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Abstract: This study presents a strategy for multi-step-ahead identification of robust machine
learning (ML). Hence, we focus on the disparity between standard single-step prediction models
and the requirement for multi-step forecasting, which is crucial for Model Predictive and
Optimization schemes. This work explores how the proposed muti-step-ahead strategy can
diminish the prediction uncertainty compared to the traditional single-step approach. The
paper evaluates the multi-step identification with uncertainty assessment in different model
architectures, including those based on recursive neural networks. A key aspect of the analysis
is the application of these models to a polymerization reactor, a standard benchmark in
algorithm evaluation. The results reveal that multi-step recursive models significantly reduce
prediction uncertainty compared to single-step models, particularly when feedback mechanisms
are involved. This study highlights the advantages of multi-step models and their potential
benefits for control and optimization schemes.

Keywords: Machine Learning Assisted Modeling; Estimation and Robust Estimation; Model
Predictive Control.

1. INTRODUCTION

Dynamic modeling of chemical processes is usually related
to control and optimization schemes. Hence, it is an
important topic for the proper and efficient operation of
these processes. On the other hand, using rigorous models
for such scenarios is computationally expensive, raising the
opportunity to apply surrogate models.

However, applying surrogate models in such schemes can
lead to several limitations, as these models usually have
good accuracy for predicting but not in simulation sce-
narios, where multi-step-ahead predictions are necessary.
Due to these limitations, it is usual to find works in the
literature that employ machine learning-based models in
control and optimization schemes using a single-step ap-
proach, like Shin et al. (2020); Entezari et al. (2023); Ren
et al. (2022); Norouzi et al. (2023); Afram et al. (2017);
Wang et al. (2022).

Furthermore, the efficacy of these models in dynamic
prediction — in terms of accuracy, robustness, and effi-
ciency — is intrinsically linked to the model’s prediction
uncertainty. In environments with stringent operational
constraints, high uncertainty can compromise the pre-
diction feasibility and, therefore, the model application.
Conversely, using a model with excessive uncertainty may
result in overly conservative actions in more lenient set-
tings, hindering the system’s performance and objective
attainment (Costa et al., 2024, 2023).

⋆ This paper has been sponsored by the Norwegian Research Coun-
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Addressing this gap, Park et al. (2023) introduces an
innovative network architecture that facilitates multi-step
forecasting, enabling the model to predict over a horizon
matching the Model predictive control (MPC) prediction
horizon in a single iteration. This approach, merging a
nonlinear autoregressive exogenous model (NARX) data
architecture with recurrent networks, presents numerous
benefits for dynamic prediction.

Our study proposed a systematic strategy for multi-step-
ahead modeling and uncertainty identification of ML-
based prediction based on Park’s results. We employ
Bayesian inference to quantify prediction uncertainty,
tackling the inference challenge through Markov chain
Monte Carlo simulations. Furthermore, it studies the ap-
plication of different model architectures and their influ-
ence on prediction. The developments proposed in the
work are compared with the traditional single-step ap-
proach.

The paper is structured as follows: Section 2 elaborates
on the methodology, Section 3 discusses a case study and
presents the results, and Section 4 concludes and presents
the prospects and implications of our findings.

2. METHODOLOGY

The internal prediction in model-based optimization (e.g.,
model predictive control, real-time optimization) is illus-
trated in Figure 1. The simulation is done based on a
sequence of inputs U = [uk, uk+1, uk+2, . . . uk+Hp]
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Fig. 1. Prediction window of single-step-ahead and multi-
step-ahead neural networks.

up to the horizon generates respective predictions Y =
[yk, yk+1, . . . yk+Hp].

Incorporating neural networks into schemes as an alter-
native to linear models requires recurrent predictions, i.e.,
a simulation scenario. This process is executed multiple
times in isolation from real system measurements, requir-
ing predictions to be system-independent. Figure 1 demon-
strates two approaches for constructing these networks.

Both approach utilizes a NARX architecture to predict
a single step. As shown in Figure 1, prediction windows
(W1 to W5) represent the predictors, constructed using
past data to ascertain the system’s current state. The
inputs are then sequentially incorporated into the model
for future state prediction, requiring the advance of the
prediction windows by a one-time step for each prediction.
Hence, the single-step-ahead network requires iterative
prediction, where network outputs are recursively fed back
into subsequent predictions. This feedback loop can lead
to error propagation throughout the predictions.

The multi-step approach proposed is based on generating
a sequence of predictions over a prediction horizon, Hp,
preventing error propagation through feedback. This de-
sign considers both historical data and multiple forward-
step predictions. Here, control actions over the prediction
horizon are inserted once, allowing the model to return the
complete prediction set.

