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Abstract: Chain-shuttling polymerization is widely used to synthesize specialized polymer materials with 

customized properties. The significance of modeling in chemical process simulation lies in accurately 

describing and analyzing complex chemical systems through mathematical and computational models, 

thereby enhancing the efficiency and reliability of process design. Due to limited and noisy measurements 

and the complex model structure, parameter identification for chain-shuttling polymerization has been a 

long-standing problem. To address this issue, in this work, we propose to first describe the dynamic process 

with a set of ordinary differential equations (ODEs) based on the method of moments. This method 

characterizes the dynamic variations of the average chain length. After that, we introduce Physics-Informed 

Neural Networks (PINNs) to estimate the unknown parameters in the ODEs. Since PINNs can incorporate 

the ODEs constraints during the training process, they can effectively integrate the polymerization 

mechanism with the observed process data, thereby reducing the amount of data needed for training. A 

comparative analysis between parameters estimated using PINNs and the ground truth values demonstrates 

high accuracy and efficiency, even with sparse and limited observations. This showcases the potential value 

of PINNs in chemical process identification. 

Keywords: Polymerization process, Parameter identification, Method of moments, Chain-shuttling 

polymerization, Parameters identification, Physics-informed neural networks

1. INTRODUCTION 

Polyolefins, a crucial class of high-polymer materials in 

chemical engineering, play an indispensable role in various 

fields such as plastics, rubber, fibers, and more. Chain 

shuttling polymerization is a distinctive process wherein 

monomer molecules can be transferred between different 

polymer chains during the reaction. This type of 

polymerization leads to the formation of branched polymers, 

thereby influencing the molecular weight distribution and 

structure of the resulting polymer and subsequently impacting 

its properties. The significance of chain-shuttling 

polymerization lies in its ability to control the structure and 

properties of polymers within the realm of polymer chemistry. 

However, multiple factors including reaction conditions and 

catalyst performance often influence the dynamic 

characteristics of polyolefin polymerization. Consequently, 

developing accurate kinetic models for simulating and 

predicting these processes has emerged as a key challenge in 

research. 

In the pursuit of a deeper comprehension and effective control 

of polyolefin polymerization processes, parameter 

identification has garnered significant attention as a research 

field of paramount importance. The primary objective of 

parameter identification is to develop a robust methodology 

that allows for the precise estimation of the parameters 

governing the polymerization process through the analysis of 

experimental data and models. This, in turn, serves to enhance 

the accuracy and predictive capabilities of kinetic models. 

Research endeavors in this domain are dedicated to 

overcoming the inherent complexities and diversities 

associated with polyolefin polymerization, ultimately 

providing more practical and reliable modeling approaches 

tailored to meet engineering application requirements. 

Fundamental statistical parameter estimation methods include 

the least square method, Bayesian estimation, and et al. 

Bystritskaya (Bystritskaya, Pomerantsev et al. (1999)) 

employed Bayesian estimation to predict the aging of 

polymeric systems in situations where directly measuring the 

desired properties is impossible or challenging. Another type 

of parameter estimation relies on metaheuristic algorithms, 

such as genetic algorithms (GA), particle swarm optimization 

algorithms (PSO), and others. For example, Prata (Prata, 

Schwaab et al. (2010)) developed a nonlinear dynamic data 

reconciliation procedure (NDDR) based on the particle swarm 

optimization (PSO) method. The procedure was validated 

online in real-time using actual industrial data obtained from 

an industrial polypropylene reactor. 

12th IFAC International Symposium on
Advanced Control of Chemical Processes
July 14-17, 2024. Toronto, Canada

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative Commons License CC-
BY-NC-ND.

185



The optimization algorithms mentioned above play an 

indispensable role in parameter identification problems. They 

possess several advantages, such as the capability to find 

global optimal solutions within relatively simple parameter 

spaces and robustness in dealing with local optima. Moreover, 

these algorithms exhibit excellent performance when executed 

with appropriate initial values and precise data conditions. 

However, a significant limitation of these algorithms is their 

substantial demand for experimental data, which can be a 

constraining factor in practical applications due to the 

associated high costs and time consumption. 

