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Abstract: This work presents a Bayesian approach to evaluating the uncertainty of physics-
informed neural network models. The proposed strategy uses a hybrid methodology for training
and assessing the uncertainty of model parameters. In the first part of the training, a gradient-
based algorithm is used to train and obtain the weights. In the second stage, a Markov Chain
Monte Carlo algorithm is used to evaluate the uncertainty of the network weights. The developed
method was used to solve Burger’s equation, and the results show that it was possible to
characterize the uncertainty region of the PINNs’ prediction.
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1. INTRODUCTION

The development of computing resources allied to the
growth of data availability provided significant advances
in new research fields, such as Scientific Machine Learning
(SciML). It boosted studies aimed at developing Machine
Learning (ML) tools in the most varied areas of knowledge
(Sengupta, 2013; Sarker, 2021). In this context, data-
driven modeling contributes to in-depth analysis of com-
plex processes (George, 2021). However, using machine
learning techniques to build surrogate models can become
prohibitive due to the volume of data needed and the cost
associated with the experimental acquisition (Najafabadi
et al., 2015). In this sense, small data sets can lead to the
generation of underspecified models, which are not robust
and are unreliable for real systems.

On the other hand, physical, chemical, and biological laws
and correlations can provide valuable information about
the dynamics of systems and, when combined with data,
allow the construction of models with an excellent capac-
ity for representing systems (Raissi et al., 2017a,b). An
example of such a strategy is the physics-informed neu-
ral networks (PINNs). The PINNs are supervised learn-
ing algorithms that combine data and phenomenological
laws described by nonlinear partial differential equations
(PDEs) (Huang and Wang, 2023). In summary, this tool
aims to encode fundamental laws of physics and knowl-
edge already consolidated in the scientific environment
in learning algorithms to perform more reliable model-
ing. Their reliability is inherited from physics knowledge.
PINNs perform well since they restrict the set of possible
solutions and direct the algorithm to an optimized solution
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(Huang and Wang, 2023). On the other hand, PINNs have
restricted applications in scenarios with noisy data, which
requires a robust approach capable of quantifying the para-
metric uncertainty (Yang et al., 2021). The quantification
of uncertainty, in this case, still favors the development
of efficient online learning strategies or adaptive sampling
(Meng et al., 2022).

Several approaches to uncertainty quantification have been
explored recently in the literature for PDE models (Li
and Marzouk, 2014; Yan and Zhou, 2019a; Zhang and
Garikipati, 2021; Bharadwaja et al., 2022) and others
for surrogate models from data (Yan and Zhou, 2019b;
Zhu et al., 2019). However, only a few recent works
present uncertainty calculation associated with the PINNs
approach, a topic still little explored in the literature.

Yang et al. (2020) quantify the parametric uncertainty of
physics-informed generative adversarial networks. Zhang
et al. (2019) addresses the polynomial chaos and dropout
expressions to define the model uncertainty. Yang et al.
(2021) proposed a Bayesian physics-informed neural net-
work (B-PINN) to solve PDEs with noisy data, and the
uncertainty quantification through the Hamiltonian Monte
Carlo (HMC) methodology, the tool is effective for sce-
narios with high noise and avoids overfitting. Meng et al.
(2022) developed a new Bayesian framework for neural
networks that can extrapolate space-time from historical
data and quantify uncertainty arising from noisy and ir-
regular data from physical problems. In this work, the
authors show that the tool can learn flexible, functional
priors and can be extended to big data problems. Another
approach can be found in Bai et al. (2021), who propose
using a Lavengin Markov Chain Monte Carlo (LMCMC)
algorithm that uses the trained PINNs model and noise
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Fig. 1. Diagram of the PINNs-MCMC methodology.

measurement agents to obtain the posterior distribution
of unknown parameters.

This article evaluates the uncertainty of the solution of
partial differential equations using the Physics Informed
Neural Network through Bayesian inference. It begins with
a basic definition of PINNs, based on Bayesian formalism,
and presents the results of the numerical solution of a PDE
system.

2. METHODOLOGY

The methodology used in this work is based on the PINN
training and uncertainty assessment. The first step is to
train a PINN model using a standard algorithm to find
a region of probable solution. The second step evaluates
the uncertainty of the parameters found in the first step.
Fig. 1 presents the overall description of the methodology
proposed here. The following items will describe each step
of the proposed method in detail.

