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Abstract:
This paper introduces a model-free real-time optimization (RTO) framework based on un-
constrained Bayesian optimization with embedded constraint control. The main contribution
lies in demonstrating how this approach simplifies the black-box optimization problem while
ensuring “always-feasible” setpoints, addressing a critical challenge in real-time optimization
with unknown cost and constraints. Noting that controlling the constraint does not require
detailed process models, the key idea of this paper is to control the constraints to “some” setpoint
using simple feedback controllers. Bayesian optimization then computes the optimum setpoint
for the constraint controllers. By searching over the setpoints for the constraint controllers,
as opposed to searching directly over the RTO degrees of freedom, this paper achieves an
inherently safe model-free steady-state RTO. In particular, this paper shows that the proposed
approach can achieve zero cumulative constraint violation without relying on assumptions about
the Gaussian process model used in Bayesian optimization.The effectiveness of the proposed
approach is demonstrated on a benchmark Williams-Otto reactor example.

Keywords: Real-time optimization, data-driven optimization, constraint control, Bayesian
optimization

1. INTRODUCTION

Real-time optimization (RTO) plays a pivotal role in pro-
cess operations due to its ability to adapt to changing op-
erating conditions. It ensures that processes can efficiently
respond to changing factors like fluctuating demand or
supply, thereby optimizing production processes in real-
time. More importantly, it helps maintain process safety
and desired product qualities. The standard approach to
real-time optimization involves developing detailed process
models that are updated using measurements correspond-
ing to steady-state process operation. The updated process
models are then used within an optimization problem to
compute the optimal setpoints (Chen and Joseph, 1987;
Darby et al., 2011). However, developing and maintain-
ing detailed process models can be a major hurdle that
impedes practical implementation of RTO in industrial
practice.

Model-free approach to online process optimization is an
attractive alternative that circumvents the need for rigor-
ous process models. There have been several attempts to
develop model-free RTO schemes, most of which are based
on online gradient estimation. The key underlying idea
behind these approaches is to estimate the steady-state
cost gradient directly from the process measurements, and
drive it to zero using integral action, such that the neces-
sary condition of optimality is asymptotically satisfied. See
⋆ Financial support from the NWOVeni Early Career Talent Scheme
is gratefully acknowledged.

for example Garcia and Morari (1981); Golden and Ydstie
(1989); Bamberger and Isermann (1978); François et al.
(2005); Dochain et al. (2011). However, estimating the
steady-state cost gradient often leads to prohibitively slow
convergence, especially for process with long settling times
(Srinivasan et al., 2011; Krishnamoorthy and Skogestad,
2022). Zeroth-order model-free optimization schemes such
as Bayesian optimization is a promising alternative that
avoids the need to estimate steady-state cost gradients.

Bayesian optimization is an effective method for optimiz-
ing unknown systems that finds the optimum by iteratively
interacting with the system. BO uses a probabilistic sur-
rogate model for the cost function, e.g., Gaussian process
(GP), which is updated with each new observation. An
acquisition function (also known as utility function) is
induced from the GP surrogate model that guides the
search for the optimum by systematically trading-off ex-
ploration and exploitation. Unlike gradient-based meth-
ods, Bayesian optimization calculates the next action in-
dependently of the current one, allowing for the possibility
of significant jumps in the search space. While this notion
of exploration speeds up the search for the global optimum,
it can also lead to the exploration of infeasible setpoints
that may violate safety-critical constraints at steady-state.

Constrained Bayesian optimization is still an active
area of research, especially for engineering applications
(Berkenkamp et al., 2021; Lu and Paulson, 2022; Krish-
namoorthy and Doyle, 2022; Xu et al., 2022). The classical
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approach to handling constraints is to scale the acquisition
function with the probability of constraint feasibility com-
puted from the GP surrogates for the constraints (Gelbert
et al., 2012). Although such an approach would eventually
converge to a feasible setpoint, it could potentially explore
an infeasible setpoint. This is because the probability of
constraint (in)feasibility at any point will be known with
high probability only after observing the constraint at that
point. As such, this approach does not have any guarantees
on the cumulative violation of the constraints. Another
approach, known as Safe Bayesian optimization, ensures
no constraint violation with high probability (Berkenkamp
et al., 2021; Krishnamoorthy and Doyle, 2022; Krish-
namoorthy and Doyle III, 2023) under the assumption that
the constraint GPs are well calibrated (i.e., the true func-
tion is contained within the confidence intervals with high
probability). Satisfying such an assumption in practice can
often result in an overly cautious algorithm, since the safe
set may expand very slowly. A third class of approach uses
penalty functions, where the constraint violation is within
a prescribed budget, i.e. bounded cumulative constraint
violation (Lu and Paulson, 2022; Xu et al., 2022).

