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Abstract: This paper presents the development and the validation of two macroscopic growth
models with coordinated uptake of glucose and ammonium for the yeast Saccharomyces
cerevisiae. The two models differ in the structure chosen for the reaction kinetics: one employs
generalized kinetic laws, the other employs extended Haldane laws. The predictions of both
models are in agreement with experimental data, however, a slightly better accuracy can be
noticed for the generalized kinetics formalism. This study emphasizes that an accurate, robust
model captures the biological phenomena shown by the experimental data regardless of its
structure and of the formalism used for its development.
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1. INTRODUCTION

Microorganisms have become real cell factories for the
production of bio-based chemicals. Among these microor-
ganisms, the yeast Saccharomyces cerevisiae is one of the
workhorses of bioindustries (Henriques and Balsa-Canto,
2021), due to its common use especially in food, beverages
and biofuel production. Additionally, there exists an exten-
sive knowledge on S. cerevisiae physiology, molecular bi-
ology and genetics. However, in order to achieve favorable
culture conditions and improved productivity, a macro-
scopic model is required, which relates the consumption
of the most important nutrients to the yeast growth and
metabolites production. While in the case of carbon-based
nutrients, the model structure for the overflow metabolism
proposed by Sonnleitner and Käppeli (1986) seems to be
an accurate representation of the biological phenomena,
less information is available on the influence of nitrogen-
based nutrients.

Nitrogen, commonly supplied as ammonium to the cul-
ture, is an important nutrient for yeast growth. Several
experimental studies emphasizing its importance are avail-
able (Larsson et al., 1993; Aon and Cortassa, 2001). Most
of them establish that the carbon to nitrogen ratio in
the constant feed supplied to a continuous culture is de-
terminant for its steady state operation. However, high
yeast concentrations are achieved in fed-batch operation,
where the process does not reach a steady state but has
a transient behavior. Hence, in a fed-batch yeast cul-
ture, unravelling the nitrogen influence on yeast growth
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and incorporating nitrogen dynamics in the yeast growth
model is a must for an accurate prediction of the culture.
However, most of the fed-batch models for yeast growth do
not include nitrogen and assume that the yeast grows only
utilizing a carbon source. To our knowledge, there are only
a few modeling studies that consider the coordinated up-
take of glucose and ammonium for yeast growth (Richelle
et al., 2014; Robles-Rodŕıguez et al., 2018; Henriques and
Balsa-Canto, 2021).

Robles-Rodŕıguez et al. (2018) developed two models for
the oleaginous yeast Yarrowia lipolytica to predict the
yeast growth and lipids accumulation. Both models include
yeast overflow metabolism, but the first model relies only
on extended Monod and Haldane kinetics while the second
one employs also the Droop model to define the nitrogen
uptake based on the internal nitrogen quota. Henriques
and Balsa-Canto (2021) concluded that the Monod model
is not sufficient to explain biomass formation in nitrogen-
limited fermentations of S. cerevisiae during the winemak-
ing process. They proposed two changes to the standard
modeling approaches, where, on the one hand, the biomass
growth accounts for protein and carbohydrates and, on the
other hand, the fermentation rate is proportional to the
total protein content.

For the use of S. cerevisiae in the food industry, Richelle
et al. (2014) developed a growth model employing ex-
tended Monod kinetics, in which the uptake of nitrogen is
modeled by a separate reaction mediated by the intracel-
lular component alpha-ketoglutarate. Although the model
predictions show good agreement with the experimental
data, one may argue that this is not a macroscopic model
in a strict sense as it involves an intracellular component
which is not measured.
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The goal of this paper is to propose two macroscopic
models with coordinated uptake of glucose and ammonium
for the growth of S. cerevisiae. The two models differ in
the structure chosen for the reaction kinetics: for the first
model the kinetics are expressed as generalized kinetic
laws, while for the second model the kinetics are expressed
as extended Haldane laws. Both models are macroscopic
models: the process dynamics depend only on extracellular
components which are measured. The data sets used to
identify the parameters of the models are the same as
the ones used originally by Richelle et al. (2014). In a
nutshell, the advantages of the new models compared to
the model proposed by Richelle et al. (2014) may be
summarized as: the new models have one reaction less,
one state variable less, less stoichiometric and kinetic
parameters while explaining the experimental data at least
as accurately as the old model.