2.1 PINNs definitions

PINNs are an artificial intelligence technique that has
shown promise in solving partial differential equations of
direct and inverse problems (Cuomo et al., 2022). This
technique has been applied to solve physical and engineer-
ing problems, such as fluid mechanics (Cai et al., 2021a),
among others (Sahli Costabal et al., 2020; Cai et al.,
2021b; Haghighat et al., 2021). One of the advantages of
using PINNs is the great capacity for extrapolation, which
differs significantly from traditional data-driven models.
This characteristic comes from the network learning being
directed towards the problem’s solution and not fitting the
data. In other words, PINNs are artificial intelligence mod-
els that have learned to solve a rigorous model numerically.
Hence, their great capacity for extrapolation (Yang et al.,
2021).
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To define the PINNs approach, consider a partial differen-
tial equation (PDE) system is defined mathematically Cai
et al. (2021a):

flx,t,4,0,0,004,...,A) =0, ze€Qte[0,T], (1)
w(z,t9) = go(x), x € Q, (2)
a(x,t) = gr(t), =€dQ,tel0,T], (3)

In which f is the residual of the PDE, Ox@ and 0;u are
the differential operators of f, x € R? is the spatial
coordinate, and ¢ is the time. The parameters of the PDE
system are A. The initial and boundary conditions are
represented by go(x) and gr(t), respectively. Q and 9
represent the spatial and boundary domains.

In Fig. 1, the loss function is obtained using the Neural
Network’s derivatives, residual, and for the boundary
and initial conditions in the PDE system. Then, the
loss function is composed of three other losses and the
respective weights.

L=wsLy+ wpeLpe +wicLlic (4)
The first is the loss of the residual that is obtained by:

1S rn\ [
£y =5, 2|1 (il )

Ny is the number of points sorted inside the spatial domain
Q. On the other hand, the second loss is written for the
boundary and initial condition by:

1 Ny
Ebc = Nbc Z:ZI \g(u,x,t)|2 (6)
1 e 2
Lie =5 > fu (28, 0) — ulf| (7)
ic

Thus, to find the solution to the PDE problem, it is
necessary to minimize the loss function using the weights
of the neural network layers as a decision variable. This
solution can be performed through algorithms based on
gradient descent.

2.2 Bayesian approach for PINNs uncertainty assessment

Bayesian inference is a powerful tool that solves different
inference and statistical problems. It is based initially
on Bayes’ Theorem, which describes the probability of
occurrence of an event based on existing prior knowledge.
In this sense, Bayesian inference can be used to obtain the
later PDF (hy) of a set of 6 parameters, using information
from experimental data (D) and existing information (I)
(Gelman et al., 2013).

Considering the case of PINNs; it is proposed that the joint
PDF of the parameters of the PINNs model be obtained
through the Bayesian approach. In this sense, the problem
can be written as (Gamerman and Lopes, 2006):

WO | D,I)x L(6 | D)h(6 | I) (4)
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Where L is the likelihood, which is the relationship be-
tween the data and the model parameters, 1 are random
values of 6.

Specifically, data are not used to train the network in
building PINN models, so using a least-squares likelihood
function is impossible. On the other hand, the loss function
(4) presents a good relationship capable of functioning as
a link between the network parameters and a model. In
this way, in possession of the likelihood, it is possible to
obtain the posterior marginal PDF through the solution
of the following integral (Gamerman and Lopes, 2006):

o (61 D.1) x [ LO| DO Dy (5)

In which 6,,_; is the 6 vector without i-th element. With
the posterior marginal, it is possible to obtain the most
probable value 6 and the variance Vygy of € by:

6= /Oo nh(0 | D, 1)do (6)
Vo= [ T - 0T | D.Dd (7

The way to find a solution to PINN problems is by using
numerical solutions through Monte Carlo samplers. Thus,
this paper proposes using the Markov Chain Monte Carlo
(MCMC) algorithm proposed by Haario et al. (2001, 2006)
to build the Markov chain and get the posterior marginal
PDF.

3. RESULTS
3.1 Case study

In this work, the case study is the Burgers’ equation. This
equation represents the nonlinear wave motion and the
linear diffusion. Also, it is the simplest model for analyzing
the effect of nonlinear advection and diffusion interaction.
Consider the PDE problem composed of Burger’s equation
with boundary conditions of the Dirichlet type (Raissi
et al., 2017a):

Ou, 0u 0010%

o "oz w0 0
(8)
u(0,x) = —sin(rz), (9)

u(t,—1) = u(t,1) = 0. (10)

This paper uses a network containing nine fully connected
layers and 20 neurons with an activation function tanh.
The first layer corresponds to inputs = and ¢, and the last
layer has only one output related to u(x,t). The network
has 3021 trainable parameters.

