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Abstract: Designing state estimation strategies for discrete time nonlinear dynamic systems
often requires incorporation of inequality constraints on the state estimates. These constraints
may arise from physical considerations and/or operational perspective which can significantly
increase the complexity of the estimator design problem. The estimation problem becomes even
more challenging for distributed parameter systems (DPSs) due to spatial dependency of the
system states. This paper provides two novel approaches for estimating the state profiles of DPSs
while adhering to the imposed bounds. The first approach utilizes the idea of constraining the
maximum and minimum values that spatial state profiles can take along the spatial domain.
The second approach employs a characteristic property of Bernstein polynomials to achieve
state profile estimates within the specified bounds. Proposed approaches are compared with an
existing approach that incorporates bound constraints at a large number of discretization points.
However, it does not guarantee constraint satisfaction by the entire profile. The performance
of the proposed approaches is evaluated by simulation studies conducted on an auto-thermal
tubular reactor system. The analysis of the estimation results demonstrates that the proposed
approaches are capable of producing accurate profile estimates within the specified bounds.
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1. INTRODUCTION

Numerous engineering applications such as plug flow reac-
tors and packed-bed reactors are based on the transport
reaction processes. The process variables in such systems
depend on the temporal as well as spatial coordinates.
Modeling and analysis of such systems, also known as
distributed parameter systems (DPSs), involves repre-
senting the systems using partial differential equations
(PDEs) (Yupanqui Tello et al. (2021)). Given the spatial
dependency of the process variables of DPSs coupled with
availability of typically a limited number of spatially dis-
tributed measurements, the online state estimation of mul-
tispecies transport reaction systems is a challenging task.
Over the years, various approaches have been proposed for
the same. Model order reduction or early lumping based
approaches are widely used in literature for designing state
estimators for DPSs (Marko et al. (2018)). Orthogonal
collocation (OC) is a popoular method of model order
reduction. The resulting reduced-dimension model repre-
sented by a set of differential-algebraic equations (DAE)
can then be combined with any Bayesian estimator (e.g.
extended Kalman filter (EKF)) or Luenberger observer to
estimate the states of the system. The advantage of using
OC method based on an interpolating polynomial is the
ability to generate polynomial approximation of the spatial
state profiles of the system (Seth et al. (2023)).

The states of a DPS also often satisfy some constraints
arising from physical laws (such as non-negativity of con-
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centrations), or from operational considerations. However,
the state estimates obtained from a Bayesian estimator
may violate these constraints. A straightforward approach
to prevent the violation of constraints can be to make use
of the constrained state estimation approach as proposed
in the literature for lumped parameter systems (Mandela
et al. (2010), Pacharu et al. (2012)). However, integrating
the constrained estimation technique along with reduced
dimension OC model guarantees the constraints satisfac-
tion only at discrete collocation points and is not suffi-
cient for ensuring constraints satisfaction throughout the
spatial profile (Seth et al. (2023)). Recently, Seth et al.
(2023) proposed an alternate method where they imposed
constraints on the states at large number of spatially
discertized points (and not just collocation points) during
state estimation. However, this approach also does not
guarantee constraint satisfaction at spatial points other
than the discretized points. Also, ensuring constraints sat-
isfaction at large number of points can lead to increased
computational complexity during online state estimation
which is undesirable.

In the current work, we propose two alternate analytical
methods for ensuring bound constraints on the estimated
spatial state profiles of a DPS. The proposed approaches
eliminate the need for spatial discretization of the state
profiles while guaranteeing constraint satisfaction through-
out the spatial profile. Both the approaches utilize a key
feature of the OC approach, namely the representation of
state profiles as polynomial approximations at any given
time instant. The first approach finds and constraints
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the minimum and maximum values of the polynomial
to be within bounds. These extreme values are in-turn
obtained by obtaining roots of the derivative polynomial.
The second approach involves expressing the state profile
polynomial as a Bernstein polynomial (BP). It then uses
a key property of BP that maximum and minimum values
of a BP are bounded by the maximum and minimum of
the corresponding BP coefficients (Lane and Riesenfeld
(1981)). Thus, ensuring that BP coefficients are within
bounds, ensures that estimated state profile satisfies the
bounds. The efficacy of the proposed approaches is demon-
strated via simulation studies on an auto-thermal tubular
reactor system (Berezowski et al. (2000)).