In an observability study (Sbarciog and Bogaerts, 2022) of
the model proposed by Richelle et al. (2014), it was shown
that the model is uniformly observable when two mea-
surements are available only for the pairs i) glucose and
ammonium and ii) glucose and ethanol. In an industrial
setup and even at lab scale, on-line measurements of glu-
cose and ammonium are not available (commonly glucose
and ammonium are measured with enzymatic kits). On the
contrary, the new models are globally uniformly observable
when measurements of biomass and ethanol concentrations
are available (developments not shown here due to space
limitation). These measurements can be easily obtained by
means of on-line probes. This is an important advantage
provided by the structure of the new models, as the design
and implementation of advanced optimization and control
techniques require the availability of the full system state.

Last but not least, this study emphasizes that the obtained
models are accurate and robust. The phenomena captured
by the experimental data are dependent on the yeast
metabolism triggered by the operational conditions but
not on the chosen model structure.

The paper is organized as follows. Section 2 describes the
biological background of the model and the chosen kinetic
structures. Section 3 details the parameter identification
and the results discussion and interpretation. Conclusions
are drawn in Section 4.

2. MODEL DEVELOPMENT

2.1 Model structure

The well-known model proposed by Sonnleitner and
Käppeli (1986) to describe the growth of S. cerevisiae
relies on three reactions, of which two are purely oxidative
and one purely reductive (Jouned et al., 2022):

Respiration on glucose

C6H12O6 + α1O2 + α2nN[NH3] → α2CHnH
OnO

NnN
+

α3CO2 + α4H2O (1)

Fermentation

C6H12O6 + α5nN[NH3] → α5CHnH
OnO

NnN
+

α6CO2 + α7H2O+ α8C2H6O (2)

Respiration on ethanol

C2H6O+ α9O2 + α10nN[NH3] → α10CHnH
OnO

NnN
+

α11CO2 + α12H2O (3)

In the reactions (1)-(3), CHnH
OnO

NnN
denotes the biomass,

whose molecular composition (nH,nO,nN) is determined
from an elemental analysis of the dried biomass, while αi,
i = 1 . . . 12, are stoichiometric parameters.

A simplified reaction network, derived from (1)-(3), is
employed for the models development:

G+ k5N
r1−→ k1X (4)

G+ k6N
r2−→ k2X + k4E (5)

E + k7N
r3−→ k3X (6)

X, G, N and E are respectively biomass, glucose, ammo-
nium and ethanol; ki, i = 1 . . . 7, are pseudo-stoichiometric
coefficients; rj , j = 1 . . . 3 are respectively the reaction
rates of glucose oxidation, fermentation and ethanol oxi-
dation. Further on, it is assumed that oxygen is supplied
in excess and does not limit the growth.

The mass balance equations, which describe the time
evolution of component concentrations in a fed-batch
operated bioreactor, read as follows:

dX

dt
= k1r1X + k2r2X + k3r3X − F

V
X (7)

dG

dt
= −r1X − r2X +

F

V
(Gin −G) (8)

dN

dt
= −k5r1X − k6r2X − k7r3X +

F

V
(Nin −N) (9)

dE

dt
= k4r2X − r3X − F

V
E (10)

dV

dt
= F (11)

where X, G, N , E stand for the concentrations of the
above mentioned components; r1, r2 and r3 respectively
represent the reaction rates of respiration, fermentation
and ethanol oxidation; V is the reactor volume; F denotes
the feedflow rate, which contains both glucose and ammo-
nium, with concentrations Gin and Nin.