In building PINNS, selecting points to impose the PDE so-
lution is necessary. Thus, 25 points were set equally spaced

for the boundary conditions between u(x = —1,t) = 0 and
u(x = 1,t) = 0. 50 initial conditions were equally spaced
at u(z,t = 0) = —sin(piz). 10,000 quasirandom points

of internal collocations were used to impose the neural
network output to adhere to the output of the PDF.
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The solution to the proposed inference problem was car-
ried out in two steps. The first step was to solve the
optimization problem using the Limited-memory BFGS
method. This first step is necessary to speed up the con-
vergence process and to an optimal solution used as an
initial estimate for the second step of the solution through
the MCMC algorithm. Fig. 2 presents a two-dimensional
comparison between the prediction made by PINNs and
the Burger equation’s numerical solution. The figure also
presents the confidence region of the PINN prediction for
a 95% coverage probability. This region was generated by
calculating the prediction with PINNs considering 1E4
random samples of parameters from the posterior PDF
hg. Also, Fig. 2 presents the error calculated between the
curves obtained through the following:

_ |UPINN _Unum| (11)

|unum |

It is considered, however, that the evaluation of the output
predicted by a model constructed from the Bayesian infer-
ence needs to consider the different trajectories projected
from the parameters of the PDF. With the different tra-
jectories in hand, the most probable value (median) and
the upper and lower limits of the prediction are calculated,
as shown in Fig. 1.

Burger’s equation is a multivariable function with two
dependent variables, t, and x In this sense, the solution can
be represented in surface form, as shown in Fig. 3. In this
figure, the most probable value of the solution (median) is
represented by the surface in red. In turn, the blue surfaces
represent the regions of uncertainty. By comparing Fig. 2
and 3, it is possible to observe that when t > 0.4, the
uncertainty reduces, and the two surfaces converge to the
mean values. In this way, it is possible to infer that the
PINNs can replicate the expected behavior of the solved
PDE model.

In general, a model’s parameters are uncertain, and they
must be evaluated. PINN models are no different. Al-
though few studies address this issue directly, the pre-
sented results show that it is possible to assess the para-
metric uncertainty of these models through Bayesian in-
ference.

rel-1, ﬂ;he analysis of training convergence can be performed

based on the behavior of the loss function. Fig. 4 shows
the first 500 loss assessments during the first stage of the
training. It is possible to observe that the LBFGS algo-
rithm produces a solution that monotonically decreases
towards a minimum point. However, it is necessary to point
out that in this step, the algorithm tested the objective
function 30372 times before reaching the tolerance of 1E-
5. The final loss value in this step was 2.058E-6.

The MCMC was configured to build a later PDF with
1E5 samples in the uncertainty assessment step. This
means the accounting does not consider rejected samples
during the chain evolution. Fig. 5 shows a histogram of the
loss values obtained during this process step. The graph
shows that the loss distribution has a bimodal behavior,
which indicates that the loss function possibly has two
equilibrium points for the parameter values drawn by
the MCMC. On the other hand, this feature does not
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Fig. 2. Prediction of PINNs and coverage regions compared with the numerical solution.
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Fig. 3. Prediction surface of PINNs and coverage surface regions.

significantly interfere with the model’s predictive ability, ogy is based on a hybrid method to obtain the weights of

as seen in Fig. 2 and 3. PINNs. Then, the LGBFS method was used to obtain an
initial solution to the problem, followed by the MCMC
4. CONCLUSION method used to analyze the uncertainty of the weights

of PINNs. The results indicated that the methodology

This paper presented a methodology for evaluating the used.vvas able to evaluate'the parametric uncertainty fmd
parametric uncertainty of PINNs models. The methodol- — obtain the PDF of the weights, and, through propagation,
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Fig. 4. First 500 training loss value during the solution
with the LBFGS algorithm.
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Fig. 5. Training loss value histogram obtained by the
MCMC algorithm..

obtain a confidence region for the prediction of the PINNs
model. Therefore, the main contribution of this work is
to show that, through Bayesian inference, it is possible
to understand how the parametric uncertainty of PINNs
models affects the model’s predictive capacity. This pa-
per’s results allow directing efforts toward using PINNs in
general engineering applications where uncertainty is an
important factor, such as model building and validation,
robust control, and optimization.