The methodology posed here is depicted in Figure 2,
which follows similar construction processes for single- and
multi-step networks proposed by Costa et al. (2023) and
Costa et al. (2024). The training data is generated using a
nonlinear model with Latin Hypercube Sampling (LHS)-
type input. Post-generation data is divided into training,
validation, and testing sets. Networks are then identified
using the Hyperband algorithm, which optimizes network
architecture, including layer count, neuron number, acti-
vation functions, and other parameters. This phase encom-

passes training and evaluating the networks with unseen
data. The subsequent phase involves assessing network
uncertainty via a Markov chain Monte Carlo (MCMC) al-
gorithm. This assessment yields network parameters’ joint
probability density function (PDF), enabling uncertainty
propagation in network predictions. In the final stage,
the methodology diverges for the two network types. For
multi-step networks, uncertainty propagation is conducted
through a single network query, yielding predictions for
the entire horizon. In contrast, single-step-ahead networks
employ feedback, where each prediction is integrated into
the next time step’s prediction.

Intrinsically, single-step and multi-step networks differ in
the construction of predictors. In the first case, the single-
step-ahead feedforward neural network (SS-FNN) is built
with dense layers without internal dynamics. In turn,
single-step-ahead Long short-term memory (SS-LSTM)
networks have LSTM layers with internal dynamics; in
this case, the construction of the network is such that the
prediction is obtained from the evolution of the internal
states of the network, and only the last state is returned.
In the last case, multi-step-ahead long short-term memory
(MS-LSTM), the network is adjusted to produce the
evolution of Hp data samples. A TimeDistributed layer is
added to the network output and coupled with a lambda
layer that returns the desired prediction states. Then,
the construction of MS-LSTM networks takes advantage
of the dynamics of the LSTM network and adjusts the
weights so that the internal dynamics of the network
match the desired dynamics. Therefore, the difference
between the neural networks relies on the predictions and
uncertainty once the SS-FNN and SS-LSTM are one-step-
ahead neural networks, and the MS-LSTM is a multi-step-
ahead neural network that will have less computational
effort and uncertainty.

3. RESULTS

The styrene polymerization reactor is an important com-
ponent in the polymer production process. This paper
uses a styrene polymerization reactor as a case study.
The reactor mathematical model was proposed by Hidalgo
and Brosilow (1990) and Alvarez and Odloak (2012). The
process initiates with the decomposition of an initiator,
leading to the formation of radicals. These radicals in-
teract with monomer molecules, creating new live poly-
mer chains. The growth of these polymer chains proceeds
through a series of propagation steps, where monomers
are continuously added. This growth phase ends when
the propagating radicals become inactive, forming dead
polymer chains. The reactor’s operation is based on a
phenomenological model that accounts for the short life-
time of polymer radicals, the dominant role of monomer
consumption in chain propagation, and the exclusion of
chain transfer reactions to monomers and solvents. Ther-
mal initiation of the monomer is not a concern at the
operational temperatures of this reactor. Moreover, the
model considers the chain termination rate and the relative
insignificance of initiation and termination heat compared
to the heat of polymerization. The model is integral to
understanding the reactor’s dynamics and is pivotal in
developing effective control strategies for the styrene poly-
merization process as given by (Alvarez and Odloak, 2012):
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Fig. 2. Methodology chart.
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This system of differential equations describes the dynam-
ics of monomer, initiator, dead-polymer chains, and live-
polymer chains within the styrene polymerization reactor.
Each equation represents the rate of change of concen-
tration of these components over time, accounting for the
effects of reaction kinetics, feed rates, and volume changes.
The constants kp, ki, kt, and kd are the rate constants
for propagation, initiation, termination by combination,
and termination by disproportionation, respectively. The
variables [M ], [I], [P ], and [T ] denote the concentrations
of monomer, initiator, live-polymer chains of length n,
and reactor temperature. Mf , If , and Tf are the inlet
concentrations of monomer, initiator, and temperature,

respectively. V represents the reactor volume. D0, D1,
and D2 are the dead polymer’s respective zero, first, and
second-order moments.

Viscosity (Equation 12) is a crucial variable in styrene
production for several reasons. It defines the grade of the
polymer produced. On the other hand, from an operational
standpoint, viscosity impacts the flow and mixing within
the reactor. Excessive viscosity can lead to operational
challenges, such as difficulties in stirring and transferring
the polymer solution. However, viscosity is a property that
is hard to measure online. Thus, predicting the viscosity
is vital to ensure product quality and maintain efficient
and safe reactor operations. In this work, we have chosen
the polymer melt viscosity of the produced styrene as
a variable to be modeled, as suggested by (Alvarez and
Odloak, 2012).