The reaction rates describing the overflow metabolism
have the same structure as defined in the seminal work
of Sonnleitner and Käppeli (1986)

r1 = min (rG, rO) (12)

r2 = max (0, rG − rO) (13)

r3 = max (0, (rO − rG)E/ (E +KE)) (14)

where rO denotes the maximum respiration rate and rG
denotes the glucose uptake rate. rO is implicitly rescaled
in the same units as rG (gG/gX/h). Note that the factor
E/ (E +KE) is included in the ethanol oxidation rate (14)
as a physical constraint: consumption of ethanol cannot
occur when ethanol is depleted. Hence, the parameter KE

will not be identified from data but fixed to an arbitrary
low value (KE = 0.1 gE/L). Finally, the scaling factor
that should be considered in (14) to pass from units in
gG/gX/h to units in gE/gX/h is set to 1 gE/gG, as
proposed in Richelle et al. (2014).

2.2 Reaction rates

Commonly, the reaction kinetics of bioprocesses are chosen
as extended Monod or Haldane laws, which are given as a
product of factors expressing the limiting and the inhibit-
ing features of the components involved in a particular
reaction. While in the case of extended Monod laws the
limiting effect of a component is modeled with a classical
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Monod factor and the inhibiting effect with a separate
hyperbolic factor, in the case of Haldane laws these effects
are combined in only one factor.

Although less employed, generalized kinetic laws are a
useful tool for modeling the reaction kinetics of biopro-
cesses. They express the impact of a component on the
reaction kinetics in terms of activation and deactiva-
tion and they are particularly appealing as this formal-
ism avoids the local identifiability problems of extended
Monod laws (Mairet and Bernard, 2019) and can even be
rigorously linearized with respect to the parameters when
the reaction rate values can be estimated (Bogaerts et al.,
1999; Richelle and Bogaerts, 2015).

Recall that one of the goals of this study is to reveal
the influence of ammonium on the respiration and glucose
uptake rates. To this end, our investigation starts with
general structures detailed in the next subsections and
model reduction is performed based on the parameter
identification results.

Generalized kinetic laws The initial rates in the generalized
kinetic laws formalism are chosen as follows:

rO,gen = αO ·NαNOexp(−βNO ·N) (15)

rG,gen = αG ·GαGGexp(−βGG ·G)NαNGexp(−βNG ·N)

where αO, αNO, βNO, αG, αGG, βGG, αNG and βNG are
parameters that will be estimated from the experimental
data.

The rates (15) express that ammonium concentration N
has an activation and deactivation influence on the max-
imum respiration capacity rO, while both nutrients, glu-
cose and ammonium, activate and deactivate the glucose
uptake rate rG. It is assumed that the glucose concentra-
tion does not influence the maximum respiration capacity,
which is in agreement with modeling yeast growth studies
published so far.

Generalized Haldane laws Considering similar effects of
glucose and ammonium on the respiration and glucose
uptake rates, these can be rewritten in the extended
Haldane formalism as:

rO,Hal = µO
N

KNO +N +KiNON2
(16)

rG,Hal = µG
G

KGG +G+KiGGG2

N

KNG +N +KiNGN2

where µO, KNO, KiNO, µG, KGG, KiGG, KNG and KiNG

are parameters that will be estimated from experimental
data.

3. PARAMETER ESTIMATION AND MODEL
REDUCTION

All model parameters, comprising the stoichiometric and
the kinetic parameters, are estimated based on experi-
mental data. The experimental data sets are the same
as described by Richelle et al. (2014). This experimental
database consists of four S. cerevisiae fed-batch culture
experiments, which were performed to emphasize the in-
fluence of different ammonium concentration levels in the
culture medium. Therefore, they mostly differ by the am-
monium and glucose concentration in the feeding.

