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Abstract: Abnormal plant operations are caused by disturbances, process measurement faults,
or malfunctioning equipment. Steady-state or dynamic models of the process units are widely
available. Since continuous process plants operate under closed-loop control and available plant
data often covers a narrow operating window, the process model can generate normal operating
data over a wider window to train an autoencoder to represent that data. For deployment in
real-time, the plant model accepts process inputs from the plant and calculates outputs; one
instance of the autoencoder accepts data from the plant, and the other accepts data from the
model. The occurrence of a process fault leads to differences in the latent space variables of
the two instances of the autoencoder, which enables fault detection. Compared to a traditional
PCA-based fault detection framework, an autoencoder-based framework can model nonlinear
processes, which is not possible by using PCA or dynamic PCA.

Keywords: fault detection via autoencoder latent space, latent space differences between the
plant and the reference model, reference model-based fault detection.

1. INTRODUCTION

Fault detection (FD) based on plant data has become
preferred over the last two decades due to the large amount
of available process data that is captured by real-time
databases (Sun et al., 2020). Data-driven models of normal
operating conditions (NOCs) that are the basis for such
methods must properly represent the entire range of plant
operations. Due to the widely spread implementation of
model-based control, continuous process plants typically
operate in a narrow region representing the desired state.
Consequently, data-driven models of NOCs are only valid
in narrow regions, which limits the applicability of data-
driven FD methods.

There is also an abundance of first principles models
developed for process design or real-time monitoring and
optimization. Even though these models do not match the
plants perfectly, they represent well the behavior of the
process unit as it moves from one mode of operation to
another, i.e., first principles models capture the nonlinear
characteristics of the processes while typically exhibiting
minor errors in predicting the properties of the products
(e.g., for given operating conditions, the molar fraction
of the product impurities predicted by the model could
be 0.15 instead of 0.1 in the plant). In the plant, control
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loops maintain process variables at a desired value (e.g.,
0.1 molar fraction of impurities); if one specifies in the
model the same target value (molar fraction of impurities
to be 0.1), the model will adjust some manipulated variable
to achieve the desired output. This typically results in a
mismatch between the model and the plant. Despite the
mismatch, the model can be used to generate (somewhat
inaccurate) NOC data that can be used to develop a
reduced space model of the plant that can detect the
process faults in real-time, as introduced by this work.

2. REFERENCE MODEL BASED FAULT
DETECTION

2.1 Fault Detection Architecture

A fault detection algorithm should be accurate regardless
of the plant operating in one or more modes, even if the
plant behaves nonlinearly. Since the transition from one
mode to another takes place via setpoint changes, the
algorithm should not generate false positives if there are
setpoint changes. We assume that the reference model
exhibits the same behavior as the plant; in that case, as
the plant transitions from one mode to another, so will the
reference model. This ensures that the performance of the
proposed fault detection algorithm should not be impacted
by the changes in the plant operating conditions.
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If there are no faults occurring in the plant, the differ-
ences between the plant and the model should be zero or
constant if there is a plant-model mismatch. In reality,
there are always mismatches between the plant and the
model, resulting in variables measured in the plant be-
ing different from those computed by the model. Direct
comparison of process variables between the model and
the plant becomes cumbersome, and detection of faults
based on such a comparison, like FD via parity-equations
(Isermann, 2005), becomes nontrivial since the differences
may be due to the model mismatch or due to the faults or
both.

In order to use process models and avoid the above
difficulties, we introduce a fault detection architecture
where variables from the model (which reproduces plant
trends but has mismatches to the plant) and variables from
the plant are processed in real-time by the two instances
of the same autoencoder. The occurrence of faults is
detected via differences in latent variables between these
two instances of the autoencoder.

Fig. 1 depicts the proposed algorithm. The reference model
of a given process unit generates steady-state NOC data
over a wide feasible operating range, which includes all
anticipated modes of operation if the process can operate
in several modes. These data are then used to develop an
unsupervised reduced dimensionality model of the process
(URDM), e.g., PCA, KPCA, or autoencoders.

Fig. 1. Fault detection via differences in the autoencoder
latent spaces resulting from the model and plant
inputs.

In exploring autoassociative networks, Kramer (1992)
demonstrates the efficacy of leveraging steady-state re-
lationships among variables for fault detection in pro-
cesses that are not in steady-state. Consequently, when
the reference model has a dynamic component, utilizing
only steady-state data for the development of the URDM
becomes particularly pertinent. This work uses an autoen-
coder to represent the plant reduced model since it can
deal with linear and nonlinear processes (Bourlard and
Kabil, 2022).