The rest of the paper is organized as follows: Section 2
gives the details of process models. Section 3 discusses the
proposed analytical approaches for ensuring profile con-
straints. Section 4 presents the simulation based results.
Final conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Process model

A general nonlinear DPS in one dimension can be repre-
sented by a set of PDEs given by Eq. (1), where z ∈ [0, 1]
denotes the spatial domain, t ∈ [0,∞) denotes the tempo-
ral domain and xr (r = 1, 2, ..., n) denotes the dependent
rth state variable of the system.

∂xr(z, t)

∂t
= fr

(
∂xr(z, t)

∂z
,
∂2xr(z, t)

∂z2
,x(z, t),m(t), z

)
(1)

The boundary conditions and initial conditions associated
with the system can be given by Eqs. (2 - 4)

gr

[
dxr
dz

,x(0, t)

]
= 0 at z = 0 (2)

hr

[
dxr
dz

,x(1, t)

]
= 0 at z = 1 (3)

xr(z, 0) = ar(z) (4)

Here, x = [x1, ..., xr, ..., xn]
T is the combined state vector,

m(t) ∈ Rm×1 denotes the vector of manipulated inputs
in the plant. Here, we intend to study the dynamics of
DPS by employing a computer controlled system. Let
tk = kTs : k = 1, 2, ... represent the sampling instants
with Ts as the sampling interval. Variation of manipulated
inputs is assumed to follow a zero-order hold behaviour for
t ∈ [kTs, (k + 1)Ts).

2.2 Reduced Dimensional Model

This section presents a brief formulation of lower dimen-
sional DAE model using OC technique (Gupta (1995)).
First and second order derivatives in the PDE system
(Eqs. (1) to (3)) are approximated using N th order La-
grange interpolating polynomial at the chosen N+1 collo-
cation points (ξj). The collocation points are such that
ξ1 = 0, ξN+1 = 1 and the set of intermediate points

ξ ≜ {ξj}Nj=2 lie at the roots of shifted Legendre polyno-

mial. Further, defining the values for rth state variable at
jth collocation point and kth sampling instant as χr,j(k) ≜
χr(ξj , k), vectors of differential and algebraic states can

be written as χd
r(k) = [χr,2(k), ..., χr,N (k)]

T
(N−1)×1 and

χa
r(k) = [χr,1(k) χr,N+1(k)]

T
2×1. Further, stacking the dif-

ferential and algebraic states for all the n state variables

yield χd(k) =
[(
χd

1(k)
)T
, ...,

(
χd

n(k)
)T ]T

nd×1
and χa(k) =[

(χa
1(k))

T
, ..., (χa

n(k))
T
]T
na×1

, where nd = n(N − 1) and

na = 2n. Using these definitions and applying OC tech-
nique a reduced dimension discrete time DAE model is
obtained. Further, the DAE model was compensated for
model plant mismatch (MPM) arising due to model order
reduction of original PDE system (Seth et al. (2023)). The
MPM signal was assumed to behave as an additive zero
mean Gaussian signal i.e., wa(k) ∼ N (0nd×1,Qa). The
state dynamics including wa(k) can be represented as

χd(k + 1) = F(χd(k),χa(k),m(k), ξ) +wa(k) (5)

0na×1 = Λ(χd(k + 1),χa(k + 1)) (6)

where,

F(.) = χd(k) +

∫ (k+1)Ts

kTs

F(χd(t),χa(t),m(k), ξ)dt (7)

Here, F represents a stacked function vector of nd
ODEs, Λ represents a vector of na algebraic equations.
The true values of manipulated inputs are assumed to
vary as m(k) = u(k) + wu(k), where u(k) is the
computer/operator defined input and wu(k) is a zero
mean Gaussian white noise signal such that wu(k) ∼
N (0m×1,Qu). Vectors χd(k) and χa(k) are combined
to form the augmented state vector χ(k) ∈ Rn(N+1)×1.
Similar to the state dynamics, effect of MPM (va(k)) was
also introduced in the measurement model which can be
represented as

Y(k + 1) = Cmχ(k + 1) + v(k + 1) (8)

Here, v(k) = vs(k) + va(k) ∼ N (0η×1,R) and R =
(Rs + Ra)η×η, where, vs(k) represent the sensor noise
which is assumed to be zero mean white noise signal
with known density i.e., vs(k) ∼ N (0η×1,Rs), where
η is the total number of measurements for all the n
state variables. Further, Cm is formulated using Lagrange
polynomials evaluated at the measurement locations (Seth
et al. (2023)). The formulated measurement matrix thus
allows to systematically relate the states obtained at the
collocation points to the state values at the measurement
locations anywhere in the spatial domain of the system.

