavior. FDI refers to bad-intentioned sensors, super-
vision systems, controllers, or other information source
data manipulation. The effects of FDI range from poor
operation and decision making to compromising systems
and personnel integrity, as indicated in (Liang et al., 2017).

FDI detection and isolation refers to malicious data in-
jection identification and countermeasure techniques to
secure information reliability and quality for further trust-
ful operation and decision-making, mitigating injection
and corrupted data presence (Mo and Sinopoli, 2010).
Several works have contributed to the field of FDI de-
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tection, from computer systems (Hsueh et al., 1997) to
applications on cyber-physical control systems (Sargolzaei
et al., 2020). One approach to improve the effectiveness of
FDI detection is through the development of unsupervised
AI-based unsupervised models, such as artificial neural
networks (ANNs) and neurofuzzy systems. These mod-
els employ dimensionality reduction techniques, such as
Principal Component Analysis (PCA) and clustering. For
example, in (Mohammadpourfard et al., 2017), DBSCAN
was applied to each dimension of the reduced space to
select appropriate partitions, followed by the application
of Fuzzy C-Means to distinguish between fake and actual
data. Similarly, (Aboelwafa et al., 2020) employed au-
toencoders, a technique for dimensionality reduction and
input reconstruction, to correct false data in a multi-sensor
industrial environment by extracting sensory features and
their relationships. Furthermore, (Chicaiza et al., 2022)
presents a combination of PCA and neurofuzzy systems
to detect data injection in a wind turbine.

In this paper, the authors contribute to developing a
neuro-fuzzy detector capable of identifying data injection
in the flow sensor/transmitter of an FSC plant. The FSC
plant related to this work is installed at the Engineer’s
School at Seville University, Spain (Machado et al., 2023).
This work uses the FSC DT because it is a high-fidelity
model framework to simulate the FSC process and the
cyber attack to validate the proposed FDI detector. Digital
Twins are replicas of the physical entities that make up
the systems. Therefore, the FSC DT enables fast analysis
in different scenarios with high accuracy and without
needing the physical system, avoiding experimental costs
and enabling fast what-if analysis.

The research hypothesis of this work is that Adaptive
Neuro-Fuzzy Inference System (ANFIS) is suitable for
FDI detection. ANFIS are gray box representations of a
given system; therefore, they have the advantage of rules
addition after training compared to ANN, the last are
black box representations of a given system. This paper
is the first to consider a solar FSC DT for training the
ANFIS detector and its conceptual proof. In addition, the
simulations consider a massive actual data quantity of
25 days of operational data. The process controller and
process DT outputs are fed into the FDI detection input.
The objective is to simulate three cases of operation, two
with artificially injected fault data and one without data
injection, and evaluate the detector performance. Each
case simulates the Fresnel DT with positive, no-fault, and
negative outlet temperature faults.

2. CONTROLLER DESIGN

The FSC energy balance considering the absorber’s metal
tube walls as the control volume is given by Eq. 1:

ρmcmAm
∂Tm

∂t
(t, x) = Q̇sun(t)− Q̇a(t, x)− Q̇f (t, x), (1)

where subindex m refers to metal walls,ρ is specific mass, c
is heat capacity, A is the tranversal area, T is temperature,
t is time, x is space in x axis and Q̇ is heat rate. Note that
Q̇sun refers to the solar heat rate input of the FSC, and
Q̇a is the ambient loss heat rate, while Q̇f is the heat rate
that is transferred from the metal walls to the fluid inside
the absorber tube.