2.2 Autoencoders

An autoencoder is an unsupervised learning model based
on artificial neural networks (ANNs) that takes as its
inputs all process variables that describe the state of
the process and its inputs and outputs. It consists of
(i) an encoder, which projects the input data into a
reduced dimensionality space (latent space), and (ii) a
decoder which reconstructs the autoencoder input data.
Each part (encoder and decoder) can have multiple layers,
as needed, to represent the process behavior. Hence, an
autoencoder reproduces the training data set (distribution
of the variables); it does not establish the functional
dependency between the process variables.

In order to determine the autoencoder parameters, the
model is trained using backpropagation to minimize the
squared error loss:

Ls = ∥x− f(g(x))∥22, (1)

where g and f stand for the encoder and decoder ANNs,
respectively.

Current implementations of the autoencoder architecture
include several regularization terms in the loss function
to avoid overfitting or to shape the latent space in a
particular manner (Bao et al., 2020). In this paper, in
alignment with Cacciarelli and Kulahci (2022), we adapted
the autoencoder loss function to ensure the generation of
pseudo-uncorrelated features in the latent space:

Ls = ∥x− f(g(x))∥22 + λ∥zzT − I∥2F , (2)

where z is the latent representation of x.

3. TEST BED

3.1 CSTR benchmark

The CSTR example studied by Yoon and MacGregor
(2001) has been selected as a benchmark to evaluate the
performance of the proposed fault detection approach. The
reactor (see Fig. 2) has two manipulated variables (the flow
of coolant and the flow of reactant) and two controlled
variables (temperature and concentration in the reactor).

Fig. 2. CSTR benchmark.
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The nonlinearity of the process has been assessed through
the Pearson correlation coefficient. Given that many pairs
in the correlation matrix exhibit relatively low correla-
tions, the selection of an autoencoder as the URDM seems
appropriate, as shown in Table 1.

Table 2 presents the parameters and normal operating
conditions of this reactor. Disturbances in the process arise
from the solvent’s flow and temperature, and the coolant’s
temperature, which are affected by measurement noise
and the tuning of flow controllers. Large changes in the
solvent flow (FS) have also been tested to evaluate FD
performance when the process moves to a new operating
region.

Training and testing data have been generated by changing
the manipulated variables over a wide range and capturing
the steady-state values. The autoencoder inputs are four
variables: flow of reactant (FA), flow of the coolant (FC),
reactor temperature (T ), and concentration of A in the
reactor (CA).

Table 1. Correlation matrix of manipulated
and controlled variables in the CSTR

FA FC CA T Mean SD

FA 1.00 0.20 0.09
FC 0.00 1.00 14.98 5.44
CA 0.97 0.18 1.00 1.30 0.44
T 0.82 -0.50 0.68 1.00 97.98 2.79

Table 2. CSTR Normal operating conditions

Variable Description Value

TC Coolant temperature 91.85 °C
Tf Feed temperature 96.85 °C
CAA A’s conc. in solute 19.1 kmol/m3

CAS A’s conc. in solvent 0.1 kmol/m3

FS Solvent flow 0.9 m3/min
FA Pure A flow 0.1 m3/min
FC Coolant flow 0.9 m3/min
CA A’s conc. in reactor 0.8 kmol/m3

T Reactor’s temp. 95.1 °C
α Catalyst activity 1.0
ϕ Fouling coefficient 1.0

3.2 Autoencoder architecture

The autoencoder structure (number of layers, number
of nodes, activation function, and other hyperparame-
ters) has been optimized using Optuna. This open-source
hyperparameter optimization framework uses the Tree-
Structure Parzen Estimator (TPE) (Bergstra et al., 2011)
to perform the hyperparameter tuning. The number of
nodes in each layer of the autoencoder used in this work
is shown in Fig. 3.

4. FAULT DETECTION - SLOWLY INCREASING
FAULTS

Slowly increasing faults in plant operation may be, e.g.,
reduction of heat transfer rates due to fouling or catalyst
deactivation due to decay. Such faults have been simulated
as ramps corresponding to the fault increasing from zero
to a target value over a given period.

Fig. 3. Autoencoder layers.