Note that the resulting measurement and state noises
(wa(k) and v(k)) are identified to be correlated with the
cross-correlation matrix, S. The details on quantification
of Qa,Ra, and S are given in Seth et al. (2023). Further,
utilizing the state vector, χ(k) containing the state values
only at collocation points, the reconstructed state profiles
can be obtained as

χr(z, k) =
[
Ld(z)

]T
χd

r(k) + [La(z)]
T
χa

r(k) (9)

r = 1, 2, ..., n and z ∈ [0, 1]

where, Ld(z) and La(z) are the vectors of Lagrange basis
polynomials (Lj(z) : j = 1, 2, ..., N +1) formed at internal
collocation points and the boundary points. The definition
of Lagrange basis polynomials and their derivatives can be
referred from Seth et al. (2023). Each of these functions
(χr(z, k)) characterize a spatial state profile of the system
constructed over the entire spatial domain.
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2.3 DAE-EKF (Seth et al. (2023))

A brief review of the steps involved in the unconstrained
EKF for DAE systems (Eqs. (5) to (8)) with correlated
state and measurement noise (Seth et al. (2023)) is now
presented. Given the estimated states, χ̂(k|k) at kth sam-
pling instant and the combined covariance matrix, P(k|k),
the method consists of twe steps:

(1) Prediction step:

χ̂d(k + 1|k) = F(χ̂(k|k),u(k), ξ,S,R,Y(k)) (10)

02n×1 = Λ(χ̂d(k + 1|k), χ̂a(k + 1|k)) (11)

P(k + 1|k) = Υ(χ̂(k|k),P(k|k),u(k),Qu,Qa,S,R) (12)

Note that the terms S,R and Y(k) have been retained in
the prediction step to emphasize that S,R and Y(k) may
explicitly be used in the prediction step.

(2) Unconstrained Update step:

χ̂d(k + 1|k + 1) = Ψ(χ̂(k + 1|k),P(k + 1|k),R,Y(k + 1))
(13)

P(k + 1|k + 1) = Π(χ̂(k + 1|k),P(k + 1|k),R,Y(k + 1))
(14)

Here, F(.) and Υ(.) represent the prediction steps and
Ψ(.) and Π(.) represent the update steps respectively. The
updated algebraic states can be evaluated using Eq. (11).
Further, updated state vector obtained from DAE-EKF
is transformed to achieve continuous functions (χ̂r(z, k) :
r = 1, ..., n and z ∈ [0, 1]) using Eq. (9).

3. PROBLEM STATEMENT AND RELEVANT
CONSTRAINED ESTIMATION APPROACH

3.1 Problem Statement

Let us assume that at (k+1)th sampling instant the plant
state profiles are bounded by lower and upper bounds as

xr,L ≤ xr(z, k + 1) ≤ xr,H (15)

r = 1, 2, ..., n and ∀z ∈ [0, 1]

where, xr(z, k + 1) is the plant state profile for the rth

state variable and xr,L and xr,H represent the known lower
and upper bounds. In this work we propose to develop
constrained profile estimation schemes for DPSs using a
reduced dimension OC model. Therefore, it is crucial to
express the constraints given by Eq. (15) in terms of the
state values obtained from the OC model. This can be
achieved by using the reconstructed state profile obtained
using OC states along with the Lagrange polynomial.
Thus, using the reconstructed state profiles Eq. (15) can
be recasted as

xr,L ≤ χr(z, k + 1) ≤ xr,H (16)

r = 1, 2, ..., n and ∀z ∈ [0, 1]

Further, stacking for all the state variables we get:

XL ≤ χ(z, k + 1) ≤ XH ∀z ∈ [0, 1] (17)

where, χ(z, k + 1) = [ χ1(z, k + 1) ... χn(z, k + 1) ]
T
,

XL = [ x1,L ... xn,L ]
T

and XH = [ x1,H ... xn,H ]
T

Thus, at (k+1)th sampling instant, the constrained profile
estimation problem is to obtain the estimated state vector
χ̂(k+1|k+1) such that the state profile estimates, χ̂r(z, k+
1) for r = 1, 2, ..., n and ∀z ∈ [0, 1] are bounded by their

respective lower and upper bounds. Using Eq. (17) the
constrained update step can be formulated to solve the
following optimization problem which can be considered
as an extended version of the recursive nonlinear data
reconciliation (RNDDR) technique given by Mandela et al.
(2010). This extension is designed for enforcing profile
constraints and can be formulated as