The energy balance considering the absorber’s fluid inside
the tube as the control volume is given by Eq. 2

ρfcfAf
∂Tf

∂t
(t, x) + ρfcfq(t)

∂Tf

∂x
(t, x) = Q̇f (t, x). (2)

where subindex f refers to the fluid and q is the flow.
It should be noted that the inlet temperature is Tin =
Tf (t, 0) and the outlet temperature is Tout = Tf (t,∞)

Figure 1 depicts the feedback process controller. The outlet
temperature Tout is the controlled variable, the flow q(t) is
the manipulated variable, and the inlet temperature Tin,
the solar irradiance I, related to Q̇sun, and the ambient
temperature Tamb, related to Q̇a, are the prominent distur-
bances variables. In some cases, it is possible to manipulate
the mirror focus to add more control capabilities once it is
possible to directly vary the solar heat rate Q̇sun.

This work implemented a proportional integral outlet
temperature feedback controller, as indicated in Machado
et al. (2022), and a feedforward controller to enhance the
disturbances rejection performance as indicated in Sánchez
et al. (2019).

3. NEUROFUZZY DETECTOR

The detector structure integrates multiple fuzzy inference
systems (FIS) and the projection of data on the principal
component obtained from a PCA of a data set, as shown
in Figure 2. The detector shall be able to identify the
injection of false data into the plant’s FSC flow sensor.

Fig. 2. Structure of the Neurofuzzy Detector

PCA is a statistical method that handles multiple vari-
ables. It efficiently projects data points from an n-
dimensional space to a reduced dimension space, facilitat-
ing the identification of latent or unobserved parameters in
the data set. The use of PCA transforms correlated vari-
ables into new uncorrelated variables, helping to improve
convergence in the ANFIS training (Chicaiza et al., 2022).

The first step is to perform a correlation analysis of the
system data according to the research conducted by (Chi-
caiza et al., 2022; Machado et al., 2023). As a result, the
correlation coefficient matrix is calculated for the SFC
data set, denoted SFCR ∈ ℜ7×7, involving 7 variables
(M = 7). PCA identifies how the plant variables corre-
late with (Tout), the primary variable of interest. Then,
the correlation is represented by the Pearson correlation
coefficient, denoted ρ, which can range from -1 to 1.

Figure 2 presents the neurofuzzy detector inputs variables.
Where, Ht = f(Tout, q) represents the coefficient of heat
transfer fluid calculated at the outlet of the collector, q is
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Fig. 1. Control schematic

the flow rate of the heat transfer fluid, Th = f(Tout, Tin)
represents a thermal jump, which is the difference between
the outlet temperature (Tout) and the inlet temperature
(Tin), and Ieff is the effective irradiance. Additionally,
PCA is applied to each data set, resulting in three principal
component matrices (PCAs), one per group, and a general
(PCAg) of all sets, as shown in Eq. (3).

3.1 Preparation of operational data

Data that present a significant correlation with the vari-
able on which false data injection will be detected, in
this case (Tout), are combined with variables derived from
other quantities (Ht, Th), as well as with meteorological
variables (Tamb, I) that exert substantial influence on the
behavior of the system. The proposed detector uses these
variables. The data collected for this purpose results from a
hybrid data generation process with the SFC digital twin.
In this process, the measured meteorological variables of
plant operation, collected over 25 days, along with the
presented controller outputs, are used to evaluate their
behavior on the digital twin.

The controller and digital twin outputs generate three
datasets together with meteorological measurements to
assess the detector’s performance. Case 1 involves positive
data injection at the output temperature, case 2 has no
fault injection, and case 3 involves negative injection at
the SFC output temperature.

Next, an initial data processing task normalizes the vari-
ables to mitigate the inherent differences in their nature
and scale, as well as the noise and discrepancies that
typically impact the training procedure, as mentioned in
(Chicaiza et al., 2022; Machado et al., 2023). Subsequently,
normal operation (N), positive fault injection (Fpos) and
negative fault injection (Fneg) on the outlet temperature
of the heat transfer fluid make up three data groups, along
with a general group (g) that aggregates data from both
normal and faulty operations.