ACKNOWLEDGEMENTS

The present work contributes to completing a sub-project
at SUBPRO, a research-based innovation center within
Subsea Production and Processing at the Norwegian Uni-
versity of Science and Technology. The authors would like
to express their gratitude for the financial support from
SUBPRO, funded by the Research Council of Norway
through grant number 237893, major industry partners,
and NTNU.

REFERENCES

Bai, H., Bhar, K., George, J., and Busart, C. (2021).
Distributed bayesian parameter inference for physics-
informed neural networks. In 2021 60th IEEE Con-

658

ference on Decision and Control (CDC). IEEE. doi:
10.1109/cdc45484.2021. 9683353.

Bharadwaja, B.V.S.S., Nabian, M.A., Sharma, B.,
Choudhry, S., and Alankar, A. (2022).  Physics-
informed machine learning and uncertainty quan-
tification for mechanics of heterogeneous materials.
Integrating Materials and Manufacturing Innovation,
11(4), 607-627. doi:10.1007/s40192-022-00283-2. URL
http://dx.doi.org/10.1007/s40192-022-00283-2.

Cai, S., Mao, Z., Wang, Z., Yin, M., and
Karniadakis, G.E. (2021a). Physics-informed
neural networks (pinns) for fluid mechanics:
a review. Acta  Mechanica  Sinica, 37(12),
1727-1738. doi:10.1007 /s10409-021-01148-1. URL
http://dx.doi.org/10.1007/s10409-021-01148-1.

Cai, S., Wang, Z., Wang, S., Perdikaris, P., and Kar-
niadakis, G.E. (2021b). Physics-informed neural
networks for heat transfer problems. Journal of
Heat Transfer, 143(6). doi:10.1115/1.4050542. URL
http://dx.doi.org/10.1115/1.4050542.

Cuomo, S., Di Cola, V.S., Giampaolo,
G., Raissi, M., and Piccialli, F. (2022).

F., Rozza,
Scientific

machine learning through physics—informed
neural networks: Where we are and what’s
next. Journal  of  Scientific ~ Computing,
92(3). d0i:10.1007 /s10915-022-01939-z. URL

http://dx.doi.org/10.1007/s10915-022-01939~-z.

Gamerman, D. and Lopes, H.F. (2006). Markov Chain
Monte Carlo: Stochastic Simulation for Bayesian Infer-
ence. Chapman and Hall/CRC, 2 edition.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Ve-
htari, A., and Rubin, D.B. (2013). Bayesian Data Anal-
ysis Third edition (with errors fized as of 13 February
2020). CRC Press.

George, J. (2021). Distributed Bayesian Parameter Infer-
ence for Physics-Informed Neural Networks. IEEE.

Haario, H., Laine, M., Mira, A., and Saks-
man, E. (2006). Dram: Efficient adaptive
memec. Statistics  and ~ Computing, 16(4),
339-354. doi:10.1007/s11222-006-9438-0. URL

http://dx.doi.org/10.1007/s11222-006-9438-0.

Haario, H., Saksman, E., and Tamminen, J.
(2001). An adaptive metropolis algorithm.
Bernoulli, 7(2), 223.  doi:10.2307/3318737. URL
http://dx.doi.org/10.2307/3318737.

Haghighat, E., Raissi, M., Moure, A., Gomez, H.,
and Juanes, R. (2021). A physics-informed deep
learning framework for inversion and surrogate
modeling in solid mechanics. Computer Methods
i  Applied Mechanics and  Engineering, 379,
113741. doi:10.1016/j.cma.2021.113741. URL
http://dx.doi.org/10.1016/j.cma.2021.113741.

Huang, B. and Wang, J. (2023).  Applications of
physics-informed neural networks in power systems
- a review. IEEFE Transactions on Power Systems,
38(1), 572-588. doi:10.1109/tpwrs.2022.3162473. URL
http://dx.doi.org/10.1109/TPWRS.2022.3162473.

Li, J. and Marzouk, Y.M. (2014). Adaptive construc-
tion of surrogates for the bayesian solution of inverse
problems.  SIAM Journal on Scientific Computing,
36(3), A1163-A1186. doi:10.1137/130938189. URL
http://dx.doi.org/10.1137/130938189.