In recent years, deep learning algorithms have made 

significant strides in various domains, expanding their 

application scope. Raissi (Raissi, Perdikaris et al. (2019)) 

conducted research on solving differential equations, 

exploring machine learning approaches that can effectively 

integrate both data and physical information. They proposed 

Physics-Informed Neural Networks (PINNs), which integrate 

physical information into the learning process. This model is 

capable of addressing physical problems involving complex 

ordinary and partial differential equations, overcoming the 

limitations of traditional machine learning methods in terms of 

data-driven and black-box modeling. It enhances the 

robustness and computational accuracy of the model while 

improving the interpretability of models constrained by 

physical laws. In order to tackle the challenges posed by 

complex parameter spaces and noisy data in traditional 

algorithms, utilizing Physics-Informed Neural Networks 

(PINNs) to solve the inverse problem of parameter estimation 

is considered an effective method (Cuomo, Di Cola et al. 

(2022)). 

PINNs combine neural networks with physical models to 

perform parameter estimation by learning physical laws 

((Karniadakis, Kevrekidis et al. (2021))). This not only 

enhances the accuracy of parameter identification but also 

reduces data requirements. Another advantage of PINNs is 

their flexibility, as they can adapt to various problems and 

models, thus providing a more feasible and reliable solution 

for parameter identification in engineering fields (Chen, Lu et 

al. (2020)). 

Numerous scholars have conducted research on the application 

of PINNs in solving inverse problems. Daneker Mitchell 

employed the PINNs method to model the ultradian endocrine 

system for glucose-insulin interaction and estimate parameters 

of biological systems (Daneker, Zhang et al. (2023)). In this 

paper, a new and simple-to-implement "systems-biology-

informed" deep learning algorithm is presented. This 

algorithm can reliably and accurately infer the hidden 

dynamics described by a mathematical model in the form of a 

system of ordinary differential equations (ODEs). 

Additionally, Son (Ngo and Lim (2021)) developed a Physics-

Informed Neural Networks (PINNs) model to address the 

isothermal fixed-bed (IFB) model of catalytic carbon dioxide 

methanation. They utilized a forward PINNs model to 

construct the IFB packed-bed reactor model and employed a 

reverse PINNs model to uncover unknown effective factors 

involved in reaction kinetics. 

If you want to apply PINNs to identify the dynamic parameters 

of chain-shuttling processes, a key point is to "embed" the 

physical model of chain-shuttling polymerization into PINNs. 

Since PINNs typically incorporate the model's information 

through ODEs we can apply the method of moments to 

simulate chain-shuttling polymerization (Mastan and Zhu 

(2015)). In the polymerization process, the method of 

moments is a widely used deterministic modeling approach. It 

provides an overall description of the polymerization process, 

capturing the dynamic behavior and statistical characteristics 

of polymer chains. It also derives a system of ODEs to reveal 

the average properties of polymers, such as the weight-average 

molecular weight (Zhang, Karjala et al. (2010)). These 

differential equations typically involve multiple kinetic 

parameters, which may be challenging to directly measure or 

estimate. Traditional parameter identification methods may 

require a substantial amount of experimental data and 

numerical techniques to estimate these parameters. However, 

these methods can be limiting in complex scenarios. PINNs 

can integrate the system's differential equation model of the 

polymerization process and automatically identify the 

parameters within the differential equations using sparse, 

noisy data. PINNs achieve parameter estimation by integrating 

physical principles and existing data, eliminating the necessity 

for manual intervention or intricate numerical computations. 