4.1 Fault detection when the model matches the plant

Fig. 4 shows the latent space responses of the plant and
the model when there is no mismatch between the model
and the plant. At time = 1,000 min, fouling starts taking
place in the reactor. The fouling increases steadily (ramp)
until time = 3,000 min. The latent space variables Z1 and
Z2 corresponding to the plant and the model have the
same value during the normal operation. Once the fault
occurs, the plant latent variables decrease while the model
latent variables remain unchanged. Fig. 4 also shows the
differences

δi = Zm
i − Zp

i , (3)

where Zm
i and Zp

i represent the ith latent variables of the
reference model and plant, respectively. It can be seen that
these differences equal zero as long as the operation is
normal. Once a fault occurs, the differences are no longer
equal to zero.

The occurrence of a fault manifests itself in the latent
space differences departing from zero. The differences
remain different from zero as long as the fault is present.
If a plot of the differences is made available to a plant
operator, the operator will be able to detect visually an
occurrence of a fault and track its progress, which in
turn will lead to improvements in the human/machine
interfaces for fault detection.

If there is a significant level of noise, the latent space
variables can be filtered so that the visual recognition of
the trends is easier. Fig. 5 shows data from Fig. 4 after
applying a simple moving average filter whose window size
equals 40 observations.

4.2 Fault detection when the model does not match the
plant

Process models built for the design or monitoring of plant
operations are never completely accurate due to model
parameters being estimated from engineering knowledge or
plant data. For instance, a heat transfer coefficient varies
with the flow of the cooling media through a reactor jacket
or because there may be some fouling on the heat transfer
wall. Fig. 6 shows an example where the heat transfer
coefficient in the plant is 10% higher than in the model.
At time = 1,000 min, fouling starts taking place in the
reactor. The fouling increases steadily (ramp) until time
= 3,000 min.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

632



Fig. 4. Perfect model: The faults cause latent space differ-
ences to depart from zero.

Fig. 5. Filtering of latent space variables leads to fault
occurrences being easily noticeable via changes in
their differences.

The latent space variables exhibit a pattern similar to
the case when the model matches the plant perfectly. The
magnitude of the differences is somewhat smaller, which
can be discerned by comparing the mean values in Fig. 5
and Fig. 7.

In order to test fault detection capabilities under different
errors in model parameters, several tests have been carried
out at different levels of mismatch between the plant and
the model. For example, when the actual heat transfer
coefficient in the plant is larger (smaller) than the heat
transfer coefficient in the model, the differences (as defined
by Eq. 3) have a negative (positive) bias under the normal
operating conditions as shown in Fig. 8.

Fig. 9 shows latent space differences at Up = Um, Up =
1.1Um and Up = 0.85Um after filtering the latent variables
and adjusting the bias so that the differences are zero
under NOCs.

Fig. 6. Imperfect model: under NOC, the latent space dif-
ferences are not zero; the faults change the magnitude
of the differences.

Fig. 7. Imperfect model: adjusting the bias so that under
NOCs the differences are zero.

Notice that when Up is greater than Um, then the change
of difference in the first latent variable δ1 is greater than
the change of difference in the second latent variable δ2,
while opposite is true if Up is less than Um. This opens a
possibility that the behavior of the differences may offer
insight into errors in the model parameters.

5. FAULT DETECTION – STEP CHANGE FAULTS

Examples of step change faults include e.g. an instrument
failure or a catalyst poisoning. Presented here are the
results of the reactor temperature sensor step change in
its reading by 0.5 °C.

Fig. 10 shows the latent space variables and their differ-
ences for Up = 1.1Um. Fig. 11 illustrates the latent spaces
differences at Up = Um), Up = 1.1Um) and Up = 0.85Um.
The fault occurs at time = 1,000 min. These differences,
filtered and bias adjusted so that under NOCs they are
zero, are depicted in Fig. 12.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

633



Fig. 8. Imperfect model: heat transfer fouling; latent
space differences at different levels of heat transfer
coefficient mismatch

Fig. 9. Imperfect model: heat transfer fouling; latent space
differences after filtering and bias adjustments.

Analogously to the case when fault was due to the heat
transfer fouling, when Up is greater than Um, the change
of difference δ1 in the first latent variable is greater than
the change of difference in the second latent variable δ2,
while opposite is true if Up is less than Um.