All experiments last for 21 hours and measurements for
each state variable (X, G, N and E) were made at 15

or 16 time instants per experiment. The identification of
model parameters is performed by using the trust-region-
reflective optimization algorithm (function lsqnonlin in
MATLAB) in order to minimize a least-squares criterion.
The criterion is built as the sum of squared differences
between the result of the model simulation and the ex-
perimental values. The squared difference is weighted by
the inverse of the variance of the measurement error for
each experimental measurement. The standard deviation
for each measurement was either set to the one proposed
by the protocol, or computed at a higher value by Richelle
et al. (2014). The standard deviations associated with the
biomass, glucose, ammonium and ethanol measurement
protocols are, respectively, 0.5 g/L, 0.2 g/L, 0.45 g/L and
0.1 g/L. The resulting criterion is expressed as follows

SSE(θ) = Σn
j=1Σ

Nj

i=1 (ŷij(θ)− yij)
T
Q−1

ij (ŷij(θ)− yij)

(17)
where θ is the parameters vector with dim(θ) = 15, which,
depending on the kinetic structure employed, assumes one
of the forms

θTgen = [ k1 k2 k3 k4 k5 k6 k7 αO αNO βNO αG

αGG βGG αNG βNG ] (18)

θTHal = [ k1 k2 k3 k4 k5 k6 k7 µO KNO KiNO µG

KGG KiGG KNG KiNG ] (19)

ŷij(θ) =
[
X̂ij Ĝij N̂ij Êij

]T
is the vector of predicted

state variables at the ith time instant of the jth experiment,

while yij = [Xij Gij Nij Eij ]
T

is the vector of the cor-
responding experimental measurements. Qij is a positive
definite symmetric weighting matrix, defined as

Qij = diag
(
σ2(Xij), σ

2(Gij), σ
2(Nij), σ

2(Eij)
)

where σ2 represents the variance of the associated mea-
surement errors.

The optimization of the cost index (17) is usually cum-
bersome due to the existence of several local minima. To
circumvent this issue, a multistart approach is employed,
in which parameters are initialized at 15 different values
in a properly chosen parameter range. The chosen range
for each parameter is given in Table 1 for the generalized
kinetics and in Table 2 for the extended Haldane formal-
ism.

In a first step, the parameter sets θgen and θHal as defined
in (18) and (19) are identified using all four available
data sets. A first set of observations, common to both
generalized kinetics and extended Haldane formalisms, is
made on the pseudo-stoichiometric coefficients k6 and k7.
First looking at k6, which is linked to ammonium con-
sumption in the fermentation reaction (5), the identified
value is 0.0005 with a variation coefficient of 285.17% in
the generalized kinetic formalism, and 8.12E-06 with a
variation coefficient of 6917% in the extended Haldane
formalism. In the case of k7, which is linked to ammonium
consumption in the ethanol respiration reaction (6), the
identified value is 0.0002 with a variation coefficient of
95.38% in the generalized kinetic formalism, and 0.0061
with a variation coefficient of 7.74% in the extended Hal-
dane formalism. While the values are different, they are
not significant compared to the magnitude of the other
stoichiometric coefficients. Based on these observations,
a first model reduction is performed, which consists in
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Table 1. Estimated parameters for the generalized kinetic formalism
Set 1 Set 2 Set 3 Set 4 Set 5

Parameter Range of Experiments Experiments Experiments Experiments Experiments Variation
initialization 1-2-3-4 1-2-3 1-2-4 1-3-4 2-3-4 coefficients∗