In this paper, we propose to identify the key kinetic parameters 

in chain shuttling polymerization process using PINNs. In 

particular, we establish a set of ordinary differential equations 

that describe the dynamic variations of the average chain 

length using the method of moment matching. After that, we 

conduct an identifiability test to check if the ODEs are 

structurally identifiable. For the processes that are structurally 

identifiable, we directly incorporate the unknown kinetic 

parameters into the PINNs model and estimate them based on 

optimization algorithms such as Adam. Otherwise, we sort the 

unknown parameters via sensitivity analysis and fix the 

insensitive ones with prior knowledge to ensure the 

identifiability of the ODEs. The remaining parts of the paper 

are organized as follows: Section 2 introduces the structure of 

the PINNs. Section 3 models the chain-shuttling 

polymerization process using the method of moments, embeds 

the model into the PINNs and conducts parameter 

identifiability analysis on the model. Section 4 mainly focuses 

on the experimental section, where the constructed PINNs 

model is utilized for identifying the kinetic parameters. Section 

5 summarizes the main conclusions of this thesis and proposes 

recommendations for future work. 

2. PHYSICS-INFORMED NEURAL NETWORKS MODEL 

In this section, we will briefly discuss the fundamental 

structure of PINNs and explore how inverse PINNs can assist 

in solving parameter identification problems. 

2.1 Deep neural networks 

Deep neural networks (DNNs) form the foundation of PINNs. 

DNNs operate through recursive linear and nonlinear 

transformations of input data, essentially functioning as 

compositional functions. Various types of DNNs architectures 

have been developed, including convolutional neural networks 
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and recurrent neural networks, but for the purpose of this 

discussion, we will focus solely on fully connected neural 

networks (FNNs). The inherent differentiability of FNNs 

facilitates their seamless integration into automatic 

differentiation frameworks, enabling the efficient computation 

of gradients during the training process. This capability plays 

a pivotal role in addressing a wide range of problems where 

adjusting network parameters is essential to approximate or 

align with real-world phenomena. Furthermore, automatic 

differentiation provides a convenient mechanism for handling 

complex gradient propagation, ensuring the efficient updating 

of parameters even in deep neural networks. 

To define an FNNs, in the ℓth layer, we define a weight matrix 

𝑤ℓ, bias 𝑏ℓ,and an activation function 𝜎. Each hidden layer 

recives and outputs 𝑥𝑘−1 ∈ 𝑅𝑁𝑘−1  from the previous layer. 

The transformation between layers is expressed as 

 𝒩ℓ(𝒙) = 𝜎(𝒘ℓ𝒩ℓ−1(𝒙) + 𝒃ℓ),   for  1 ≤ ℓ ≤ 𝐿 − 1 .    (1) 

2.2 Physics-Informed Neural Networks 

A general PINNs model primarily consists of a neural network 

(typically an FNNs) and a physical information model defined 

by differential equations. When solving forward or inverse 

problems, the configuration of the model may vary slightly. 

We shall commence by focusing on the task of forward PINNs 

problem for partial differential equations. 

𝑢𝑡 + 𝒩[𝑢] = 0, 𝑥 ∈ 𝛺, 𝑡 ∈ [0, 𝑇] .                                    (2) 

Here 𝑢𝑡(𝑡, 𝑥) denotes the solution of ODE, 𝒩[·] is a nonlinear 

differential operator, which represents the various derivatives 

of 𝑢 with respect to its different orders, excluding 𝑢𝑡 and their 

mutual interactions. Moving all terms of the equation to the 

left-hand side yields the general form of the physical 

differential equation show as Eq (3). We use a deep neural 

network to approximating 𝑢 (𝑡, 𝑥) 

𝑓(𝑢, 𝑡): = 𝑢𝑡 + 𝒩[𝑢] .                                                        (3) 

The architecture of the forward PINNs problem is shown in 

Figure 2.1. The objective of the forward PINNs problem is to 

solve the provided governing equation with initial, boundary, 

and operating conditions. 

 

The input and output datasets of the FNNs were randomly 

sampled from the initial and boundary conditions provided by 

the governing equations during the training stage. The 

activation function σ, such as the sigmoid and hyperbolic 

tangent (tanh), was applied to each neuron. 