6. NUMERICAL DETECTION OF THE FAULT
OCCURANCE

In order to simplify fault detection, we calculate a single
anomaly score using the squared Euclidean distance, which
encapsulates the latent space differences between the plant
and its reference model:

η(j) =
∑
i

(Zm
i (j)− Zp

i (j))
2, (4)

where Zm
i (j) and Zp

i (j) represent the ith latent variables
of the reference model and plant at the jth observation,
respectively.

Fig. 10. Imperfect model: temperature sensor failure.

To determine the upper control limit for the anomaly
score, we use Kernel Density Estimation (KDE) to esti-
mate the distribution of the score under normal operation,
and then we set the upper control limit as the 0.9999
quantile of the estimated density. In plant operations
where process noise is prevalent, outliers not necessarily
related to faulty operation can be labeled as one. Using
this statistical approach to establish the anomaly score
control limits can lead to such mislabeling. Therefore, it is
a common practice to raise the fault alarm once there are
N consecutive anomaly scores above the control limit. In
this study, we define this tolerance as fifteen consecutive
observations, which correspond to 7.5 minutes.

To evaluate the efficacy of the anomaly score, we computed
a ratio named ψ, which is defined as follows:

ψi = |Zp
i (td)− µp

i )|/3σ
p
i . (5)

In eq. 5, Zp
i (td) represents the value of the ith latent

variable of the plant at the detection time td. The symbols
µp
i and σp

i denote, respectively, the mean and standard de-
viation of the ith latent variable of the plant under normal
operating conditions. This ratio assesses the effectiveness
of the Euclidean-based anomaly score (η) in detecting
anomalous behavior compared to tracking individual vari-
able differences. A ratio value below 1.0 indicates that the
fault was detected before either of the first two latent
variables (Z1 and Z1) deviated beyond three standard
deviations (3σ) from their normal operation distribution.
Table 3 displays this metric for various cases, alongside
their respective fault detection times. Sensor bias fault

Table 3. Fault detection times and ψi ratios
corresponding to the cases addressed in this

study.

Case Fault td [min] ψ1 ψ2

No mismatch fouling 102.5 0.3959 0.1302
No mismatch sensor bias 8.5 3.6286 3.5323
Up = 1.1 · Um fouling 150.5 0.4317 0.5363
Up = 1.1 · Um sensor bias 9.0 4.1459 3.1403
Up = 0.85 · Um fouling 442.5 7.6475 4.3712
Up = 0.85 · Um sensor bias 12.5 30.5024 10.5415
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Fig. 11. Imperfect model: temperature sensor failure; la-
tent space differences at different levels of heat trans-
fer coefficient mismatch.

(step change) exhibits high values of ψi since the fault
is declared only if 15 consecutive readings are above the
tolerance, during which period the step fault consequences
become very pronounced.

Results in Table 3 show that even though the fault de-
tection times increase if there is a significant plant-model
mismatch, the proposed fault detection methodology per-
forms well under plant-model mismatch.

7. CONCLUSIONS

The fault detection architecture presented in this work
leverages process models developed by using commercial
modelling and simulation software. The parallel configu-
ration (simulation model-plant) can accommodate known
events, e.g. changes to the setpoints of the reactor temper-
ature or concentration, since such changes will occur in the
plant and in the reference model, thereby ensuring minimal
discrepancies between the reference model predictions and
the plant observations.

The method is particularly effective for slowly increasing
faults (e.g. fouling); if there is no plant-model mismatch,
the detection occurs at low values of the signal/noise ratio
(eq. 5). In scenarios involving abrupt (step) faults, the
proposed method performance remains consistently high
across different levels of mismatch. In addition, it is shown
that even if the plant model has significant mismatches
relative to the plant, an autoencoder model trained on
data generated from an imperfect model can detect the
fault-induced latent space differences between the model
and the plant.

The patterns of the latent space differences indicate that
they can be used to determine the nature of the parameter
mismatch between the model and the plant. This hypoth-
esis needs to be further explored and verified, which is a
part of our current research.

Since the methodology performs well under plant-model
mismatch, there is a possibility that one can develop
autoencoder representations for typical equipment types

Fig. 12. Imperfect model: temperature sensor failure; la-
tent space differences, filtered and bias adjusted, at
different levels of heat transfer coefficient mismatch.

(e.g. two product distillation tower, countercurrent heat
exchanger, plug flow reactor, CSTR, etc.) and use them
for fault detection via the proposed architecture. This is
also the subject of our current research.
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