3.2 Data projection on the principal component

As outlined in Chicaiza et al. (2022), an offline PCA
implementation is performed for each dataset, resulting
in a covariance matrix PCAs commonly referred to as
the ‘Loading Matrix’. This matrix encompasses the eigen-
vectors vr and eigenvalues λr, indicating the orientation
of the updated principal components space. Its purpose
is to reduce the dimensionality of the variable space by
projecting the original data, as described in Eq.(3)

NTs = ZN ×PCAs (3a)
FposTs = ZFpos ×PCAs (3b)
FnegTs = ZFneg ×PCAs (3c)

gTs = Zs ×PCAg (3d)

where, Zs is a matrix that contains normalized data for
each group s →

{
N,Fpos, Fneg

}
and Ts is the matrix

of scores for each s, which contains a new projected
component in its corresponding Principal Component.

In general, the normalized data matrix Zs is projected
onto the first principal component, before calculating the
explained variability (0− 100%) of the set of variables for
each principal component, as noted in (Chicaiza et al.,
2022). This new projected data set does not show cor-
relation between variables. These projections are used in
the ANFIS learning process. The training data set (80%)
and the validation data set (20%) are created from these
projected data. Furthermore, the sets of training (70%)
and checking (30%) sets are formed from the learning data
as follows:
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NTrn =
[
NTN NTFpos NTFneg gTN

]
(4a)

FposTrn =
[
FposTN FposTFpos FposTFneg gTFpos

]
(4b)

FnegTrn =
[
FnegTN FnegTFpos FnegTFneg gTFneg

]
(4c)

As can be seen, the projection of each group onto the
others forms the training set, where the first three vectors
serve as input for adjusting the parameters of each ANFIS
to match the output, which is the last vector in each set.
Similarly, the same procedure is followed to obtain the
validation and testing sets.

3.3 Learning process of the detector

The configuration of the neurofuzzy detector comprises
three FISs in parallel, derived from the training stages of
three ANFIS networks. Each ANFIS network, as described
in Jang (1993), utilizes training and checking sets to
capture the fault behavior during the learning process. The
ANFIS assesses the normalized root mean square error
of both the training and checking sets. This evaluation
prevents the model from overfitting solely to the training
set, ensuring that the resulting FIS produces appropriate
outputs for values not encountered during the learning
phase. This approach aims to facilitate general learning
across both datasets, as elaborated in (Chicaiza et al.,
2022).

The training process for each ANFIS begins with the
application of a clustering method, precisely the sub-
tractive grouping technique (Machado et al., 2023). This
method estimates the quantity and initial centers of the
Gaussian membership functions used in the fuzzy rules.
Subsequently, the elements of each ANFIS layer undergo a
hybrid training approach, combining gradient descent with
least squares estimation. This hybrid method is employed
to obtain the elements defining the membership function
of each fuzzy set (Gaussian standard deviation and mean).
The deviation and mean are referred to as the antecedent
parameters through gradient descent. The consequent pa-
rameters, in turn, determine the coefficients of every first-
order polynomial function (gij) for each epoch or sweep
using least squares.

After completing the ANFIS learning process, FISN ,
FISFpos and FISFneg have been obtained, both of which
model the behavior of the faults in Tout. Each FIS contains
two Gaussian membership functions for input and two
Takagi–Sugeno type rules, outlined as follows:

IF x1 is F1j and x2 is F2j and xi is Fij ,

THEN : fj(x) = g0j + g1jx1 + · · ·+ gijxi.

The identification of fault injection data in Tout relies on
the output of each FISs, obtained by projecting the input
data set of the detector, Din = [Ht;Th; Ieff ;Tout], onto
the first principal component of the general group (gTs).
Subsequently, the detection considers both the exhaustive
search algorithm and the comparator blocks, as shown
in Figure 2, which comprises an exhaustive search and a
rule, respectively. The Exhaustive Search involves a cost
function that determines which FISs achieves the actual

projection gT∗real of a new incoming data set through
direct evaluation, selecting the FIS that minimizes the
cost function. The FISs that represents the minimum
Js →

{
JN ∈ 1, JFpos ∈ 2, JFneg ∈ 3

}
identifies the group

to which the updated data set (Din) is associated.

