
Enhanced Decision-Making in Gas Lift
Optimization through Deep Neural

Network-based Multi-Objective Approaches
and Feasible Operating Regions

Carine Menezes Rebello ∗ Johannes Jäschke ∗
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Abstract: Decision-making flexibility can be a key challenge in optimizing oil well production
through a gas lift process. In this work, we introduce a multi-objective optimization strategy
facilitated by deep neural networks (DNNs) as surrogate models to lessen the computational
burden. Together with a likelihood test, we build a feasible operating region (FOR) using points
from particle swarm optimization. Thus providing a tool for the refined process operation. We
also subdivide the pareto region into constraint-compliant sub-regions, amplifying operational
flexibility and identifying optimal settings. An optimality analysis is included to validate the
results and assure the reliability of the surrogate-based optimization. This framework generates
an operational map that can be instrumental for real-time process monitoring. Importantly,
these computational tools can support the quality of real-time decisions in system operation by
providing nuanced, data-driven insights into trade-offs and optimal conditions.

Keywords: Gas lift system, multi-objective optimization, surogate models, optimality, feasible
operation region.

1. INTRODUCTION

A multi-objective approach can be used to address the
complex challenges of allocating scarce resources, such as
injected gas, in gas lift systems for oil wells (Ray and
Sarker, 2006). Considering multiple objectives, such as
maximizing daily oil production and minimizing gas con-
sumption, enables operators to assess trade-offs between
divergent goals and find solutions that effectively opti-
mize oil production and available resources. It’s important
to note that multi-objective optimization can be com-
putationally expensive if based on first-principle models
(Guerra et al., 2022). Additionally, using a Pareto front
can be limiting for operators who need to understand
acceptable fluctuations in the system (Ranjan et al., 2015).

In the literature, some studies have explored how the
decision-making process in multi-objective solutions can
be significantly improved using the feasible operating
regions (FOR) concept. The FORs have been employed
to analyze operational variables and gain insights into the
system’s behavior (Rebello et al., 2022, 2021; Nogueira
et al., 2019). To advance this work, our study employs
a likelihood test to construct a FOR by recycling points
provided by swarm particle optimization. This enhances
unit operation flexibility and provides a new tool for
efficient decision-making (Nogueira et al., 2019). Thus, a
map of feasible operations for process operating variables
is a valuable tool that provides significant support in
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decision-making, playing a crucial role in monitoring and
effectively managing the process.

For gas lift systems specifically, multi-objective optimiza-
tion remains a relatively small area in the literature. In
this scenario, the operational mapping approach for multi-
objective optimization of the gas lift system generates
a refined operation map to tackle fluctuations in gas
availability. This map furnishes valuable insights into the
specific combinations of operational parameters that can
maximize multiple objectives.

This study uses artificial neural networks (ANN) as sur-
rogate models to capture the system’s behavior, taking
advantage of their ability to model complex and non-linear
relationships between variables (Azlan Hussain, 1999; Lin
et al., 1999; Ghiassi and Nangoy, 2009). The ANNs fa-
cilitate the optimization process by reducing computa-
tional effort and enabling the analysis of trade-offs between
different objectives with low computational cost (Rashid
et al., 2012; Ray and Sarker, 2007).

ANNs have become increasingly popular in optimization
tasks across various domains (Santana et al., 2023; Rebello
et al., 2021). However, these models can introduce artifi-
cial minima to the objective function landscape (Santana
et al., 2023). Such spurious minima can distort the true
topological features of the problem space. This emphasizes
the need for a post-optimization evaluation to validate the
optimality of results derived from ANNs. Here, we carry
out a post-optimization test to ensure that the results ob-
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Fig. 1. Experiment scheme of small-scale gas lift pilot unit.

tained from the surrogate-based optimization are reliable.
This can be listed as another contribution of this work.

The objective of this work is to perform multi-objective
optimization of a gas lift system to maximize oil produc-
tion and minimize gas injection at steady state (SS). The
main contributions consist of the following:

• Artificial neural networks are used as surrogate mod-
els to reduce the computational burden in solving
multi-objective optimization problems.

• An operational map is developed to assist decision-
making on operational parameters amid fluctuations
in gas availability.

• A post-optimization test is conducted to confirm the
reliability of the results of the ANN-based optimiza-
tion process.

2. METHODOLOGY

The methodological approach presented in this work be-
gins with synthetic data generated from the phenomeno-
logical process model. These data were employed to
identify the neural network’s (NN) architecture. Multi-
objective optimization was carried out using surrogate
models to construct the Pareto Front. The optimal operat-
ing variables from the Pareto Front were utilized to query
the phenomenological model and assess the consistency
of the developed optimization. Subsequently, the Fisher-
Snedecor test was employed to define a feasible operational
region close to the Pareto Front, which was later subdi-
vided into three subgroups to construct the operational
map, see Figure 2. The details are described below.