χ̂(k + 1|k + 1) = argmin
χ(k+1)

(
(
εd(k + 1)

)T (
Pd(k + 1|k)

)−1

εd(k + 1)) + ((Y(k + 1)−Cmχ(k + 1))
T

R−1 (Y(k + 1)−Cmχ(k + 1))) (18)

subject to

02n×1 = Λ(χd(k + 1),χa(k + 1)) (19)

XL ≤ χ(z, k + 1) ≤ XH ∀z ∈ [0, 1] (20)

Here, εd(k+1) = χd(k+1)− χ̂d(k+1|k), and Pd(k+1|k)
are prediction errors and covariance matrix of differential
states at (k + 1)th instant. Further, Eq. (19) refers to
the algebraic equations of the system, Eq. (20) represents
the desired bounds on the state profiles of the system.
Solving the optimization problem given by Eqs. (18-20)
is a challenging problem since ensuring constraints on the
entire spatial domain (z ∈ [0, 1]) is not straightforward and
may require some numerical techniques or manipulations.

3.2 Constrained Update step - Discretization Approach
(Seth et al. (2023)):

One simple numerical technique proposed by Seth et al.
(2023) involves approximating the profile constraints
through a large number of linear inequality constraints.
These constraints essentially bound the individual state
values evaluated at a large number of evenly spaced grid
points in space. Thus, the profile constraint (Eq. (20)) was
replaced by the constraints given as (Seth et al. (2023)):

XL ≤ χ(Z, k + 1) ≤ XH (21)

where Z ≜ {zi}Nc
i=1 is set of equidistant grid points chosen

for imposing the constraints. Note that number of grid
points (Nc) required for imposing profile constraint is
typically very large compared to the number of collocation
points used for developing OC model i.e., Nc >> N. Here
χ(Z, k + 1) represents a vector of state values evaluated
at the points contained in the set Z, i.e.,

χ(Z, k + 1) =
[
(χ1(Z, k + 1))

T
... (χn(Z, k + 1))

T
]T
(22)

where χr(Z, k + 1) =
[
χr,z1(k + 1) ... χr,zNc

(k + 1)
]T

.
Additionally, XL and XH are defined as

XL =
[
(x1,L)1

Nc+1 · · · (xn,L)1
Nc+1

]T
XH =

[
(x1,H)1Nc+1 · · · (xn,H)1Nc+1

]T
(23)

Here, 1Nc+1 represents row vector of ones of size (Nc +
1). Using large value of Nc may result in bounded state
profile estimates, however, imposing constraints on large
number of grid points does not give a formal guarantee
that states at other locations will also satisfy the con-
straints. Additionally the computational complexity of the
problem also increases with increasing, Nc i.e., increasing
the number of constraints. For the special case of linear
algebraic equations (Eq. (19)), constrained updated step
optimization problem becomes a quadratic programming
(QP) problem.
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4. PROPOSED APPROACHES

4.1 Using Extremum of the State Profiles

One fundamental approach to obtain bounded state profile
estimates is to bound its maximum and minimum values
within the specified range. Consider the spatial state pro-
file function for the rth state variable at kth sampling in-
stant, χr(z, k). Extreme values of χr(z, k) can be identified
by locating the roots of its derivative χ′r(z, k). Note that
the function χ′r(z, k) may have complex roots or roots
outside the considered spatial domain. We thus define a
set of real roots within the spatial domain of interest as
zr(k) ≜ {zr,i : zr,i ∈ R, zr,i ∈ [0, 1] and χ′r(zr,i, k) = 0
for i = 1, ..., nr,k}. Here, nr,k is the number of locations
displaying extreme values of rth state profile obtained
at kth sampling instant. The maximum/minimum value
that χr(z, k) can attain ∀ z ∈ [0, 1] corresponds to the
maximum/minimum value it can achieve at the locations
contained in set zr(k), i.e.,

χr,max(k)≜ max
z∈[0,1]

(χr(z, k)) = max
z∈zr(k)

(χr(z, k)) (24)

χr,min(k)≜ min
z∈[0,1]

(χr(z, k)) = min
z∈zr(k)