Identifying the artificial neural networks followed the
methodology outlined in Figure 2. For each network type,
we defined a specific hyperparameter search space. These
hyperparameters were optimized using the Hyperband al-
gorithm, as proposed by Li et al. (2016). The hyperpa-
rameter spaces for each network and the corresponding
optimization results are detailed in Table 3. Furthermore,
Figure 3 illustrates the training progression of the net-
works.

An early stopping strategy was employed during the train-
ing process to prevent overfitting. The training process was
also configured to ensure that the optimal weights achieved
during the training phase were retained when the training
stopped. As observed in Figure 3, despite a decreasing
trend in training loss, there was an increasing trend in
validation loss. This divergence triggered the activation of
the early stopping mechanism, leading to the termination
of the training. This approach ensures the networks are
well-tuned and generalize effectively to new data, avoiding
overfitting the training dataset.

Figure 4 presents a parity plot that compares the net-
work’s performance across training, testing, and validation
datasets. This parity plot is instrumental in visualizing
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Table 1. Model parameters and initial conditions (Alvarez and Odloak, 2012).

Nominal Process Parameters Value

Frequency factor for initiator decomposition, Ad(h
−1) 2.142× 1017

Activation energy for initiator decomposition, Ed(K) 14897
Frequency factor for propagation reaction, Ap(L ·mol−1 · h−1 3.81× 1010

Activation temperature for propagation reaction, Ep(K) 3557
Frequency factor for termination reaction, At(Lmol−1h−1) 4.50× 1012

Activation temperature for termination reaction, Et(K) 843
Initiator efficiency, fi 0.6
Heat of polymerization, −∆Hr(J ·mol−1) 6.99× 104

Overall heat transfer coefficient, hA(J ·K−1 · L−1) 1.05× 106

Mean heat capacity of reactor fluid, ρCp(JK−1L−1) 1506
Heat capacity of cooling jacket fluid, ρcCpc(JK−1L−1) 4043
Molecular weight of the monomer, Mm(g ·mol−1) 104.14

Initial conditions Value

Reactor volume, V (L) 3000
Volume of cooling jacket fluid, V c(L) 3312.4
Concentration of initiator in feed, If (mol · L−1) 0.5888
Concentration of monomer in feed, Mf (mol · L−1) 8.6981
Temperature of reactor feed, Tf (K) 330
Inlet temperature of cooling jacket fluid, Tcf(K) 295

Table 2. Steady-state inputs conditions and region of sampling for the LHS algorithm.

Variable Steady-state Minimum Maximum

Flow rate of initiator, Qi(L · h−1) 108.0 91.8 124.2
Flow rate of solvent, Qs(L · h−1) 459.0 367.2 550.8
Flow rate of monomer, Qm(L · h−1) 378.0 302.4 453.6
Flow rate of cooling jacket fluid, Qc(L · h−1) 471.6 377.3 565.9

Table 3. Hyperparameters settings and results.
MS-LSTM - Multi-Step with 50 past samples and 50 future samples; SS-FNN - Single step

network with dense layers; and SS-LSTM - Single Step network with LSTM layers.

Hyperspace

Network MS-LSTM SS-FNN SS-LSTM

Num. Layers 1-4 1-3 1-3
Type of Layers LSTM DENSE LSTM
Num. Neurons 4 to 20 5 to 30 2 to 32
Learning rate 1× 10−3 log sampling from 1× 10−4 to 1× 10−2 log sampling from 1× 10−4 to 1× 10−2

Activation function tanh and sigmoid relu or tanh orlinear] tanh and sigmoid
Optimization algorithm Adam Adam Adam

Loss and Metrics [MSE, MAE] [MSE, MAE] [MSE, MAE]

Best hyperparameters

Num. Layers 2 2 2
Num. Neurons [20,16] [30,25] [26,6]

Activation function tanh and sigmoid linear tanh and sigmoid
Learning rate 1× 10−3 5.6× 10−4 8.8× 10−3

Trainables parameters 4465 1581 4301

the alignment between the network’s predictions and the
actual data across different phases of the model’s evalu-
ation. The plot demonstrates a high correlation between
the predicted values and the respective datasets used for
training, testing, and validation. Such a close fit signifies
that the network has learned the underlying patterns ef-
fectively and can generalize well to unseen data. This level
of fit is crucial for validating the model’s accuracy and
potential applicability in real-world scenarios.