Js =
∥∥gT∗real − gTs

∥∥2
2
. (5)

Finally, the rule determines whether or not there is any
data injection in Tout, as follows:

IF Js = 1 THEN FDIdetection = 0 ELSE FDIdetection = 1

where FDIdetection = 0 indicates the normal state of the
sensor and FDIdetection = 1 indicates the presence of
data injection on the sensor in question.

4. RESULTS

The evaluation procedure involves the validation of the
neurofuzzy detector using the validation data set. In this
case, the control mentioned in Section 2 is implemented,
together with the FSC Digital Twin, and incorporates
the proposed neurofuzzy detector, as shown in Figure 1.
The simulation with the control system employs actual
meteorological variables of the plant operation. Three
days of the total data comprising the validation set are
used and organized in cases for clarity. During the second
day (Case 2), no data injection is performed on Tout.
On the first (Case 1) and third (Case 3) days, false
data, both positive and negative, are injected until they
reach a maximum or minimum value. In both cases, the
ramp is ±0.00277◦C/20s, which increases or decreases
Tout progressively until it reaches a threshold of ±20◦C.
For all the cases mentioned above, false data injection
occurs at 15:00 pm. In this way, the detector undergoes
an evaluation without and with injection of fault data in
two different ways.

If the new inputDin is free of the injected data, the output
of FISN approximates the actual projection (gT∗real).
On the other hand, if Din includes the injection of false
data in Tout, the output of (FISFpos, F ISFneg) matches
more closely the actual projection (gT∗real), depending
on whether such injection occurs positively or negatively.
The proposed Exhaustive Search block and comparator
determine whether there is a false data injection in Tout.
Subsequently, the rule within the comparator block iden-
tifies data injection and assigns the appropriate value to
FDIdetection.

Figure 3.a depicts the behavior of the SFC when false
positive data injection (Case 1) occurs on the sensor-
transmitter. Note the difference between the orange line,
for the outlet temperature without fault injection (Tout, a),
and the dashed purple line (TFault

out, b ), for outlet temperature

with positive false data injection (TFault
out, ) at 15:00. In Case

1 the detector successfully responds in the presence of false
data injection, as can be seen by the FDI detection variable
depicted as pink dots. Figure 3.a also illustrates the impact
of false data injection in the operation and control of the
process. The variables indicated by subindex a represent
the FSC without fault data injection or normal operation,
and the variables indicated by subindex b depict the FSC
with faulty operation. Due to the positive injection of
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Fig. 3. Case 1: Testing the NF detector with positive data
injection. (a) Behavior of the outlet temperature and
detector evaluation. (b) Fresnel’s controller perfor-
mance evaluation.

the corrupted outlet temperature, (TFault
out, b ) deviates from

the reference, and the controller attempts to deliver the
maximum flow rate to stay at the set point. Figure 3.b
contrasts the flow behavior considering normal flow q, a
and corrupted flow q, b. Consequently, flow affects the
inlet temperature Tin, b once the FSC collector process is
a hydraulic loop, adding instability to the whole process.
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Fig. 4. Case 2: Testing the NF detector with no fault
injection data. (a) Behavior of the outlet tempera-
ture and detector evaluation. (b) Fresnel’s controller
performance evaluation.

Similarly, Figure 4 shows the results, as explained in
detail in the previous paragraph. In Case 2, there is
no false data injection, so (Tin, b, Tout, b, q, b) are equal
to (Tin, a, Tout, a, q, a). The same is true for (TFault

out, b ),

which has the same behavior as (Tout). Note that the FDI
detector indicates the absence of false data injection.

