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Abstract: A safe and reliable operation of electric arc furnaces (EAFs) is crucial for the mining
and mineral industries. The lack of continuous measurements of critical process variables, such
as the bath size of the molten phase, makes this operation challenging. Additionally, operator
support decision tools able to predict the evolution of key process variables such as furnace
sidewall temperatures would help to maintain safe operations. The present work proposes a data-
driven (DD) modeling procedure to develop (1) a predictive model of the sidewall temperature
and, (2) an online bath size estimator. Both sidewall temperature predictor and bath size
estimator are based on long short-term memory (LSTM) networks. The preliminary developed
models are validated on datasets collected on an industrial pilot-scale EAF and show good
performance.
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1. INTRODUCTION

Process plants in operation in the mining and mineral
industries are complex and large-scale systems that require
advanced distributed control systems for their control,
their monitoring and for supporting operator’s decision-
making. One limiting factor of such systems is the lack of
continuous measurements of key process variables. These
key variables are essential for the safety of the operation
and the quality control of final and intermediate products
(Ke et al., 2017).

Electric Arc Furnaces (EAFs) are pyrometallurgical pro-
cess units used to upgrade ore to a desired metallic content.
To reach fusion, ore and reagents fed to the unit are heated
via an electric arc generated by two electrodes located
on the top side of the EAF. (Zietsman, 2004). A liquid
phase called molten bath is progressively generated from
ore heated to high temperatures. A major danger is a
leak of molten material through the equipment. This event
is called a run-out and can happen when the sidewall
temperatures are too high or when the refractory layer
thickness is reduced due to wearing (Joubert and Kotze,
2019). On the other hand, maximizing the EAF production
capacity requires maximizing the bath size, leading to
unsafe operation. This is why reliable tracking of bath size
is important for operations.

Monitoring of the furnace sidewall temperature profile
uses several thermocouples. This temperature profile is
key to a safe operation. Molten content stays solid on the

inner perimeter of refractory bricks. This solid phase is
called freeze lining. It allows slowing down the wear of the
refractory lining (Joubert and Kotze, 2019). Monitoring
the refractory wall thickness of the EAF is challenging
as it cannot be directly measured (Leon-Medina et al.,
2022). Instead, the bath size is used as a proxy of the wall
thickness and is estimated using the mass of liquid metal
collected at each tapping phase and electrodes positions
before and after each tapping phase.

Significant efforts are made to develop first principle (FP)
models with computational fluid dynamics (CFD) meth-
ods explaining hydrodynamics, heat transfers and interac-
tions between phases occurring in the unit (Odenthal et al.,
2018). To take into account the actual operating conditions
and chemistry of the bath, FP models need to be calibrated
to process measurements (Rodrigues et al., 2023). While
improving the model accuracy, FP model calibration does
not solve another limitation of FP that prevents them
from being deployed online: their high computation time
(Hosain and Fdhila, 2015).

Data-driven (DD) models are well suited for online de-
ployment. In recent years, machine learning (ML) models
have been proposed to develop data-driven models used
as soft-sensors in chemical and metallurgical processes.
Such ML models include multi-layer perceptron (MLP)
(Souza et al., 2019) and recurrent neural networks (RNN)
such as long short-term memory (LSTM) (Ke et al., 2017).
LSTM networks solve the vanishing gradient issue found in
standard RRNs (Noh, 2021) and do lend themselves to the
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Fig. 1. Electric arc furnace main elements locations. (1)
Ore and reagent inlet; (2) Electrodes; (3, 4) Molten
bath products 1 and 2; (5) Freeze lining; (6a, 6b,
6c) Thermocouples at various heights and depths; (7)
Refractory bricks; (8, 9) Tap-holes for products 1 and
2; (10) Water-cooled roof; (11) Gas outlet.

modeling of non-linear dynamic systems. An arrangement
of layers of LSTM cells, activation functions and fully
connected layers architecture called stacked LSTM is used
in (Kim et al., 2019) to predict remaining time to close
tap-holes in a blast furnace. Stacked LSTM architecture
will be used for bath size estimation.

Electric arc furnaces temperature prediction using long
short-term memory (LSTM) networks are presented in
(Godoy-Rojas et al., 2022), while multi-target regression
is used in (Leon-Medina et al., 2022).

To the author’s best knowledge, no data-driven model for
the online estimation of bath size in EAF processes has
been proposed in the literature.

In this work, we propose an alternative approach for the
prediction of electric arc furnaces temperature based on
feature engineering. Dimension reduction with principal
component analysis (PCA) is a feature engineering method
that has been used for product quality prediction of met-
allurgical processes (Xin et al., 2023). Other methods use
phenomenological process knowledge to engineer features
(Hongyang Li et al., 2022). Both of these methods will
be used in the feature engineering step of the proposed
approach.

