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Abstract: Control of extrusion-based printing is fundamental to improving the traditional
open-loop operation of commercial machines. However, the literature on feedback control based
on nozzle motion is still limited in comparison with the developments for extrusion dynamics. In
this work, we propose a model-based control strategy where the effects of the nozzle speed on the
filament width are described by a first-order model, and the model uncertainty is used for robust
synthesis. The feedback employs the internal model controller (IMC) to get an approximate
inversion of the dynamics and the IMC filter is tuned based on robust performance criteria.
The controller was experimentally tested and provided satisfactory results, especially when the
parameters were refined depending on the speed regime.
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1. INTRODUCTION

Extrusion-based additive manufacturing (EB-AM) has
gained popularity as a method for layer-by-layer building
of three-dimensional parts due to its simplicity and mate-
rial flexibility. Over the past ten years, the EB-AM tech-
nology has had remarkable advancements to cover a wide
range of printing materials such as ceramics, biomaterials,
food, and cement (Altıparmak et al. (2022)). However,
most commercial 3D printers still operate in an open-
loop mode relying on calibration approaches due to the
material’s variability. Since the operation is still inefficient,
modeling and controlling EB-AM are crucial to make it a
viable and robust on-demand production technique.

Extrusion-based printing consists of two dynamically dis-
tinct processes, a fast nozzle motion process and a slow
extrusion process. When these processes are not properly
integrated, printing errors such as over or under-extrusion
degrade the quality of the product (Barton et al. (2011)).
Depending on the purpose of the model, the filament
geometry can be modeled by the use of distributed or
lumped representations. A distributed model is obtained
by applying the mass and momentum conservation prin-
ciples for fluid flow, and by tracking the free surface of
the build material along the print bed. Distributed models
are commonly used for sensitivity analysis of the cross-
sectional shape as a function of the nozzle and extrusion
speeds (Balta and Altınkaynak (2022); Comminal et al.
(2020)). However, the incompressible flow and the stokes
assumptions employed in these studies constrain the re-
sulting model to a memoryless behavior. These models do
⋆ This work has been developed as part of the PRINTYOURFOOD
project, which is financially supported by the NWO grant number
18763

not capture the transient behavior of the build material
during important steps such as start and stop operations.
In contrast, lumped models have been successfully used
in control applications, without the need for costly com-
putational schemes. For control purposes, several works
(Hoelzle et al. (2008); Armstrong et al. (2021)) have con-
cluded that the dynamics can be approximated by first-
order models, despite the nonlinear extrusion behavior.

Geometry control of EB-AM processes has been focused
on manipulating the flow rate, force, and extrusion speed
to achieve better operational conditions (Altıparmak et al.
(2022)). Model-based strategies have been considered with
the purpose of improving the nozzle and extrusion speed
integration. For example, in Armstrong et al. (2021), an
input-output model was employed to reduce the build-up
of material at turnarounds. In addition, the characteriza-
tion of the dead time helped to trigger the change of the
manipulated variable at an appropriate position. Similarly,
the work of Wu et al. (2021) proposed two feedforward
strategies to reduce defects and increase the dimensional
accuracy of printed parts. In one of their approaches, the
authors employed a model for the nozzle instead of the
extruder speed, as a way to counteract the nonlinearities
observed in the process. However, the performance of
feedforward approaches for control can be notably more
affected by the accuracy of the model employed and the
process and measurement noise in comparison to a feed-
back control strategy. For that reason, we propose a robust
model-based feedback control to account for the variability
characteristic of EB-AM processes. The internal model
controller (IMC) structure applied is advantageous be-
cause when the model accuracy is high, it provides a quasi-
optimal control strategy based on the inversion of the plant
dynamics. Furthermore, IMC handles time delays in a sys-
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tem due to the use of the plant model. The control strategy
is implemented on a commercial 3D printer employing a
non-Newtonian build material. The performance of the
controller in terms of the model variability and the IMC
filter is analyzed based on the experimental results.

The paper is organized as follows: Section 2 provides an
overview of the experimental setup. Section 3 examines
the lumped deposition models and the empirical model
considered in this study. Section 4 explains the procedure
followed for the robust model-based control design. Finally,
section 5 contains the experimental results, where the
controller performance is analyzed, and section 6 presents
the conclusion of this work.