The results with false negative data injection (Case 3) are
shown in Figure 5. The description of each of the legends
is the same as shown in Case 1. Case 3, like the previous
cases, shows the behavior that the plant would have in
the absence of false data injection (Tin, a, Tout, a, q, a). In
addition, it shows how it would behave if false negative
data injection were to occur. In this case, (TFault

out, b ) follows
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Fig. 5. Case 3: Testing the NF detector with negative
data injection. (a) Behavior of the outlet tempera-
ture and detector evaluation. (b) Fresnel’s controller
performance evaluation.

the reference, since the controller sees this fault as a dis-
turbance. However, the actual behavior (Tin, b, Tout, b, q, b)
shows that (Tin, b) will exceed (TFault

out ) at approximately
16:00 and that the (Tout, b) is actually above the given
reference for the controlled variable. Additionally, the FDI
detection remains at 1 when such false data injection
occurs.

Table 1 presents the confusion matrix to evaluate the
proposed detector. This matrix shows the dispersion of
the predicted data groups concerning actual data groups.

Table 1. Confusion matrix Tout.

Estimated classes
Fpos N Fneg

A
ct
u
a
l

Fpos 611 20 0
N 0 631 0

Fneg 0 20 611

Precision 100 % 94.04 % 100 %
Recall 96.83 % 100 % 96.83 %

Accuracy 97.89 %

The confusion matrix presents a relevant performance
of the fault data injection concerning the Tout variable.
The detector successfully correctly classifies most of the
occurrences. Positive and negative false data injection are
highlights of the detector, reaching 100% precision in both
categories.

Table 1 indicates that the detector also presents a high
recall of 96.83% in detecting false negative and false
positive data injection. However, the detector also triggers
normal false detections for case 1 and case 3. In general, the
detector has good performance, especially in classifying
the Fpos,N and Fneg classes. Precision and recall are high
in all classes, and the general accuracy reached is 97.89%.

Table 2 provides the results of the neurofuzzy detector for
the output temperature for the three cases. The neuro-
fuzzy detector operates throughout each case. Overall, the
detector demonstrates a robust ability to predict regular
and failure instances, with a close match between predic-
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Table 2. NF detector results for all cases

Group
Outlet Temperature

Predicted Actual
False
Normal

False
Fault

Case 1: 14th October

Normal 1279 1260 0 1
Fault 612 631 20 0

Total samples 1891 1891 20 1

Case 2: 15th October

Normal 1886 1891 0 5
Fault 5 5 0 0

Total samples 1891 1891 0 5

Case 3: 16th October

Normal 1275 1260 0 5
Fault 616 631 20 0

Total samples 1891 1891 20 5

tions and actual values. However, in case 1, false positives
and negatives were observed for 1.11% of the total data.
Case 3 presents false positives and negatives for 1.32%
of the total data. In addition, Table 2 shows that case 2
practically does not present anomaly detection (0. 26%), a
positive result for the detector’s ability to discern typical
situations correctly.

5. CONCLUSION

In conclusion, this study proposes a novel approach to
detect false data injection through a structure composed
of FISs resulting from a learning process of a set of ANFIS
systems. The main objective of this research was to prove
that an ANFIS is suitable for fault data injection. In
addition, this work shows how a false data injection into
the controlled variable causes the control itself to change,
which generates a wrong operation of the FSC, which
could lead to its total shutdown or damage. The simulation
results on the DT of the FSC illustrate the effectiveness of
the suggested approach to address the false data injection
detection problem. The results show that the neurofuzzy
detector provides a reliable and robust solution to the
FDI detection problem in the output temperature sensor-
transmitter. Overall, the study highlights the potential of
the detector in combination with ANFIS and PCA as a
promising approach for fault data injection cyber attacks.
In future work, the failure in the other variables will be
inspected, considering even simultaneous failures where
the presented approach will be validated. Besides, it will
developed an FDI-tolerant control system powered by the
ANFIS detector introduced in this work.
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Alleyne, A., Allgöwer, F., Ames, A., and et. al (2023).
Control for Societal-scale Challenges: Road Map 2030.
IEEE Control Systems Society.

Chicaiza, W.D., Dorado, F., Rodŕıguez, F., Gómez, J., and
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