(χr(z, k)) (25)

where, χr,max(k) and χr,min(k) are the extreme values that
the profile function χr(z, k) can attain at kth sampling
instant. Hence, by specifying the bounds on χr,max(k)
and χr,min(k), the profile of the rth state variable can
be restricted to stay within the specified bounds. Similar
computations can be carried out for all the n state vari-
ables. The maximum and minimum values of all the state
variables can then be stacked to form vectors χmax(k) and
χmin(k) ∈ Rn×1. Thus, using this approach the original
profile constraints (Eq. (20)) in the optimization problem,
Eqs. (18-20), can be replaced by the constraints given as

[χmax(k + 1),χmin(k + 1)] = g̃(χ(k + 1)) (26)

XL ≤ χmin(k + 1),χmax(k + 1) ≤ XH (27)

Here, Eq. (26) refers to the nonlinear constraint where
the function g̃(.) will be used to obtain χmax(k + 1) and
χmin(k + 1). The solution of optimization problem (Eq.
(18)) with constraints given by Eqs. (19), (26) and (27)
will result in the estimated states at the collocation points
such that the reconstructed spatial profile (χ̂r(z, k) : r =
1, 2, .., n and ∀z ∈ [0, 1]) will satisfy the specified bounds.
Note that unlike the approach proposed by Seth et al.
(2023) this approach provides an exact reformulation of
the original profile constraints given by Eq. (20). Addition-
ally it guarantees that the estimated profile will fall within
the specified bounds. However, due to the root finding
step, this approach involves nonlinear constraints and can
result in computationally complex nonlinear programming
(NLP) optimization problem.

4.2 Using Bernstein Coefficients

Profile constraints satisfaction can also be achieved by ex-
pressing state profiles in the form of Bernstein polynomials
(BP) and utilising a key property of the BP. Consider the
reconstructed state profile for the rth state variable at kth

sampling instant, χr(z, k). Note that χr(z, k) represents
a N th degree polynomial which can be written as linear

combination of coefficients (cr,p(k)) and the Bernstein
basis (Bp,N (z)) as (Lane and Riesenfeld (1981)):

χr(z, k) =

N∑
p=0

cr,p(k)Bp,N (z) (28)

where, Bp,N (z) =

(
N

p

)
zp(1− z)N−p (29)

Let χr,max(k) and χr,min(k) denote the maximum and
minimum values of the profile χr(z, k) at kth sampling
instant over the domain z ∈ [0, 1]. An important property
of BPs is (Lane and Riesenfeld (1981)):

min
0≤p≤N

cr,p(k) ≤ χr,min(k) ≤ χr,max(k) ≤ max
0≤p≤N

cr,p(k)

(30)
The proposed idea is to now represent spatial state profiles
as BPs and impose bound constraints on the coefficients
of resulting BPs. In view of Eq. (30), this approach will
guarantee bound constraints satisfaction by state profiles.
This is discussed next.

Defining a matrix of Bernstein basis evaluated at colloca-
tion points (ξj) as:

B =
[ (

Bd
)T

(Ba)
T
]T
(N+1)×(N+1)

where, Bd =

 B0,N (ξ2) · · · BN,N (ξ2)
...

. . .
...

B0,N (ξN ) · · · BN,N (ξN )

 (31)

and Ba =

[
B0,N (ξ1) · · · BN,N (ξ1)

B0,N (ξN+1) · · · BN,N (ξN+1)

]
(32)

and a vector of coefficients for rth state profile as:

Cr(k) = [ cr,0(k) · · · cr,1(k) · · · cr,N (k) ]
T

(N+1)×1
(33)

The state vector for rth state variable can be written as

χr(k) =
[ (

χd
r(k)

)T
(χa

r(k))
T
]T

= BCr(k) (34)

Further, stacking the above quantities as:

Bd = blockdiag(Bd, ...,Bd, ...,Bd) (35)

Ba = blockdiag(Ba, ...,Ba, ...,Ba) (36)

C(k) =
[
(C1(k))T · · · (Cn(k))T

]T
n(N+1)×1

(37)

the augmented state vector can be represented as

χ(k) = BC(k) (38)

with B =
[ (

Bd
)T

(Ba)
T
]T
n(N+1)×n(N+1)

(39)

Thus, using the relationship given by Eq. (38) and the
property of BP given by Eq. (30) the bounds on the
estimated profiles can be imposed by constraining the pre-
dicted coefficients for individual state variables. Thus, Eq.
(20) representing the profile constraints in the constrained
update step (Eqs. (18) to (20)) can be replaced by