2. EXPERIMENTAL SETUP

(a) (b)

Fig. 1. (a) Extrusion-based 3D printer. (b) Schematic
representation

The 3D printer depicted in Figure 1 is employed to vali-
date the control strategy proposed. The extrusion system
consists of a plunger that pushes the ink in the cartridge
towards the nozzle. The ink used is commercial Play-Doh
(in two bright colors), which is primarily composed of
water, salt, and flour. This material is a shear-thickening
non-Newtonian fluid (Buechley and Ta (2023)), but the
rheological properties are not considered in this work.
From a control perspective, the controlled variable is the
width of the printed filament (wf ) and the possible ma-
nipulated variables are the nozzle speed (v̄n) and the
plunger (i.e. extrusion) speed (v̄p). The nozzle speed sets
the relative XY motion speed between the nozzle and the
bed. In contrast, the plunger speed v̄p is determined by
dividing the plunger displacement (defined in the G-code)
by the time required to complete a given XY motion of the
head. This means that, due to the machine settings, v̄p is
dependent on the v̄n selected. In this study, we focus on
the role of the nozzle speed as the manipulated variable
by keeping the plunger speed constant.

2.1 Vision and communication systems

The sensor is a webcam attached to the head of the printer
and directed at the nozzle’s tip. The camera collects data
to estimate the filament’s width on the first layer and has
a resolution of 1920x1080 pixels and a sampling rate of
30 fps. The pixels-to-mm conversion factor is 0.17mm.
The computer vision algorithm takes the frames collected
by the camera, smooths the images, and determines the
filament’s edges. The start and end coordinates of the
edges are estimated by applying the probabilistic Hough

transform. Lastly, the width is computed as the perpen-
dicular distance between the center coordinates of the
detected edges. The vision system was implemented in
Python using the OpenCV library.

The system is actuated by stepper motors through a Duet
2 mainboard. The communication between the controller
algorithm and the mainboard was implemented using the
Python socket’s module. This allows sending and receiving
commands via the telnet network protocol. The controller
is implemented using ControlDesk (dSPACE software) and
MATLAB Simulink.

3. DEPOSITION MODEL

Lumped models establish a relationship between the driv-
ing input of extrusion (e.g. plunger pressure or speed) and
deposition (nozzle speed) and the filament cross-sectional
shape without considering the spatial dependence charac-
teristic of distributed models, as illustrated in Figure 2.

(a) (b) (c)

Fig. 2. (a) Distributed model. (b) Control volume for
memoryless behavior. (c) Control volume for dynamic
behavior

The simplest model possible, that accounts for the extru-
sion and deposition phenomena, is determined by assum-
ing incompressibility and applying mass conservation in
the control volume (red dotted line) presented in Figure
2b, as follows:

ρQin = ρQout (1)

Qin = v̄pAin (2)

Qout = v̄nAout (3)

Equation (1) is the mass conservation in terms of density
ρ and volumetric flow rate Q. Equation (2) provides the
inlet flow rate when the driving input is the speed of the
plunger v̄p. Equation (3) gives the flow rate at the outlet as
the product of the nozzle speed v̄n and the filament cross-
sectional area. This modeling approach has been adopted
in EB-AM of different materials (Bonatti et al. (2021);
Comminal et al. (2020)), and is implicitly assumed in some
3D printing software to calibrate the ratio between the
nozzle and extrusion speeds v̄n

v̄p
. Nevertheless, the resulting

memoryless behavior does not consider the influence of
previous states or the rheology of the material, which
limits its control applications.

3.1 Dynamic modeling

A dynamic model can be developed by assuming flow
compressibility due to the properties of the build material
and the fluid reservoir. For example, in Hoelzle et al. (2008)
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a nonlinear flow-pressure relationship considering the rheo-
logical effects on the outlet flow was proposed. Considering
the control volume (green dotted line) illustrated in Figure
2c, the model relates the top and bottom volumetric flow
rates to the pressure of the fluid Pr as follows:

Vrαi (Pr)
1− 1

n Q̇out +Qout = Qin (4)

where Vr is the volume of ink in the cartridge, αi and n
are constants that account for the rheological properties
and Qin is given by (2). After linearization of (4) about a
nominal Vr and Pr, the next first order model is derived:

τQ̇out +Qout = Kv̄p (5)

where K is the steady-state gain which provides the
response of the system after the dynamic effects have
vanished. In steady-state, (5) simplifies to (1) with K =
Ain. The parameter τ , known as the time constant, gives
a measure of the speed of response and is a function of
the reference values used for linearization. The filament
width wf can be related to the outlet flow Qout by using
(3) and assuming a constant cross-section. For example,
if an ellipsoidal shape is considered, Aout = πwfh, where
wf and h are the width and height of the filament cross-
section (Armstrong et al. (2021)). As wf and Qout are
proportionally related, then a first-order model can be
directly fitted considering wf as the output.

If (3) is employed directly in (1), it is assumed that there
is only a memoryless effect of v̄n on wf . As a result, the
dynamic effects of the nozzle speed v̄n on the width are not
considered. However, the filament shape is also affected by
changes in v̄n, which, depending on the process conditions,
could have a faster effect on its formation. Compensation
using nozzle speed has been applied especially for material
deposition at corners. Undesired features, such as swelling,
can be corrected by modifying the nozzle deceleration and
acceleration profiles(Comminal et al. (2019)). However, to
the best of our knowledge, for a reference tracking control
application only the work of Wu et al. (2021) has employed
a first-order empirical model to describe the effects of the
nozzle speed.

In this work, we consider a first-order plus dead-time
model (FOPDT) for the deposition dynamics:

G(s) =
wf (s)

v̄n(s)
=

Ke−θs

τs+ 1
(6)

FOPDT models represent the sigmoidal shape of the step
response obtained in many process applications and can
capture higher-order behaviors when the system has a
dominant pole. The addition of an output delay of the
form w∗

f = wf (t − θ) is included to represent the time
θ > 0 taken by communication and sensing delays.

3.2 Parametric estimation from step response

A FOPDT model is used to relate the effect of the input
(v̄n) to the output (wf ). The time domain response for a
step input of size ∆vn is given by:

wf (t) =

0 t < θ

K∆vn

(
1− e−

t−θ
τ

)
t ≥ θ

(7)

The steady-state gain can be computed from:

K =
wf (t → ∞)− wf (t = 0)

∆vn
(8)

and after preprocessing the data, θ and τ can be deter-
mined by using the analytical time domain solution (7) as
follows:

θ − ln

(
1− wf (t = tn)

wf (t → ∞)

)
τ = tn (9)

Thus, by using several combinations of two samples (n =
1, 2) along the transient part of the experimental step-
response wf (t), the parameters (θ, τ) can be estimated.

4. MODEL-BASED CONTROL DESIGN

The objective of a model-based approach is to synthesize
the controller based on the available mathematical model
of the system. In addition, the controller structure is not
restricted to standard techniques such as PID. We consider
a feedback internal model control (IMC) where the model
input is the manipulated variable v̄n and its output is
an estimate of wf . The IMC is equivalent to the Smith’s
predictor structure, which untangles the dead-time from
the control loop (Kravaris and Kookos (2021)).

4.1 Robust internal model control (IMC) for a FOPDT
system

We use the procedure proposed in Kravaris and Kookos
(2021); Morari and Zafiriou (1989) to synthesize an IMC
scheme accounting for robust stability and performance.
The specifications are to design a system with no offset for
step changes of the set point (wsp). All three parameters
of the model are considered to be uncertain:

Kl ≤ K ≤ Ku

τl ≤ τ ≤ τu (10)

θl ≤ θ ≤ θu

where the sub-indices l and u represent the lower and
upper limits and the nominal plant G̃ is defined by the
mean parameters (K̃, θ̃, τ̃). Thus, the family of plants
considered for robust design is given by:

Π =

{
G :

∣∣∣∣G(jω)−G̃(jω)

G̃(jω)

∣∣∣∣ ≤ L̄m(ω) (11)

with members defined by the multiplicative uncertainty
Lm as follows:

G(jω) = G̃(jω)(1 + Lm(jω)), |Lm(ω)| ≤ |L̄m(ω)| (12)

The nearly optimal controller, which minimizes the inte-
gral of the squared error (ISE), is computed by decompos-

ing G̃(s) into the following product:

G̃(s) = G̃A(s)G̃M (s)