In the forward problem, we define the loss function as follow: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸𝑢(𝜽) + 𝑀𝑆𝐸𝑜𝑑𝑒(𝜽) ,                                    (4)  

where 

MSEu =
1

Nu

∑  
Nu

i=1
∣ u(tu

i , xu
i ) − ui ∣2  ,                          (5)  

and 

𝑀𝑆𝐸𝑜𝑑𝑒 =
1

𝑁𝑜𝑑𝑒

∑  
𝑁𝑜𝑑𝑒

𝑖=1
∣ 𝑓(𝑡𝑓

𝑖 , 𝑥𝑓
𝑖 ) ∣2  .                         (6)  

MSEu represents the mean squared error between the neural 

networks’ fitted values and the ground truth values at initial 

and boundary conditions. 𝑀𝑆𝐸𝑜𝑑𝑒  represents the mean 

squared error between the neural networks and the actual 

physical laws. All the weights and biases are the parameters (θ) 

of the neural network. To optimize the neural networks. 

𝜽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜽

 ℒ(𝜽)                                                          (7) 

The weights 𝑤ℓ ,and biases 𝑏ℓ  for the  ℓth  hidden layer 
must be adjusted to minimize the loss function (Loss). The 
automatic differentiation (AD) process for computing 

spatial derivatives (
𝑑𝑢

𝑑𝑡
) was performed using the reverse 

accumulation mode, which involves the retrograde 
propagation of derivatives starting from a specified output. 

2.3 PINNs in the inverse problem 

When presented with a model containing unknown parameters, 

PINNs integrate observational data and physical principles 

into the neural network constraints. This integration enables us 

to estimate the unknown parameters through PINN training. 

This involves the application of PINNs to solve the inverse 

problem. The parameters 𝜽  of the FNNs are the optimized 

variables in the forward PINNs problem, while unknown 

model parameters are identified in the inverse PINNs using the 

optimized 𝜽∗ 
 obtained from the forward PINNs. Instead of 

using the initial condition as the training data, the inverse 

PINNs problem utilizes observation data from an external 

source, such as experimental data. 

 

In the inverse PINNs，the total loss is defined as follows:  
 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸𝑜𝑏𝑠(𝜽, 𝒑) + 𝑀𝑆𝐸𝑜𝑑𝑒(𝜽, 𝒑)},                    (8)  

which is a function of both neural networks’ parameters θ and 

model parameters p. Here MSEobs and 𝑀𝑆𝐸𝑜𝑑𝑒  are defined as 

follows: 

Fig2.1 Architecture of the physics-informed neural 

networks for generic forward problems 

Fig2.2 Architecture of the PINN for generic inverse 

problems. (Inverse PINN takes observed data as 

constraints for training.) 
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MSEobs =
1

Nobs

∑  
Nobs

i=1
∣ u(tu

i , xu
i ) − ui ∣2 ,                 (9)  

𝑀𝑆𝐸𝑜𝑑𝑒 =
1

𝑁𝑜𝑑𝑒

∑  
𝑁𝑜𝑑𝑒

𝑖=1
∣ 𝑓(𝑡𝑓

𝑖 , 𝑥𝑓
𝑖 ) ∣2 .                         (10)  

All parameters can be identified by minimizing the loss 

function 

𝜽∗, 𝒑∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜽,𝒑

 ℒ(𝜽, 𝒑) ,                                               (11) 

where Nobs is the number of observation data points (or the 

experimental data). MSEobs  is evaluated for the observation 

data. The 𝑀𝑆𝐸𝑜𝑑𝑒  enforces the structure imposed by the 

system of ODEs given in Eq (3). 

3. PINNs-BASED CHAIN-SHUTTLING 

POLYMERIZATION AND PARAMETER ESTIMATION 

In this section, we introduce the mechanism of CSA 

polymerization and the method of moments modeling based 

on the reaction mechanism. Finally, the application of inverse 

PINNs is introduced. 

3.1 Ethylene chain shuttling polymerization mechanism 

The process employed for ethylene chain shuttling 

polymerization comprises multiple distinct stages (Arriola, 

Carnahan et al. (2006)), Firstly, there is the catalyst initiation 

involving ethylene, where ethylene participates in initiating 

the polymerization reaction. Subsequently, there is chain 

propagation, which is the phase where polymer chains 

continuously grow as monomers are added to the active sites 

on the catalyst. Following this is the occurrence of chain 

transfer events, which facilitate the movement of the polymer 

chain from one active site to another. Catalyst deactivation is 

a stage where the catalyst undergoes deactivation, limiting its 

ability to further contribute to chain growth. The subsequent 

phase involves chain shuttling to a virgin Chain Shuttling 

Agent (CSA), providing an alternative pathway for extended 

polymerization. Finally, there is the phase of chain shuttling to 

polymerize-CSA, where a dormant polyethylene chain 

becomes bonded to a CSA molecule. Table 3.1 provides an 

overview of the polymerization phases. 