The contributions of this paper are twofold :

(1) Development of an EAF sidewall temperature predic-
tor using a sequence-to-sequence LSTM network with
engineered input features.

(2) Development of an EAF bath size estimator using
a sequence-to-one LSTM network with engineered
features and measured inputs.

The remaining of the paper is organized as follows: Section
2 provides a short overview of the EAF process and its
operation. Section 3 details the proposed approach to
develop a sidewall temperature predictor and a bath size

estimator. Both LSTM-based networks general methodol-
ogy will also be detailed. Section 4 describes an application
of the proposed methodology on a pilot-scale EAF three-
day test campaign dataset. Section 5 concludes the paper
with some weakness of the approach and suggests future
steps for improvement.

2. ELECTRIC ARC FURNACES OPERATION
DESCRIPTION

EAF are operated in a semibatch mode. The furnace is
continually filled with ore and reagent. Once the furnace
is full, it is emptied through a tap-hole during the tapping
phase, after which, the tap-hole is sealed. The bath size at
the end of the taping phase is estimated using the ratio be-
tween the mass of recovered molten material and the bath
level variation. These two values are manually measured
at the end of the taping phase by an operator. High bath
size values indicate a low freeze lining thickness, which can
result in refractory wear (Zietsman, 2004). While direct
molten bath temperature measurements of EAFs can be
done using costly disposable probes (Blažič et al., 2021),
sidewall temperatures measurements are usually preferred
for continuous monitoring because thermocouples, being
further away from the molten bath, are exposed to lower
temperatures. Thermocouples used for temperature mea-
surements are inserted in the furnace sidewall at multi-
ple heights and depths. Sidewall temperatures reflect the
molten bath temperature but are affected by the size and
the thermal conductivity of both sidewall and freeze lining
(Joubert and Kotze, 2019).

3. PROPOSED APPROACH

A model predicting the EAF sidewall temperature over
a sliding time horizon is proposed. This sequence-to-
sequence model takes as input engineered features de-
scribed in Section 3.1. A second model, estimating the
bath size between tapping phases, is also proposed. This
is a sequence-to-one model that takes as inputs process
measurements in addition to engineered features described
in Section 3.2.

3.1 Feature Engineering for Temperature Prediction

Instead of the EAF sidewall temperature TSidewall, the
temperature increment ∆TSidewall representing the differ-
ence between two consecutive temperature measurements
is used as input to the sidewall temperature predictor. This
local linearization approach that considers a small range of
temperature values over the predicted horizon, improved
convergence and performance of the model.

3.2 Feature Engineering for Bath Size Estimation

Bath size estimator uses simple features calculated from
the measured electric power consumed by the EAF and
estimated ore and reagent mass flows. These features
are accumulated values of electric power (P Integrated)

and mass flows (QIntegrated
Ore , QIntegrated

Reagent ) between tapping
phase periods. Accumulated values are set to zero after
each tapping phase. Training bath size estimator using
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accumulated values instead of raw measurements of elec-
tric power and mass flows helped the model capturing the
integrator dynamics of the system. Algorithm 1 presents
the pseudocode of the implemented method.

Algorithm 1 Numerical Integration With Reset

Input: Process measurements vector, Reset index (tap-
ping phases)
1. Initialize an empty integrated feature vector
2. Initialize a cumulative variable for integrated values
3. for each value of process measurements vector do

4. Compute a numerical integration on the current
and past value in process measurements vector
5. Update the cumulative variable
6. Append the cumulative variable to the current
integrated feature vector
if Current reset index is equal to the process
measurement index do

Set cumulative variable = 0
Set current reset index to its next value

else pass
Output: Integrated feature

Implementation of Algorithm 1 is made using SciPy
Python library (Virtanen et al., 2020). Note that the
size of the integrated feature vector is one less than the
original vector because of the chosen numerical integration
method.

Principal component analysis (PCA) based dimensional
reduction is applied to temperature measurements col-
lected from the cooling and the sidewall monitoring
systems. Resulting features denoted PCA(Tcw, TSidewall)
were three principal components used to retain 90 % of the
total dataset variability. The pseudocode steps presented
in Algorithm 2 describe the implemented method.

Algorithm 2 Dimension Reduction With PCA

Input: Measurements matrix, Explained variance limit
1. Compute the directions of maximal variance in
vector-valued data by performing PCA on the model
inputs matrix
while Total explained variance ≤ Explained variance
limit do

2. Compute the current principal component
explained variance.
3. Add current explained variance to total
explained variance.

4. Extract dimensionally reduced features matrix
Output: Dimensionally reduced features matrix

Implementation of Algorithm 2 is made using Scikit-learn
Python module (Pedregosa et al., 2011).