G̃A(s) = e−θ̃s (13)

G̃M (s) =
K̃

τ̃s+ 1

Next, a type 1 filter F (s) is used to make Q̃(s) = G̃−1
M

proper, and the equivalent controller transfer function
Gc(s) realizable:

Gc(s) =
1

λs+ 1− e−θ̃s

τ̃ s+ 1

K̃
(14)

A block diagram representing the IMC controller (dotted
box) is shown in Figure 3. Finally, the filter constant λ is
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Fig. 3. Block diagram IMC controller

determined based on the robust constraints:∣∣FL̄m

∣∣ < 1 (15)∣∣FL̄m

∣∣+ ∣∣(1− e−jωθ̃F )W
∣∣ < 1 (16)

where
∣∣G̃Q̃

∣∣ = |e−θ̃s
∣∣ = 1 has been used to simplify

the expressions and W is the performance weight. For
simplicity, the peak of the sensitivity function S = (1 −
G̃Q̃F ) is used to define the performance weight W−1 =
max
ω

|S(jω)|. We see that robust performance (16) implies

robust stability (15) , and therefore (16) is used to tune
the filter constant λ.

5. EXPERIMENTAL RESULTS

In this section, we present the results of applying the
proposed model-based control design on the experimental
setup described in section 2. Both the estimation and
control experiments were performed using a reference
speed v̄ref = 10mm/s. The manipulated variable is the
nozzle speed v̄n, but the results are presented in terms of
the speed factor Fn = v̄n

v̄ref
.

5.1 FOPDT model parameter estimation

The estimation experiments were designed to have a cal-
ibration stage where the flow is initiated, followed by a
printing pattern with 4 intermediate and 4 experiment
lines. An intermediate line is printed before every exper-
iment line and set with the same printing parameters to
establish similar initial conditions between experiments. A
picture of samples for a Fn step change of 0.2 and 2.0 is
shown in Figure 4a. The head of the printer moves for a
travel distance of 180mm, and when the nozzle is located
at x = 60mm a speed factor change is commanded.
The speed factors considered during the estimation ex-
periments are (0.2, 0.4, 0.6, 0.8) and (1.2, 1.4, 1.6, 1.8, 2.0)
for a decrease and increase in the speed respectively. Due
to the nonlinear characteristics of the process and the
small variations in the fluid flow at least 8 samples for
each speed factor were included during the estimation of
the parameters. The mean parameter values are estimated
based on the normalized behavior of the measured width
and the results are presented in Figure 4b. Since the flow
is initiated before the experiments, θ is attributed to the
communication delays of the system and has a similar
value independently of the speed factor. In contrast, τ
and K depend on the speed regime, which indicates the
nonlinear behavior of the system.

Due to the speed regime dependence observed, we deter-
mine three sets of model parameters for the controller,
one considering all the speed factors (combined) and the
other two regarding the increasing and decreasing speed
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Fig. 4. (a) FOPDT estimation experiments. (b) Estimated
parameters by speed factor.

regimes. The mean value µ and standard deviation σ of the
parameters are given in Table 1. The absolute mean values
for τ and K in the decreasing speed regime are two and
three times higher, respectively, compared to the values in
the increasing regime. The high standard deviation of τ
and K parameters for the combined regime are the result
of the wide range of values observed in Figure 4.

Table 1. Parameters for model-based controller

Speed regime
θ τ K

µ σ µ σ µ σ

Combined 0.53 0.07 0.30 0.11 -0.25 0.18

Increasing 0.50 0.05 0.20 0.08 -0.13 0.06

Decreasing 0.56 0.09 0.40 0.14 -0.38 0.18

5.2 Robust IMC controller

As explained in section 4, the filter parameter λ for the
IMC controller is determined from the robust performance
condition (16). L̄m is defined based on the mean parameter
values and their upper and lower limits in (10). We
define the limits of the parameters by assuming a normal
distribution and using the relationship µ±2σ to cover the
wide range of data. The performance weight condition is
selected to be W−1 = 2.0 and the filter values computed
for the different regime conditions are given in Table 2.
The specification of W is based on the maximum peak of

Table 2. λ based on the speed regime

Combined Increasing Decreasing

λ = 1.2 λ = 1.1 λ = 1.78

the sensitivity function which is typically required to be
smaller than 0.9.