The next step is to identify the uncertainties of the models,
which, as mentioned before, is essential for the reliable
application of these models. This step was done by employ-
ing each network’s Markov chain Monte Carlo (MCMC)
method, generating a probability distribution from 20,000
samples. The prediction uncertainty at each sampling in-
stant was then determined based on the probability den-

sity functions (PDFs) derived from these distributions.
This process involves solving the inference problem to
build the PDF of the weight and biases for each net-
work and obtain the uncertainty of the neural network
parameters. Subsequently, this uncertainty propagated to
the prediction and gives the prediction uncertainty.

The prediction output of each network as a function of
input steps is shown in Figure 5. This figure also high-
lights 50 sampling instants, the predetermined number for
constructing the multi-step network. All the variables are
shown dimensionless in Figure 5 to make it possible to
compare, given the difference in the order of magnitude
of the original units. In contrast, the single-step-ahead
prediction networks employed a feedback mechanism with
predicted values to emulate the operation within a predic-
tive controller, where predictions are made without mea-
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Fig. 3. Loss and monitor training and validation compari-
son.
MS-LSTM - Multi-Step with 50 past samples and 50
future samples; SS-FNN - Single step network with
dense layers; and SS-LSTM - Single Step network with
LSTM layers.

Fig. 4. Parity plot for testing data.
MS-LSTM - Multi-Step with 50 past samples and 50
future samples; SS-FNN - Single step network with
dense layers; and SS-LSTM - Single Step network with
LSTM layers.

suring the predicted variable directly. In this prediction, a
set of 1000 weights and bias values were randomly selected
for each network. Predictions were then calculated for each
set, and uncertainty was calculated using the Haario et al.
(2006) approach.

The analysis reveals a notable distinction in uncertainty
levels. Networks using feedback, SS-FNN and SS-LSTM,
exhibit significantly higher uncertainty throughout the
prediction horizon than the multi-step network. The un-
certainty and the most likely predicted values in the multi-
step network closely align with the actual values.

Regarding the Single-Step Feedforward Neural Network
(SS-FNN) and Single-Step Long Short-Term Memory (SS-
LSTM) networks, the predictions for subsequent instants

Fig. 5. Uncertainty assessment of network prediction.
MS-LSTM - Multi-Step with 50 past and 50 future
samples, SS-FNN - Single step network with dense
layers, and SS-LSTM - Single Step network with
LSTM layers. MIN-MAX are the respective uncer-
tainty boundaries. Qs,Qm,Qi and Qc are the inputs
signals.

are made recursively, resulting in each network under-
going 50 evaluations. Conversely, the Multi-Step 50-50
(MS-LSTM) network can predict 50 future instants in
a single query. This attribute substantially reduces the
computational load in control applications when a multi-
step prediction network is used. Figure 6 shows each net-
work’s computational time histogram during uncertainty
propagation. Time was calculated for each trajectory. It
is possible to observe that for the multi-step network, the
computational time is more than 80% lower than that of
the other networks.

Comparative analysis with the results in Table 3 indicates
that, despite its complexity, the MS-LSTM network, with
an equivalent number of layers, neurons, and parameters,
as the SS-LSTM network, exhibits lower prediction uncer-
tainty. This finding underscores the MS-LSTM network’s
efficiency in terms of computational cost and predictive
reliability.

4. CONCLUSION

This article presented a methodology for modeling and
uncertainty analysis of multi-step-ahead machine learning
models for dynamic modeling. The proposed methodology
is based on training and validating data-based models
with algorithms and evaluating model uncertainty using
Bayesian inference and Markov Chain Monte Carlo algo-
rithms to solve the inference problem.

The case study presented shows the dynamic modeling of
a polymerization reactor commonly used as a benchmark
for control algorithms. The results show that the models
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Fig. 6. Computational time used for prediction.
MS-LSTM - Multi-Step with 50 past samples and 50
future samples, SS-FNN - Single step network with
dense layers, and SS-LSTM - Single Step network with
LSTM layers.

built to predict a sampling instant have considerably more
significant uncertainty than those built to predict multiple
steps. Multi-step networks predict HP steps are performed
in a single model query. The computational time of the
multi-step networks is more than 80 % lower than the
single-step networks. On the other hand, networks with
NARX architecture have more significant computational
effort, as the prediction needs to be performed recursively.
From an uncertainty point of view, multi-step networks
presented lower uncertainty than single-step networks.
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