k1 0.1-1 0.6237 0.6237 0.5575 0.6237 0.5717 17.72
k2 0.1-1 0.1987 0.1987 0.1959 0.1987 0.1990 5.30
k3 0.1-1 4.9609 4.9609 5.3309 4.9609 4.9394 16.18
k4 0.1-1 0.1905 0.1905 0.1740 0.1905 0.2050 3.04
k5 0.1-1 0.6071 0.6071 0.5939 0.6071 0.5852 7.77
αO 0.01-0.1 0.1468 0.1468 0.1460 0.1468 0.1425 17.02
αNO 0.1-1 1.1988 1.1988 1.1992 1.1988 1.1346 3.06
βNO 0.1-1 0.4957 0.4957 0.4779 0.4957 0.4395 14.42
αG 1-10 2.8719 2.8719 2.8773 2.8719 2.8283 3.22
αNG 0.1-1 0.4076 0.4076 0.4235 0.4076 0.3212 10.08
αGG 0.1-1 0.8798 0.8798 0.9233 0.8798 0.7575 0.0005
βGG 0.1-1 0.2171 0.2171 0.2221 0.2171 0.2296 0.0014
SSE∗ / 2029.1 2029.1 2137.6 2028.9 2526.1 /

∗ calculated for Set 1

Table 2. Estimated parameters for the extended Haldane formalism
Set 1 Set 2 Set 3 Set 4 Set 5

Parameter Range of Experiments Experiments Experiments Experiments Experiments Variation
initialization 1-2-3-4 1-2-3 1-2-4 1-3-4 2-3-4 coefficients∗

k1 0.1-1 0.5625 0.6491 0.6211 0.4896 0.4088 22.59
k2 0.1-1 0.2007 0.2042 0.2074 0.2097 0.2066 5.61
k3 0.1-1 5.9651 6.8832 6.4176 6.8881 5.9399 11.61
k4 0.1-1 0.1901 0.1881 0.1722 0.1895 0.2219 3.86
k5 0.1-1 0.5229 0.5325 0.5192 0.4846 0.3893 15.78
µO 1-10 1.7668 1.8346 1.5616 1.5055 1.6988 22.85

KNO 1-10 19.5118 21.7647 19.3322 15.9762 14.6827 17.13
µG 10-20 103.9667 95.3629 116.7020 108.9475 110.6228 10.76
KGG 1-10 49.9465 40.6227 52.2778 53.9093 50.4307 9.41
KiGG 0.1-1 0.8480 0.1014 0.3388 0.1118 0.1642 21.93
KNG 0.1-1 0.1705 0.3752 0.3595 0.3012 0.2038 24.47
SSE∗ / 2486.9 2347.6 2581.2 2346.2 3260.2 /

∗ calculated for Set 1

removing the ammonium consumption terms in both the
fermentation reaction (5) and in the ethanol respiration
reaction (6). This does not mean that biologically there is
no coordinated consumption of ammonium when the yeast
ferments or when it respires ethanol. However, in our data
sets, the ammonium consumption during the fermentation
is negligible. The ammonium consumption during ethanol
respiration is also negligible, and this small amount is
accounted for in the glucose respiration, which occurs
simultaneously with ethanol respiration (pure respiration
regime).

0 0.5 1 1.5 2 2.5

N [g/L]

0

0.2

0.4

0.6

0.8

1

exp(-
NG

*N)

N/(K
NG

+N+K
iNG

*N2)

N/(K
NO

+N+K
iNO

*N2)

Fig. 1. Evolution of the factors considered for model
reduction as function of ammonium concentration

Other parameters in θgen and θHal that are considered for
model reduction are βNG in the generalized kinetics for-
malism and KiNG and KiNO in the extended Haldane for-
malism. The estimated values are 0.0065 for βNG, 0.0121

for KiNG and 0.6890 for KiNO. Since a parameter cannot
be removed from a model without checking its contribution
to the kinetic rate, we evaluated the factors exp(−βNG ·