We ran different experimental repetitions to evaluate the
performance of the controller based on the error and the
speed factor dynamics. The control experiments start with
the calibration stage where the flow is initiated, but only
one set of intermediate-experiment lines is printed in every
repetition. Since the model parameters are computed using
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the normalized response, the model and the setpoint are
in terms of deviations from the initial width, and the
manipulated variable is in terms of the reference speed.
The initial width ω0 of each experiment is computed
by taking an average of the measured width before the
setpoint change and it is provided with the results.

5.3 Feedback control for setpoint tracking - Decreasing step
change
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Fig. 5. Error dynamics for decreasing setpoint step change

For this step change, a lower nozzle reference speed in
the intermediate line was required to have a sufficiently
wider filament. The results using the filter parameter
from the combined regime for three different setpoint
changes are shown in Figure 5. In most cases, the error
has an overshoot between 1 and 2.5 s after the setpoint
is changed. The curves get within a margin of ±0.2mm
after 12 s which can be attributed to the sensor resolution
(pixel-to-mm conversion factor of 0.17mm). The mean
integral squared error (MISE) has a positive correlation
with the size of the setpoint step and is dominated by
the system’s transient response, especially by the signal
overshoot. The controller with λ from the combined regime
showed slightly better performance than the one from the
increasing speed regime, which is logical considering that
the speed factor moves up and down from the reference
speed.
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Fig. 6. Error dynamics for increasing setpoint step change

5.4 Feedback control for setpoint tracking - Increasing step
change

The results using λ from the decreasing speed regime for
three different set point changes are given in Figure 6.
The error does not have an overshoot and it gets within a
margin of ±0.2mm after 10 s. Due to the slower transient
response, the MISE is only slightly smaller in comparison
with the decreasing setpoint test. We also tested the
controller with the filter from the combined speed regime
but noticed that the performance was notably degraded.
This happened especially when the speed factor reached
values below 0.4.

5.5 Feedback control for setpoint tracking - Filter parameter
effects

Finally, we tested the effect of the filter parameters on
the system’s performance for an increasing step change of
1.5mm. We compared the λ determined from the decreas-
ing regime performance against the value obtained from
the robust stability condition λ = 0.5 (based on (15)).
Additionally, a parameter in between the robustness con-
ditions λ = 0.9 was also considered. Figure 7 exhibits the
system’s dynamics for every parameter and 4 experimental
repetitions. It can be seen that with the decrease in the
filter parameter, the controller reaction is more aggressive.
For this reason, we calculated the MISE after 5 seconds to
evaluate the performance after the initial transient effects
had vanished. In this case, the MISE for λ = 1.78 is
about an order of magnitude smaller than for λ = 0.5.
For λ = 0.9 we see that in one repetition this led to small
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Fig. 7. Filter parameter effects on performance

oscillations around 0, while for λ = 0.5 all the repetitions
had a similar oscillatory behavior, which might indicate
that the model uncertainty is too high to ensure robust
stability. The qualitative differences in the filament shape
are illustrated in Figure 8, where it is clearly seen the width
variation between the 3 different IMC filters.

(a) (b) (c)

Fig. 8. Filter effects on filament shape. (a) λ = 1.78.
(b) λ = 0.9. (c) λ = 0.5.

6. CONCLUSIONS

In this work, we have proposed a robust model-based
design for the filament geometry control in extrusion-based
printing. The nonlinear behavior of the filament width
to changes in the nozzle speed has been approximated
by a FOPDT model. Several open-loop step response ex-
periments were conducted and the analysis of the model

parameters showed significant variations depending on
whether the speed factor is increased or decreased. This
had some implications for the controller’s performance.
Depending on the direction of the setpoint change, the
IMC model can be refined for a specific speed factor regime
as was the case for the increasing setpoint change test. This
refinement of the FOPDT parameters, especially of the
steady-state gain, provided smoother responses without
overshoot, reaching a steady state within the measurement
resolution. Nevertheless, when the speed factor reaches
low values, the model uncertainty might be too high to
guarantee a robust performance. For cases such as the de-
creasing setpoint change, nonlinear control strategies and
the inclusion of constraints on the manipulated variable
should also be considered in the control design.
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