2.1 Process model

This work used a phenomenological model to simulate
underwater oil wells in a gas lift lab unit. The system
includes reservoir, well, and riser sections using water
and air instead of oil and gas. Valve adjustments mimic
reservoir behaviors, and flow meters are placed before the
reservoir valves; see Figure 1

The experimental prototype simulates wells using three
flexible hoses and a gas lift system injecting air after con-
trol valves CV101, CV102, and CV103. A control system
(FIC104, FIC105, and FIC106) regulates the injected gas
flow. The risers are represented by three vertical tubes with

pressure measured by gauges PI101, PI102, and PI103.
The liquid is recirculated to the reservoir, while air is
expelled. This study employs a validated first-principle
model of the gas lift process. The model used for this
system is based on Matias et al. (2022) adaptable model to
the system. It includes algebraic and differential equations
and considers hydrostatic pressure and friction-induced
pressure loss. In calculations, only two pressures are con-
sidered: one at the bottom and one at the top of the riser,
(Matias et al., 2022). This algorithm was developed in
MATLAB with CASADI to solve the system’s differential
algebraic equation (DAE).

2.2 Neural network identification

The development of artificial neural networks entails gath-
ering comprehensive and varied data that includes excep-
tions and boundary conditions. This study used synthetic
data from a validated gas lift model as the virtual plant
in a software-in-the-loop (SIL) approach.

Careful selection of input variables is important, e.g., to
avoid data discrepancies and overfitting. We use latin
hypercube sampling (LHS) to efficiently generate repre-
sentative data (Stein, 1987). The LHS was used to gen-
erate the sequence of experiments to be performed in the
model, thereby producing the database for training neural
networks. In this work, we chose the multiple-input single-
output (MISO) strategy due to its straightforward imple-
mentation and real-time neural network training capabili-
ties. The input variables of the neural network model are
the gas flow rates for three different wells (Qg,1, Qg,2, Qg,3)
and the output variables are the total liquid production
(wl,t) and the gas total injected (wg,t).

The data set was divided into three subsets according to
the following proportion: 75% for training data, 15% for
validation data, and 15% for test data.

The next step consists of defining the hyperparameters
of the neural network model. Traditional methods, such
as random and grid search for hyperparameter tuning,
are computationally expensive. An efficient alternative is
HYPERBAND, which minimizes the evaluation of hyper-
parameter combinations through random sampling and
early stopping (Li et al., 2018).

Before using HYPERBAND, it is necessary to define the
hyperparameters and their search spaces, including param-
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Fig. 2. Schematic diagram of the methodology proposed in this work.

eters such as learning rate and network architecture. This
study selected hyperparameters such as initial learning
rate, dense layer count, activation functions, and neuron
count per layer. Once the most suitable architecture for
training neural networks through hyperband was defined,
these were trained and validated with a batch size of 100
and an epoch number of 200. The model’s performance was
evaluated using the test data. The identification of neural
networks was carried out using the TensorFlow library,
implemented in Python, and the high-level library Keras.

2.3 Optimization problem

In this study, a multi-objective optimization approach is
employed to achieve a balance between the wl,t and the
wg,t at steady state.

The decision variable vector (u) comprises three key pro-
cess variables, specifically, the gas flow rates for three
distinct wells, Qg,1, Qg,2, Qg,3. The search range for
the decision variables is defined by the minimum limits
umin = [0, 0, 0] and maximum limits umax = [10, 10, 10].
To simulate various production conditions for each well,
CV101, CV102, and CV103, the valve openings character-
izing the reservoirs were defined as 80%, 60%, and 40%.
This necessitates that the optimizer can adjust the gas
flow rates to optimal for varying conditions in each well.

Mathematically, the multi-objective optimization problem
is formulated as follows:

{
min wg,t,

max wl,t.
(1)

Subject to

u = [umin,umax] (2)

Particle swarm optimization (PSO) addressed the multi-
objective optimization challenge. PSO stands out for its
ease of implementation and efficiency, presenting a linear
correlation between population size and solution time,
which makes it more computationally efficient than genetic

algorithms (GA) in similar scenarios (Kachitvichyanukul,
2012; Nogueira et al., 2019). Its simplicity, combined with
its effectiveness, makes it a suitable choice for optimization
tasks.

2.4 Feasible operation map

The Fisher-Snedecor extended test was applied to solve
the multiobjective optimization problem addressed in this
work. This test evaluates a population generated through
optimization, producing a feasible operational region map
close to the optimal Pareto front. This approach allows
for a more complete evaluation of the set of optimal
solutions and a better understanding of the variability in
near-optimal operating variables. The Equation 3 shows
the Fisher-Snedecor test applied to this study, with 95%
confidence level (α) (Rebello et al., 2022, 2021).