N),
N

KNG +N +KiNGN2
and

N

KNO +N +KiNON2
for

the ammonium concentration range [0, 2.2] g/L, which
is the range of ammonium variation in the experimental
data. As Figure 1 shows, the exponential factor involving
βNG is practically equal to one for the whole range of
ammonium, while no ammonium inhibition effect for any
of the Haldane factors is visible, which implies that these
factors can be replaced with Monod factors. Subsequently,
the expression of the kinetic rates for each formalism and
the associated parameter vectors become:

rO,gen = αO ·NαNOexp(−βNO ·N)

rG,gen = αG ·GαGGexp(−βGG ·G)NαNG

rO,Hal = µO
N

KNO +N
(20)

rG,Hal = µG
G

KGG +G+KiGGG2

N

KNG +N

θTgen = [ k1 k2 k3 k4 k5 αO αNO βNO αG αGG βGG αNG ]

θTHal = [ k1 k2 k3 k4 k5 µO KNO µG KGG KiGG KNG ]

Next, the parameters of the reduced models are identified
using all four experiments (data Set 1) or combination of
three experiments (data Set 2, Set 3, Set 4 and Set 5). The
estimated values and variation coefficients are presented in
Table 1 for the generalized kinetic laws and in Table 2 for
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Fig. 2. Direct validation: red dots - experimental data, continuous blue line - model predictions (generalized kinetic
formalism), dashed black line - model predictions (extended Haldane formalism). (a) - Experiment 1, (b) -
Experiment 2, (c) - Experiment 3, (d) - Experiment 4
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Fig. 3. Leave-one-out cross validation: red dots - experimental data, continuous blue line - model predictions (generalized
kinetic formalism), dashed black line - model predictions (extended Haldane formalism). (a) - Experiment 1 (Set
2), (b) - Experiment 2 (Set 3), (c) - Experiment 3 (Set 4), (d) - Experiment 4 (Set 5)
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formalisms. In each case, the two curves are rescaled such that they have the same average value.

the extended Haldane laws. Further on, Figure 2 presents
the direct validation of the two models with the parameter
values identified using data Set 1, while Figure 3 shows the
cross validation for the leave-one-out approach, where the
model is validated with the experimental data set which
was not used for identification.

Although the kinetic structures are different, the predic-
tions of both models using the parameters estimated with
data Set 1 are close. However, the generalized kinetic
model provides a more accurate prediction of all state
variables compared to the extended Haldane model. This
is particularly obvious in the simulation of the glucose
concentration in Experiment 1 between 12 and 17h, where
the extended Haldane model, although having an accu-
rate trend, does not manage to predict sufficiently the
intermediate glucose accumulation. A second significant
difference between the two models is seen in the simulation
of ammonium in Experiment 3, between 12 and 21h. Here,
the extended Haldane model shows exactly the same trend
as the generalized kinetic model, but it is not able to ex-
press well the ammonium consumption. It should be noted
that in both cases, this particular dynamic is not well
captured. Both models also fail to predict the final glucose
accumulation from Experiment 3 (18 to 21h). However,
the other signals present trends that match most of the
time the experimental measurements.

The observations made for direct validation also hold for
cross validation (Figure 3). Although the predictions are
not as good as in direct validation, both models provide
a reasonable approximation of the experimental data set
that was not used for identification. However, larger confi-
dence intervals on the parameters of the extended Haldane
model are obtained.

To investigate to which extent the kinetic rates of the
two models capture the same phenomena, their respective
variation in function of each substrate are displayed in
Figure 4. A visual comparison of these curves shows that
ammonium has a limiting effect on the maximum respira-
tion rate and on the glucose uptake rate, while glucose
has both limiting and inhibiting effects on the glucose
uptake rate. These effects are clearly expressed by each
of the two kinetic models, leading to the conclusion that
the same biological evidence shown by the experimental
data is captured by both kinetic structures.

4. CONCLUSIONS

In this paper two macroscopic models with coordinated
uptake of glucose and ammonium that characterize the
growth of Saccharomyces cerevisiae were developed. The
emphasis was on unravelling the influence of ammonium

on the kinetic rates. The results show that ammonium has
a limiting effect on both maximum respiration rate and
glucose uptake rate. Although using different formalisms
to model the kinetic rates, both models predict well the
biological phenomena shown by the experimental data.
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