Table 3.1. Mechanism for ethylene chain shuttling 

polymerization. 

 

3.2 Process modeling based on the method of moments 

We need to establish a differential equation model that can 

describe the polymerization dynamics. The method of 

moments is a versatile deterministic approach widely 

employed in modeling various polymerization reaction 

processes. The principle involves partitioning the chain-length 

species within a polymerization reaction into finite intervals 

and then establishing mass balance equations with the average 

of each interval as an independent variable. These equations 

can be used to calculate the concentration and molecular 

weight distribution of different species in the polymerization 

reaction. Therefore, we developed a dynamic simulation 

model for ethylene chain-shuttling polymerization using a 

single-catalyst in a continuous stirred-tank reactor (CSTR) 

through the method of moments. In a CSTR, the flow rates 

entering and leaving the reactor need to be taken into account. 

The differential equations model obtained by the method of 

moments is shown in Table 3.2. Table 3.3 shows the material 

conservation equation. 

Table 3.2 Moments equations in a dynamic CSTR for ethylene 

chain shuttling polymerization. 

 
Table 3.3 Mole balance for catalyst, CSA, ethylene, and 

hydrogen in a dynamic CSTR. 
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By solving this set of equations, information about the average 

chain length can be obtained from Table3.4. 

Table 3.4 Average chain lengths 

 

Under factory or laboratory conditions, product yield, weight-

average molecular weight (Mw) and polydispersity index (PDI) 

are all measurable. These data can serve as inputs for 

subsequent PINNs models. 

3.3 Inverse PINNs with polymerization model 

We propose a deep learning framework based on physics-

informed neural networks that incorporates information from 

the ethylene chain shuttling polymerization mechanism model, 

which has been developed using the method of moments. After 

implementing the ODE system and collecting data 

measurements, we construct our neural network model. The 

networks input is time t, and the output is a vector of state 

variables �̂�(𝑡; 𝜽) = (�̂�1(𝑡; 𝜽), �̂�2(𝑡; 𝜽), … , �̂�𝑆(𝑡; 𝜽))  which 

acts as a proxy to the ODE solution. 

In the process of training neural networks, it is essential to 

impose constraints that correspond to the system of ODEs and 

the previously generated observations. This constraint 

enforcement is accomplished through the formulation of a loss 

function, which is responsible for quantifying the disparity 

between the neural networks' output and the intended behavior： 

according to the data at the time 𝑡1, 𝑡2, … , 𝑡𝑁𝑑𝑎𝑡𝑎 , and ODEs at 

time points 𝜏1, 𝜏2, … , 𝜏𝑁𝑜𝑑𝑒 . The selection of time points for 

ODEs can be chosen at random or uniformly spaced. We 

establish the aggregate loss as a function of θ and p: 

ℒ(𝜽, 𝒑) = ℒ𝑑𝑎𝑡𝑎(𝜽) + ℒ𝑜𝑑𝑒(𝜽, 𝒑) + ℒ𝑒(𝜽) .                  (12)  

For M sets of observations y, ℒ𝑑𝑎𝑡𝑎 is defined: 

ℒ𝑑𝑎𝑡𝑎(𝜽) = ∑  
𝑀

𝑚=1
𝑤𝑚

𝑑𝑎𝑡𝑎ℒ𝑚
𝑑𝑎𝑡𝑎                                           (13)

  = ∑  
𝑀

𝑚=1
𝑤𝑚

𝑑𝑎𝑡𝑎 [
1

𝑁𝑑𝑎𝑡𝑎
∑  

𝑁𝑑𝑎𝑡𝑎

𝑛=1
(𝑦𝑚(𝑡𝑛) − �̂�𝑠𝑚

(𝑡𝑛; 𝜽))
2

] .