Li(θk,λk) ≤ Li(θ
∗
j ,λ

∗
j )+

(nknj)

(nk − nθ + ni)
Fα(nj , nk−nθ+1)

(3)

where L denotes the Lagrangian, θk represents the particle
vector in the Fisher test, θ∗

j signifies the optimal condition
vector, λ∗

j indicates the Lagrange multipliers for optimal
conditions, λk indicates the Lagrange multipliers for par-
ticles vetor, nk is the particle count, nθ is the count of
decision variables, ni represents the number of objective
functions, nj is the quantity of points on the Pareto front,
and F stands for the Fisher test.

This work used a clustering tool to create the operation
map to identify and group groups with similar character-
istics into categories or clusters. Thus, the clustering tech-
nique classified the points that passed Fisher’s test into
three sub-regions, and each sub-region prioritized different
objectives in the multi-objective optimization problem. It
is worth highlighting that the feasible operation map is a
tool capable of assisting in decision-making and can play
an important role in monitoring the process, providing
relevant information about the behavior of the system’s
optimal conditions. Additionally, clusters of operating re-
gions provide flexibility for operating processes.
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Fig. 3. Correlation heatmap for the input variables of the
surrogate models.

3. RESULTS

For data acquisition, a design of experiments (DoE) tool,
latin hypercube sampling (LHS), was used to promote
representative data sampling in a multidimensional space.
LHS generated a matrix of inputs to be used as experimen-
tal inputs (given to a virtual plant in the present work)
and generated output synthetic data in the steady state.
The correlation between the input variables that compose
the final dataset is then evaluated. Figure 3 displays a
heatmap depicting the low correlations, approaching zero.
This figure indicates a well-designed input space by LHS,
preventing data bias and undesirable training biases. Sub-
sequently, these perturbations were injected into the phe-
nomenological model, creating datasets constituting the
model’s output matrix.

After the DoE step, we proceeded to a data preparation
and segmentation phase into training, validation, and test
sets. This phase plays an essential role in ensuring the
effectiveness and reliability of neural network training. The
training data served as the basis for the neural networks to
learn the complex relationships between system variables.
Meanwhile, the validation set was crucial in selecting and
adjusting neural network architectures. HYPERBAND
was employed to find the optimal architecture for the
neural networks. Table 1 presents the search space this
optimizer uses to define the network structure. In the
same Table 1, it is possible to find the best configuration
identified for the surrogate model, representing the most
effective and suitable result for the system’s needs.

After defining the optimal neural network architecture, the
trained and validated. Figure 4 visually presents the model
predictions against the actual test data, showing its accu-
racy in capturing the system. The randomly distributed
points along the diagonal line indicate the model’s pre-
cision. The graph reveals close alignment between model
predictions and test data, with random residuals, validat-
ing the model’s ability to predict system behavior accu-
rately.

Continuing the discussion regarding the predictive capac-
ity of the surrogate models, Table 2 displays performance
metrics, including mean absolute error (MAE) and mean
squared error (MSE), indicating low error values for test
data. These results confirm successful model identification
and accurate predictions, showcasing model reliability in
tracking data.

(a) wg,t (b) wl,t

Fig. 4. Parity plots for the test dataset by training the
neural networks.

Fig. 5. Overlap of the Pareto front and region of feasible
operation for surrogate models and phenomenological
models (PM).

The solution for this optimization problem is represented
by a set of solutions known as the Pareto optimal front.
This Pareto front describes the best solutions simultane-
ously satisfying multiple objectives, highlighting the re-
lationship and possible compromises between these objec-
tives. Using the methodology proposed in this work, Figure
5, it was possible to obtain a Pareto front composed of
214 points, covering the liquid-produced flow and injected
gas, using 50 particles and 50 iterations defined using the
PSO algorithm. Furthermore, with the results obtained in
the optimization, we used the respective optimal operating
conditions at each point on the Pareto front to consult the
phenomenological model and validate the consistency of
optimization, as described in Figure 2. The overlap of the
optimization strategy solutions and the query of optimal
points from the phenomenological model is illustrated in
Figure 5. The overlapping demonstrates the consistency of
the surrogate-based solutions. Hence assuring the reliabil-
ity of the results obtained.

With the reliability ensured, we could proceed with the
next step, to establish a feasible region near the Pareto
optimal front. The main idea was to create a more flexible
region to assess potential fluctuations the process could
undergo without deviating from the desired operating con-
ditions. This FOR was constructed based on the Fisher-
Snedecor test. Figure 5 illustrates the feasible operating
region for surrogate model optimization. This approach
enables a comprehensive understanding of optimal oper-
ating conditions and the available margins of flexibility
for the process.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

305



Table 1. Search hyperspace configurations and best parameters.