3.3 Network Architectures

A simplified version of a stacked LSTM architecture (Kim
et al., 2019) has been selected for the bath size model, and
a single LSTM is used for the temperature model. The
number of hidden nodes and layers need to be determined
empirically in accordance with the complexity of the pre-
dicting task. Hyperparameters such as the learning rate,
the optimization algorithm, and the number of epochs also
had to be determined for both models, to reach acceptable

performances in terms of error metric defined in Section
3.4. A weight dropout probability is adjusted for regular-
ization purposes to prevent co-adaptation (Hinton et al.,
2012). It avoids local minima convergence. Both models
are implemented and tested using PyTorch library (Paszke
et al., 2019).

3.4 Error Metric

Mean absolute percentage error (MAPE) is well adapted
to sequence-to-one bath size estimation. MAPE considers
the prediction error for each time step. Equation 1 details
the MAPE error metric. Differences between the process
measurement value yi at time step i and its predicted value
ŷi are averaged over the N samples of the dataset.

MAPE(y, ŷ) =
100%

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (1)

Averaged absolute percentage error (AMAPE) is well
adapted to sequence-to-sequence temperature prediction
model performance evaluation. AMAPE groups the error
of each predicted sequence at every time step into a single
performance value. Error metrics can be averaged over
forecasting horizon of multi-step forecasting applications
(Sangiorgio and Dercole, 2020). Equation 2 details the
computation of AMAPE error metric. Differences between
the process measurement value yi at time step i and its
predicted value, ŷi are averaged over the predicted horizon
H. The errors of all predicted sequences are then averaged
over the N samples of the dataset.

AMAPE(y, ŷ) =
1

N

N∑
i=1

100%

H

H∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2)

3.5 Data Preparation and Model Training Procedure

Computed features and raw process measurements are first
merged. Next, the merged dataset is segmented to several
windows of past measurement samples and features. For
the model inputs, each window is of size L, a predefined
hyperparameter adjusting the lookback period. For the
model outputs (labels), each window is of size H, the
prediction horizon length. Figure 2 summarizes the steps
of the dataset transformation.

Next, data is normalized using standardization as defined
in Equation 3 where µ is the mean and σ the standard
deviation computed over the time dimension.

yScaled
i =

yi − µ

σ
(3)

The dataset is split in subsets (70%-15%-15%). A cal-
ibration set used to train the ML model, a validation
set used for hyperparameter tuning, and a test set used
to evaluate the model performance. Using a grid search,
parameters and hyperparameters are iteratively adjusted
to ensure convergence and to achieve an acceptable level of
performance. The list of parameters and hyperparameters
that were modified for both models is:
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Fig. 2. Dataset transformation to include features in win-
dows used in model training

• Features and measurements selected as input
• Size of lookback sequences (L)
• Size of prediction horizon (H) [Sidewall temperature]
• Network architecture (single or stacked LSTM)
• Number of hidden nodes in LSTM cells
• Number of layers in LSTM cells
• Number of epochs
• Dropout probability
• Learning rate

The learning rate and the weight dropout probability are
manually set. Adam algorithm was used for optimization.

4. INDUSTRIAL CASE STUDY

Process measurements from a pilot-scale EAF operated
by Rio Tinto Iron and Titanium Quebec Operations were
collected during a three-day test campaign and used to
validate the proposed approach. A predicted horizon of
90 minutes was deemed to be adequate for the operators
monitoring the EAF sidewall temperature and for process
operation adjustments. Process operators also expressed
an interest in having access to an online bath size estima-
tion between consecutive tapping phases to ensure a safe
EAF operation.

The present section describes the collected EAF dataset
followed by a performance evaluation of a sidewall tem-
perature prediction model and of a bath size estimation
model, both developed using the collected dataset. Re-
sults of a single sidewall temperature prediction model
are presented. To predict the profile over space of sidewall
temperatures, the same methodology can be repeated for
different sidewall temperatures but is out of the scope of
the present work. Note that all process variable values are
normalized for the purpose of confidentiality.

4.1 Dataset Description

The dataset used in this work includes nine types of
process variables measured on the pilot-scale EAF and
listed in Table 1. Multiple sidewall temperatures and
cooling water temperatures are recorded at various heights
and depths using thermocouples. Estimated mass flows of
ore and reagents are available. Bath size is the result of
manual measurements performed at each tapping phase.

Fig. 3. Sidewall temperature prediction from feature input
∆TSidewall (best model in validation performances)

4.2 Preprocessing

The raw dataset is extracted from the plant process
historian, where compressed high frequency measurements
are stored. Raw process data are down sampled, using a
standard average pooling, to a constant sampling period of
15 minutes. Data are then standardized and split in three
sets as described in Section 3.5.

4.3 Sidewall Temperature Prediction Results Analysis

Figure 3 displays, in black, all the resampled points of a
single thermocouple located in the EAF sidewall. The best
model predictions are visible, in red, but only one in every
six prediction sequence is shown for clarity (1/6). Every
sequence was used to calculate the error metric AMAPE
displayed in the upper-left corner. Three AMAPE values
are shown corresponding to the calibration, validation and
test datasets.