 

 

ℒ𝑜𝑑𝑒 is defined for our ODE model: 

ℒ𝑜𝑑𝑒(𝜽, 𝒑) = ∑  
𝑆

𝑠=1
𝑤𝑠

𝑜𝑑𝑒ℒ𝑠
𝑜𝑑𝑒                                                 (14)

= ∑  
𝑆

𝑠=1
𝑤𝑠

𝑜𝑑𝑒 [
1

𝑁𝑜𝑑𝑒
∑  

𝑁𝑜𝑑𝑒

𝑛=1
(

𝑑𝑥𝑠

𝑑𝑡
∣𝜏𝑛

− 𝑓𝑠(𝑥𝑠(𝜏𝑛; 𝜽), 𝜏𝑛; 𝒑))

2

] .

 

 

The third term in the loss function is ℒ𝑎, which serves as an 

additional informative measure for system identification 

purposes. For example, here we assume that we have the 

measurements of all state variables at the initial moment 𝑇0. 

This one is not necessary, you can choose according to the 

actual situation. 

ℒ𝑎(𝜽) = ∑  
𝑆

𝑠=1
𝑤𝑠

𝑎ℒ𝑠
𝑎                                                          (15)

  = ∑  
𝑆

𝑠=1
𝑤𝑠

𝑎(𝑥𝑠(𝑇0) − 𝑥𝑠(𝑇0; 𝜽))2.                   

 

 

Then, select the appropriate weight 𝑤 so that the different loss 

function terms are of the same order of magnitude. Once the 

loss functions are established, the networks can be trained to 

infer the parameters of the ODEs by minimizing the loss 

function using a gradient-based optimization algorithm such as 

Adam. 

𝜽∗, 𝒑∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜽,𝒑

 ℒ(𝜽, 𝒑) .                                                (16) 

During trainning we optimize θ and p simultaneously. 

4. SIMULATION 

In this section, we utilize the constructed CSA model to obtain 

simulated information about the average chain length. 

Subsequently, a parameter identifiability analysis is conducted 

on the model. Next, we use simulated data to train the Inverse 

PINNs for identifying kinetics parameters.  

4.1 Simulating the method of moments model. 

In order to enhance the numerical simulation and decrease the 

computational cost of the model, the following assumptions 

were incorporated into the model while adhering to the 

polymerization reaction kinetics: 

1) the immediate activation of the catalyst through a co-

catalyst, 2) a consistent reaction volume, 3) a constant 

polymerization temperature, 4) reaction rates unaffected by 

chain length, 5) the equivalence of the initiation rate constant, 

𝑘𝑖, and the propagation rate constant, 𝑘𝑝, and 6) active sites 

resulting from β-hydride elimination, chain transfer to 

hydrogen, and chain shuttling to CSA, all exhibiting analogous 

behavior to those initially generated during the activation 

phase. Chain transfer occurs through two mechanisms: β-

hydride elimination and chain transfer to hydrogen.  

In a 6-hour simulation of a CSTR with a 600-second average 

residence time, we investigated the effects of changing 

operational conditions. Tables 4.1 and 4.2 specify kinetic 

constants and initial conditions. After reaching a steady state, 

the conditions of the CSTR were modified as indicated in 

Table 4.3. 

Table 4.1 Kinetic constants for ethylene chain shuttling 

polymerization. 
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Table 4.2 Initial process conditions for ethylene chain shuttling 

polymerization in a dynamic CSTR. 

 

Table 4.3 Process condition changes for ethylene chain 

shuttling polymerization in a dynamic CSTR. 

 

We utilized MATLAB to solve the system of differential 

equations established using the method of moments in Table 

3.2, 3.3, 3.4 and reaction conditions provided in Tables 4.1, 

4.2, 4.3 to determine the production, Mw, and Mn of 

polyethylene chain-shuttling polymerization. These values 

serve as observational data for the PINNs. Figure 4.1 illustrates 

the variations of ethylene, H2, CSA, and Mn over time in a 

CSTR. All changes reflect the expected trends shown in Table 

4.3. 