2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

Meng, X., Yang, L., Mao, Z., del Aguila Ferran-
dis, J., and Karniadakis, G.E. (2022). Learn-
ing functional priors and posteriors from data
and physics. Journal of Computational Physics,
457, 111073.  doi:10.1016/j.jcp.2022.111073.  URL
http://dx.doi.org/10.1016/j.jcp.2022.111073.

Najafabadi, M.M., Villanustre, F., Khoshgoftaar,
T.M., Seliya, N., Wald, R., and Muharemagic,
E. (2015). Deep learning applications and
challenges in big data analytics. Journal of Big
Data, 2(1).  doi:10.1186/s40537-014-0007-7.  URL
http://dx.doi.org/10.1186/s40537-014-0007-7.

Raissi, M., Perdikaris, P., and Karniadakis, G.E.
(2017a).  Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential
equations.  doi:10.48550/ARXIV.1711.10561. URL
https://arxiv.org/abs/1711.10561.

Raissi, M., Perdikaris, P., and Karniadakis, G.E.
(2017b).  Physics informed deep learning (part ii):

Data-driven discovery of nonlinear partial differential
equations.  doi:10.48550/ARXIV.1711.10566. URL
https://arxiv.org/abs/1711.10566.

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado,
D.E., and Kuhl, E. (2020). Physics-informed neu-
ral networks for cardiac activation mapping. Fron-
tiers in Physics, 8. doi:10.3389/fphy.2020.00042. URL
http://dx.doi.org/10.3389/fphy.2020.00042.

Sarker, I.H. (2021). Data science and analytics: An
overview from data-driven smart computing, decision-
making and applications perspective. SN Computer
Science, 2(5). doi:10.1007/s42979-021-00765-8. URL
http://dx.doi.org/10.1007/s42979-021-00765-8.

Sengupta, P.P. (2013). Intelligent platforms for disease
assessment. JACC: Cardiovascular Imaging, 6(11),
1206-1211. doi:10.1016/j.jcmg.2013.09.003. URL
http://dx.doi.org/10.1016/j.jcmg.2013.09.003.

Yan, L. and Zhou, T. (2019a). Adaptive multi-fidelity
polynomial chaos approach to bayesian inference in
inverse problems. Journal of Computational Physics,
381, 110-128.  doi:10.1016/j.jcp.2018.12.025. URL
http://dx.doi.org/10.1016/j.jcp.2018.12.025.

Yan, L. and Zhou, T. (2019b). An adaptive
surrogate  modeling based on deep neural
networks for large-scale bayesian inverse prob-
lems. doi:10.48550/ARXIV.1911.08926. URL

https://arxiv.org/abs/1911.08926.

Yang, L., Meng, X., and Karniadakis, G.E. (2021).
B-pinns: Bayesian physics-informed neural networks
for forward and inverse pde problems with noisy
data. Journal of Computational Physics, 425,
109913. doi:10.1016/j.jcp.2020.109913. URL
http://dx.doi.org/10.1016/j.jcp.2020.109913.

Yang, L., Zhang, D., and Karniadakis, G.E.
(2020). Physics-informed generative adversarial
networks for stochastic differential  equations.
SIAM  Journal on Scientific Computing, 42(1),
A292-A317. doi:10.1137/18m12254009. URL
http://dx.doi.org/10.1137/18M1225409.

Zhang, D., Lu, L., Guo, L., and Karniadakis, G.E. (2019).
Quantifying total uncertainty in physics-informed neu-
ral networks for solving forward and inverse stochas-
tic problems. Journal of Computational Physics,
397, 108850.  doi:10.1016/j.jcp.2019.07.048.  URL

659

http://dx.doi.org/10.1016/j.jcp.2019.07.048.

Zhang, X. and Garikipati, K. (2021). Bayesian neural
networks for weak solution of pdes with uncertainty
quantification. doi:10.48550/ARXIV.2101.04879. URL
https://arxiv.org/abs/2101.04879.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., and
Perdikaris, P. (2019). Physics-constrained deep
learning for high-dimensional surrogate modeling

and uncertainty quantification without labeled
data. Journal of Computational Physics, 394,
56-81. doi:10.1016/j.jcp.2019.05.024. URL

http://dx.doi.org/10.1016/j.jcp.2019.05.024.