Variable Hyperparameters Search space Best hyperparameters

w
g
,t

Initial learning rate 0.0001, 0.001, 0.01 0.001
Number of dense layers 1 - 4 3
Layer activation function relu, tanh, linear tanh, tanh, linear
Number of neurons per layer 20 to 200 with 10 step 170, 190, 1
Number of parameters per layer - 680,32490,191

w
l,
t

Initial learning rate 0.0001, 0.001, 0.01 0.001
Number of dense layers 1 - 4 3
Layer activation function relu, tanh, linear tanh, tanh, linear
Number of neurons per layer 20 to 200 with 10 step 170, 190, 1
Number of parameters per layer - 680,32490,191

Table 2. Final MAE and MSE to test dataset.

Variable MSE MAE

wg,t 4.26 · 10−7 5.83 · 10−4

wl,t 5.99 · 10−7 5.88 · 10−4

Fig. 6. Operation map obtained by clustering and Pareto
optimal front.

Given that transitioning between different points on the
Pareto front and the feasible operating region entails mak-
ing different trade-offs with the objectives addressed in the
optimization problem, we adopted clustering techniques
to subdivide the feasible region into three subregions.
The region 3 prioritizes the commitment to the injected
gas flow rate, thereby minimizing resource consumption.
Meanwhile, region 1 focuses more on production, and re-
gion 2 represents a balance between the two more extreme
regions. Figure 6 displays the Pareto optimal front and
the operating subregions derived from surrogate models.
These subregions were identified using clustering tech-
niques, where the Euclidean distance between the cen-
troids of each group was employed as a metric to assign
points to their respective subregions. The error bars calcu-
lated according to the average of each sub-region and 95%
confidence level show that the clusters are independent,
without overlapping.

It became possible to conduct the same analysis from the
perspective of operating variables by clustering to define
subgroups with different trade-offs concerning optimiza-
tion objectives. In Figure 7, the location of the optimal
points comprising the Pareto front is visible, allowing
for the simultaneous identification, for each well, of the
operating conditions that would result in higher oil pro-
duction or lower resource consumption. Note that clusters
related to higher oil flow rates will require larger quantities
of injected gas, which, in turn, entail associated energy

Fig. 7. Operation map obtained by clustering and Pareto
optimal front for decision variables.

consumption. Conversely, lower resource usage, associated
with reduced gas injections, may result in lower liquid
production. This operating map constitutes a valuable tool
for processes experiencing continuous fluctuations in oper-
ating conditions, demanding real-time decision-making..

By mapping a process’s feasible operating region, it be-
comes possible to understand the interactions among the
involved variables, which play an essential role in guiding
operational and monitoring decisions. The FOR assess-
ment and the corresponding operational variables repre-
sent a valuable tool for exploring the process’s operational
behavior, especially near the desired optimal conditions.
Through this analysis, we can identify which operational
variables significantly impact established objectives and
use them efficiently during execution. In particular, within
the context of this work, an increase in gas injection rates
is directly linked to higher well production, considering the
close correlation between well flow rates. Therefore, opera-
tions focusing on Region 1 may be particularly interesting
for process optimization. Applying the proposed method-
ology has securely identified the operational variables that
genuinely influence the optimal operational conditions of
the studied process.

Based on the FOR, the operator can select a point within
a given region, for example, operation region 1, and then
operate the process in the corresponding operating condi-
tions. As a feasible region exists, the process monitoring
can tolerate any process fluctuations within that region.
Hence, it is an alternative to the traditional optimization
strategies that consider a single point, and any deviations
from it are treated as a disturbance that should be re-
jected.
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4. CONCLUSION

In this work, we contribute to the field of multi-objective
optimization in gas lift systems, a critical component in
oil and gas production, by addressing the inherent trade-
offs between maximizing oil output and minimizing gas
usage. We reduced the computational burden commonly
associated with first-principle models in optimization tasks
by utilizing deep artificial neural networks as surrogate
models. The particle swarm optimization technique was
employed for its effectiveness in population-based opti-
mization scenarios.

To validate the optimization’s reliability, we engaged in
a post-optimization evaluation using a phenomenological
model, thereby confirming the consistency of the generated
solutions. The extensive data points obtained through
PSO enabled the construction of feasible operating regions,
determined through a likelihood test using the Fisher-
Snedecor criterion. These FORs were further dissected
into sub-regions via clustering techniques, each focusing
on different trade-offs between oil production and gas
consumption.

The proposed framework excels in mapping a nuanced
pareto front segmented into these operational sub-regions,
thus offering an advanced tool for real-time decision-
making in process monitoring. This multi-layered ap-
proach provides operators with a rich operating map that
delineates not just optimal conditions but also acceptable
fluctuations within those conditions. This transforms the
Pareto front into more adaptable, robust decision-making
tools vital for navigating the complexities and variabilities
inherent in oil and gas production.
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