  

4.2 Structural identifiability results 

In our work, the yield and Mw of polyethylene are considered 

measurable under factory or laboratory conditions (Hustad, 

Kuhlman et al. (2008)). In this section, we will investigate 

whether the kinetic parameters in the polymerization process 

model established in Section 3.2 can be structurally 

identifiable from these known inputs (Ovchinnikov, Pogudin 

et al. 2021).  

When knowing Yield, Mw, we can obtain 𝑁1, 𝑁2  through 

simple calculations. For convenience, we refer to a system as 

being identifiable when it is structually identifiable. We use 

the MATLAB toolbox STRIKE-GOLDD to test for parameter 

structural local identifiability of the model. (Villaverde AF, 

Barreiro A, et al. 2016) Result shows the ODE system of CSA 

is structurally identifiable when giving Yield, Mw as 

observations. 

4.3 Use Inverse PINNs for parameter identification 

When performing parameter identification, we need to fix the 

search range of parameters, because we only use the 

observation of Yield, Mw, based on our structural 

identifiability analysis. In different problems, the search range 

of parameters is also different. In this case, the range of 

parameters is set as (0.2𝑝∗, 1.5𝑝∗) where 𝑝∗  is the nominal 

value of that parameter, as illustrated in Table 4.4. 

Table 4.4 Parameters for the model 

 

When applying PINNs, at first step, we define all parameters 

to be estimated 𝑘𝑖 , 𝑘𝑝, 𝑘𝑡𝛽 , 𝑘𝑡𝐻 ,  𝑘𝑑 , 𝑘𝐶𝑆𝐴 , 𝑘𝐶𝑆𝐴0.  To 

expedite networks training, we can augment the basic FNNs 

outlined in Section 2.2 with supplementary layers, as 

delineated below. In situations characterized by an expansive 

time domain, the variable t exhibits variations spanning 

multiple orders of magnitude, which can detrimentally impact 

our neural networks training process. To address this challenge, 

we employ a linear input scaling layer on t, utilizing the 

maximum value within the time domain, denoted as T to 

transform t accordingly: �̃� = 𝑡/𝑇. As the outputs �̂�1, �̂�2, … , �̂�𝑆 

may have a disparity of magnitudes,  we can scale the networks 

outputs by �̂�1 = 𝑘1�̃�1, �̂�2 = 𝑘2�̃�2, … , �̂�𝑆 = 𝑘𝑆�̃�𝑆 like in Fig4.2, 

where 𝑘1, 𝑘2, … , 𝑘𝑆  are the magnitudes of the ODE solution 
𝑥1, 𝑥2, … , 𝑥𝑆 respectively. 

The choice of activation function is crucial for the accuracy of 

PINNs method. In general, it is common practice to choose a 

higher-order differentiable tanh as the activation function for 

PINNs because they require computation of higher-order 

derivatives. However, research(A. Al Safwan, C. Song et al. 

(2021)) shows that the Swish activation function is superior to 

tanh in terms of convergence rate for complex problems. The 

Swish function has a smoother curve shape, which allows for 

better utilization of gradient information, leading to improved 

training efficiency and faster convergence of the networks. 

Furthermore, the Swish function exhibits stronger nonlinear 

expression capability. In the follow-up experiment, we 

selected "swish" as the activation function. (激活函数) 

Fig 4.1 Ethylene, H2, CSA, and Mn in a CSTR as a function of 

time 
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During the construction of PINNs , the architecture of neural 

networks plays a crucial role in determining their performance. 

Increasing the network's width can enhance its 

representational capacity. However, excessively large widths 

may lead to overfitting and inefficient utilization of 

computational resources. Elevating the depth of neural 

networks helps in capturing more complex features and 

representations. However, an excessively deep architecture 

can increase training complexity and require greater 

computational resources. When selecting a network structure, 

it is crucial to strike a balance between expressive power, 

computational efficiency, and available resources while 

considering problem complexity and data volume. After many 

experiments, the neural network has shown more balanced 

performance when the set size is set to 5*256. (神经网络的结

构) 

   

The algorithm is implemented in Python using the open-source 

library DeepXDE (Lu, Meng et al. (2021)). The width and 

depth of the neural networks depend on the size of the system 

of equations and the complexity of the dynamics.  