XL ≤ C(k) = B−1χ(k) ≤ XH (40)

where, XL and XH ∈ Rn(N+1)×1 are the vectors containing
the lower and upper bounds for the state profiles of various
state variables as

XL =
[
(x1,L)1

N+1 · · · (xn,L)1
N+1

]T
(41)

and XH =
[
(x1,H)1N+1 · · · (x1,H)1N+1

]T
(42)

Here, 1N+1 represents row vector of ones of size (N + 1).
Note that Eq. (40) represents linear inequality constraints.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

621



Table 1. Comparison of various approaches for
constrained profile estimation

Approaches Discretization
based (Seth
et al. (2023))

Extremum
based
(Current
work)

BP based
(Current
work)

Relation to
original prob.

Approx. re-
formulation
(less conser-
vative)

Exact refor-
mulation

Approx. re-
formulation
(more con-
servative)

Nature of
optim. prob.
(DAEs with
linear algb.
eqns.)

QP NLP QP

Constr. satisf.
guarantee

No Yes Yes

Table 2. Modeling related parameters

Plant(FD model) OC model

No. of grid/colloc. points 501 13

No. of differential states 998 22

No. of algebraic states 4 4

Size of state vector 1002×1 26×1

No. of temp. measurements 6 6

Further, it is to be noted BP based approach is conserva-
tive in nature. This is because constraining the coefficients
ensures bounded estimated state profiles, but violation of
bounds by Bernstein coefficients does not necessarily imply
that estimated state profiles will also violate the bounds.
For the special case of linear algebraic constraints, BP
based approach leads to a QP problem. The existing and
proposed approaches are compared in Table (1).

5. CASE STUDY

5.1 Auto-thermal rector system

We now investigate the effectiveness of our proposed ap-
proaches in generating accurate state profile estimates
that satisfy specified bounds on a simulation based Auto-
Thermal tubular reactor system with two primary state
variables: dimensionless concentration (C) and dimension-
less temperature (T). The coupled PDEs governing the
pseudo homogeneous dynamic model of the system are
given in Berezowski et al. (2000). Simulations are based
on the parameter values provided by Pacharu et al. (2012):
Pem = 100; PeT = 100; δ = 2; ψ = 0.3;Da = 0.15; κ = 2;
γ = 10; ω = 1.4. Further details on the order of plant
(‘FD model’) and the chosen OC model for developing
state estimator are summarized in Table (2). Also note
that the matrices (Qa,Ra and S) corresponding to the
model plant mismatch (MPM) are evaluated once the
order of the OC model is fixed. For more details on these
aspects refer Seth et al. (2023). For estimation purposes,
the initial covariance corresponding to differential states,
Pd

0|0 was taken as 3I22×22. Temperature measurements

at 6 equidistant locations were assumed to be available
(0, 0.2, 0.4, 0.6, 0.8, and 1) units. The measurements were
assumed to be corrupted with sensor noise, Rs = 0.012 ×
I6×6. The cooling medium in the jacket was treated as
the manipulated input, TH(k) = TH,m(k) +wu(k) where,

wu(k) ∼ N (0,Qu) and TH,m(k) varies as a multistep input
signal with Qu = 0.0012.

The following approaches are compared:
Approach A: Profile constraints imposed using dis-
cretization based approach (ref: section (3.2)).
Approach B: Profile constraints approach based on the
extremum of the estimated state profiles.
Approach C: Profiles constraints approach based on the
Bernstein coefficients.
Note that the constrained update step is invoked only
when there is violation of constraints. For approaches B,
and C, this violation was checked by checking the profile
extremes as discussed in Section (4.1), while for approach
A the violation was checked by checking constraints viola-
tion at the discretized points.