Among the different process measurements and features
used in the training of the sidewall temperature predictor,
the best input was a single feature (∆TSidewall). A grid
search of range of 60, 90 and 120 minutes for the lookback
value L, of range 1 or 2 LSTM cells layers and of range
64, 128 and 256 for the number of hidden nodes was
conducted. The grid search led to an L optimal value of 90
minutes, a number of layers of 1 and a number of hidden
nodes of 128 for a single LSTM architecture.

Table 1. EAF process variables used for models
development

Signal name Symbol Unit

Sidewall temperatures TSidewall
◦C

Cooling water temperatures Tcw
◦C

Power input P kW
Ore Power Ratio OPR kg/kWh
Ore Reagent Ratio ORR kg/kg

Ore mass flow QOre kg/h
Reagent mass flow QReagents kg/h
Electrode position EL cm

Bath size B kg/cm
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A relative good fit of the calibration dataset was to be
expected given the low dynamics of the temperature but,
greater performances in validation than in calibration was
not. A possible explanation would be that the system
was less disturbed in the narrow validation time window.
Closer to stationary conditions sequences might be easier
to predict. The last dataset was the test set and the model
shown lesser performances trying to predict it.

Table 2 shows the AMAPE values obtained using the
selected hyperparameters values. For the test dataset, the
AMAPE value is 0.90 %. Thermocouple temperature had
been directly used as input and achieved an AMAPE of
4.02 %, in the best case, for the same test dataset.

Table 2. Sidewall temperature prediction im-
provement using ∆T as input

AMAPE (%)

Input Calibration Validation Test

TSidewall 2.68 2.44 4.02
∆TSidewall 0.28 0.26 0.90

Some observations in the test set were greater in value than
what was previously seen in the training. Moreover, a steep
descent was only seen at relatively lower temperatures,
which would explain the higher error for the test dataset.

The generally high accuracy obtained can be explained by
the fact that the actual temperature variability within the
predicted sequence of 90 minutes is relatively low. Slow
dynamic response of the process temperature to a change
in operation makes temperature measurements that are
close in time highly correlated. This important inertia is
visible in Figure 3.

4.4 Bath Size Estimation Results Analysis

Figure 4 shows measured bath size at the end of every
tapping phase in black. At the resampling frequency is
displayed the estimation of the bath size between tapping
phases in red. The error metric of the calibration, valida-
tion and test dataset is shown in the upper-left corner.
Note that error evaluation is only possible at tapping
phases.

Bath size estimator inputs that allowed the best perfor-
mances were a combination of process measurements and
manually extracted features (P , OPR, ORR, P Integrated,

QIntegrated
Ore , QIntegrated

Reagent , PCA(TCW , TSidewall)). A grid
search was performed over a range of 60, 90 and 120
minutes for the lookback value L, 1 or 2 LSTM cells layers
and a range of 32, 64, 128 and 256 for the number of hidden
nodes. The grid search led to an optimal value of L of 90
minutes, a number of layers of 1 and a number of hidden
nodes of 32 for a stacked LSTM architecture.

In validation and test set, some bath size measurements
were well modeled. However, it should be noted that high
values of bath size could not be well modeled for the given
dataset and training. Only one relatively high value is
present in the calibration set, visible at around 16 h in
Figure 4. More data could help cover a wider spectrum of
the system response in the calibration set.

Fig. 4. Bath size estimation from raw measurements and
features (best model)

5. CONCLUSION

Based on a three-day test campaign dataset of a pilot-scale
EAF operations, two preliminary models were developed.
First, a sequence-to-sequence predictor of 90 minutes of
sidewall temperature was trained using 90 minutes look-
back sequences of the feature (∆TSidewall). The lowest
value found for sidewall temperature AMAPE is 0.90 %
for the test dataset. Secondly, a sequence-to-one estimator
was developed using a combination of features and process

measurements (P , OPR, ORR, P Integrated, QIntegrated
Ore ,

QIntegrated
Reagent , PCA(Tcw, TSidewall)) to estimate the current

bath size value, between tapping phases based on 90
minutes of lookback sequences. The lowest value found
for the test dataset was a MAPE of 13.5 %. For both
models, the use of features based on process knowledge
and dimension reduction methods were pivotal to reach
these performances.

Future work will be done with a larger dataset that will be
available shortly. Additional data might help to mitigate
some noted flaws of the current best models. Methods
known to deal with small datasets like cross-validation,
virtual sample generation (VSG) (Li et al., 2021), data
augmentation (Heidrich et al., 2022) and transfer learning
techniques (López Santos et al., 2023) will be evaluated in
addition to the new dataset to improve performances.
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