We randomly sampled 80 points from the simulation results. 

Additionally, we ensured that the majority of data points were 

concentrated under steady-state conditions. Moreover, in order 

to test the robustness of the algorithm, we add random 

Gaussian noise to the observed data to simulate the 

measurement error in practice, as shown in the sampled input 

illustrated in Figure 4.3. 

For training purposes, we use the Adam optimizer (Kingma 

and Ba (2014)) with default hyperparameters and a learning 

rate set to 10−4. The training process is conducted using the 

entire dataset as a full batch. Given that the overall loss 

consists of two supervised losses and one unsupervised loss, 

we conduct the training using a two-stage strategy as follows: 

Step 1. We first train 10,000 epochs by setting all weights to 

zero except for observation data,  to minimize ℒ𝑑𝑎𝑡𝑎 such that 

the networks can quickly match the observed data points. 

Step 2. We further train the networks using all the three losses 

for 90,000 epochs to minimize total loss function. 

Table 4.5 Result of kinetic parameter identification using 

PINNs 

 

After numerous tests, the average running time of PINNs in 

100,000 iterations is approximately 3100 seconds. The 

inferred parameters are provided in Table 4.5. We observe 

good agreement between the inferred values and the noise-

sampled inputs, and Fig4.3 shows the predicted values of Mn 

and Yield. 

   

Except for parameter 𝑘𝑑 ,which has a slightly larger 

identification error, the results for the other parameters are 

accurate, and the prediction curve reflects the changes in 

polymer properties well. 

4.4 Compare PINNs with PSO 

PSO is a heuristic optimization algorithm that seeks the best 

solution by adjusting the position and velocity of particles. In 

the parameter identification task, PSO can be utilized to search 

for the optimal parameter combination that minimizes the error 

between the predicted and observed values. 

In this comparison experiment, we used PSO to identify 

dynamic parameters. Every iteration of PSO needed to call the 

differential equation model to get the model output, in order to 

minimize the error between the model output and the observed 

noise value. Set the dimension of particle swarm to 6, the 

number of particle population to 500, the maximum number of 

iterations to 200, and the learning factors to 0.5 and 0.3 

respectively. The search ends when the maximum number of 

iterations is reached or the error is less than 10−3. 

When PSO is used to identify all parameters, the error may not 

converge. After experiments, PSO can only identify three 

parameters and fix the other parameters to their empirical 

values. The results are given in Table 4.6. 

Fig 4.3 PINNs prediction results through noise data 

Fig 4.2 Simplified architecture of inverse PINNs for 

ethylene CSA polymerization in a CSTR model  
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Table 4.6 Result of kinetic parameter identification using PSO 

 

Table 4.7 Algorithm run time 

 

The results above indicate that while the PSO algorithm is 

time-efficient, its recognition success rate and accuracy 

significantly lag behind those of PINNs, particularly in 

scenarios with limited observation data and noisy data. 

5. CONCLUSIONS 

In this paper, we introduce a novel approach for identifying 

key kinetic parameters in chain shuttling polymerization 

processes through the integration of the method of moment 

matching and PINNs. The dynamic variations of the average 

chain length are characterized using ODEs based on the 

method of moment matching. The incorporation of PINNs in 

estimating unknown parameters proves to be advantageous. It 

efficiently integrates polymerization mechanisms with sparse 

and limited observational data, thereby reducing the amount of 

required training data. The comparative analysis between the 

parameters estimated by PINNs and the ground truth values 

emphasizes the model's high accuracy and efficiency. 

Moreover, the paper addresses the challenge of structural 

identifiability through an identifiability test, demonstrating the 

adaptability of the proposed method in situations where direct 

parameter incorporation may not be feasible. This work 

underscores the potential value of PINNs in chemical process 

identification, offering a promising avenue for efficient and 

accurate parameter estimation in complex dynamic systems. 
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