State estimation was performed for M = 30 stochastic
simulation runs, and Ns = 150 sampling instants. The
stochastic simulations vary in initial state profiles to the
plant, manipulated input sequence and the noise real-
izations in measurements and disturbance inputs. Figure
(1) shows the snapshots of profile estimates of reactor
concentration for a typical simulation run. For illustra-
tive purposes, we have also included the profile estimates
obtained with bounds imposed only on the state values
at collocation points (conventional approach). It can be
seen that the approaches A-C prevent the violation of
constraints by the estimated profiles. The performance
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Fig. 1. Profile estimates of concentration at initial sam-
pling instants for various approaches

of approaches A-C are further examined using average
normalized root mean square error (ANRMSE) computed
for rth state as:

ANRMSEr =
1

MNs

M∑
p=1

Ns∑
k=0

NRMSE(p)
r (k) (43)

where, NRMSE stands for normalized root mean squared
error values. For the pth simulation run it is defined as:

NRMSE(p)
r (k) =

1

σ(X
(p)
r (k))


Nf+1∑
i=1

(ε
(p)
r (zi, k))

2

Nf + 1


1
2

(44)

where, ε(p)r (zi, k) = x(p)r (zi, k)− χ̂(p)
r (zi, k|k)

Here X
(p)
r (k) is the plant profile vector of rth state variable

obtained at kth sampling instant of pth simulation run,
σ(.) represents the standard deviation in the corresponding

state profile, x
(p)
r (zi, k) and χ̂

(p)
r (zi, k|k) are the plant and
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estimated values of the state evaluated for the ith grid
point at kth sampling instant of pth simulation run. Nf +
1 is the total number of FD grid points. The mean of
the square of errors throughout the spatial profile of the
reactor was evaluated at kth instant and was normalized by
the variance in the true profile at that instant. Also, mean
average profile squared error (MAPSE) values were eval-
uated to compare the profile estimation errors. MAPSE
values for the rth state variable is defined as:

MAPSEr(zi) =
1

M

M∑
p=1

(
1

Ns

Ns∑
k=1

(
ε(p)r (zi, k)

)2)
(45)

0 ≤ zi ≤ Nf + 1

The average computation time per time instant for differ-
ent schemes is also compared.

Observing the time averaged profile estimation error plot-
ted in Figure (2) it can be concluded that out of the
three approaches, imposing constraints using Bernstein
coefficients produces profile estimates with low estimation
error throughout the spatial domain. On the other hand,
setting constraints using the extreme values of the profiles
can lead to high estimation errors. The ANRMSE and the
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Fig. 2. MAPSE for various estimation schemes

avg. computation time for the 30 stochastic simulations
are stated in Table (3). The values in the bracket are
evaluated considering only first 20 sampling instants where
constraint violations are more prominent. The values pre-
sented in Table (3) demonstrate significant difference in
computational efficiency among three different approaches.
Specifically, the approach utilizing Bernstein coefficients
is approximately 8 and 16 times faster than root-finding,
and spatial discretization approaches, respectively. This is
because Bernstein coefficient approach involves solving QP
with only a few linear inquality constraints. Further, it is
important to note that the quality of profile estimates and
the computation time for the spatial discretization based
approach depends on number of discretization points used
for imposing profile constraints. It is evident from the
estimation error values that the use of extreme values of
the polynomials for constraint satisfaction leads to notably
higher estimation errors. On the other hand, the approach
utilizing Bernstein coefficients outperforms the other two
approaches in terms of profile estimation accuracy.

6. CONCLUSIONS

Two analytical methods for constrained profile estima-
tion of DPSs are proposed. In particular, the constrained

Table 3. ANRMSE and comp. time values

Approach-A Approach-B Approach-C

ANRMSE-C 0.0261 0.0315 0.0234

ANRMSE-T 0.0393 0.0458 0.0361

Avg. comp.
time (sec)

0.0659
(0.3559)

0.0419
(0.1678)

0.0224
(0.0215)

update step for EKF was modified to account for the
constraints on the spatial profiles over the entire spatial do-
main. The modifications ensure that the state profiles re-
constructed using estimated OC state vector are bounded.
The first method involves finding and constraining the
maximum and minimum values of the spatial profiles in
the relevant spatial domain of the system. This approach
leads to the formulation of nonlinear programming prob-
lem (NLP), due to the nonlinear computations required
for determining extremum values of the approximated
polynomials. The second approach leverages the property
of the Bernstein form of polynomials and thus requires
the representation of the spatial state profiles in Bernstein
from. Here, bounds are imposed indirectly by constrain-
ing the coefficients of the Bernstein polynomials, thereby
resulting in conservative bounds. However, this method
allows the formulation of bounds as linear inequality con-
straints. Thus this approach is computationally efficient
as compared to the former approach as depicted from the
average computational time values obtained in the case
studies. The results from simulation studies conducted
on tubular reactor system demonstrates the efficacy of
the proposed methods in producing spatial state profiles
within the specified bounds.
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