To this end, all the existing approaches to constrained
BO require probabilistic surrogate models not just for
the cost but also for all the unknown constraints. Safety
guarantees and /or cumulative constraint violation bounds
only hold under the assumption that the GP models for
the constraints are well calibrated. Simply put, calibrating
the hyperparameters of the constraint GPs can impact the
constraint handling capability. Furthermore, the different
approaches referenced above also assume that the con-
straints are independent, and uses individual GP surrogate
models for each unknown constraint.

In the context of real-time process optimization, the in-
formation flow can be vertically decomposed, where the
upper layer uses the setpoints to the lower layer as degrees
of freedom, and the lower layer implements the actions to
achieve the setpoint. Based on the fact that controlling
the constraint to a setpoint does not require detailed
process models, the key idea of this paper is to exploit
decentralized feedback controllers (such as PID) to control
the constraints to “some” setpoint, and use Bayesian op-
timization to find the optimal setpoints to the lower level
constraint controllers. If a constraint is optimally active,
then the setpoint computed by Bayesian optimization will
converge to the limiting value. Whereas, if a constraint is
not optimally active, then the Bayesian optimization will
converge to some feasible setpoint that optimizes the cost.
By transforming the original optimization problem with
embedded constraint controllers, BO now searches over the
setpoint space, as opposed to searching directly over the
RTO degrees of freedom. As such, the decision variables for
the BO now only have simple box constraints, which can
be trivially handled using standard Bayesian optimization,
and the box constraints inherently ensure that the RTO
layer will never compute an infeasible setpoint.

To this end, this paper presents an inherently safe Bayesian
optimization with constraint control embedded (ECCBO)
that achieves zero cumulative constraint violation, without
relying on assumptions about the Gaussian process model
used in Bayesian optimization. Since the focus of the paper
is on the steady-state RTO layer, “safety” is defined w.r.t

the constraints at steady-state operation. The reminder of
the paper is organized as follows: Section 2 recalls the pre-
liminaries of RTO, constraint control, and Bayesian opti-
mization. The proposed inherently safe Bayesian optimiza-
tion algorithm with embedded constraint control (EC-
CBO) is presented in Section 3. Section 4 demonstrates
the proposed approach using a benchmark Williams-Otto
rector case study, before concluding the paper in Section 5.

2. PRELIMINARIES

Real-time optimization and constraint control: Consider
the steady-state real-time optimization problem

min
u∈U

J(u,d) (1a)

s.t. gi(u,d) ≥ 0, i ∈ I1:n (1b)

where u ∈ U ⊆ Rm denotes the set of decision variables
for the RTO layer, d ∈ Rl denotes the set of disturbances,
J : U × Rl → R denotes the cost function, and gi : U ×
Rl → R for i = 1, . . . , n denotes the set of n constraints.
The input constraint set U = Ui × · · · × Um is a simple
set composed of upper and lower bounds. Typically, the
degrees of freedom u for the RTO layer are provided as
setpoints to the regulatory control layer below.

For a process with n constraints, there can be utmost 2n

possible combinations of active constraints. The specific
set of optimally active constraints, denoted as gA ⊆ g :=
[g1, . . . , gn]

T , may change depending on the operating
conditions. If a constraint is known to be optimally active,
indicated by gi ⊆ gA and g∗i = 0, it can be controlled to
a setpoint of its limiting value (which is 0 when expressed
in the positive null form as done in (1)) using simple
feedback controllers like PID, a technique known as active
constraint control. However, for constraints that are not
optimally active, denoted as gj ⊈ gA, determining their
non-trivial optimal values gj(u

∗,d) = z∗j > 0 becomes
challenging.

Typically, the RTO layer uses detailed process models to
solve an optimization problem numerically to identify the
set of active constraints and the optimal values z∗j > 0
for the inactive constraints (assuming that the model used
in the optimization solver captures the plant accurately).
However, this can be challenging if detailed process models
are not available, which is the case that is considered in
this paper.

Bayesian Optimization: Bayesian optimization aims to
optimize an unknown black-box function

min
x∈X

F (x)

where X is a simple set. Bayesian optimization uses
a probabilistic model, such as Gaussian processes as a
surrogate for the unknown function F (x).

F (x) ∼ GP (µ(x), k(x,x′)) (2)

where µ(x) := E(F (x)) denotes the mean and k(x,x′) :=
E [(F (x)− µ(x)) (F (x′)− µ(x′))] denotes the covariance
of the unknown function. Given noisy measurements y of
the unknown function F (x), the Gaussian process model
is updated by conditioning on the observations {(xi, yi)}i
(Rasmussen and Williams, 2006). An acquisition function
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α(x) is induced from the Gaussian process surrogate,
which is then optimized to find the next action to take.

xt+1 = argmin
x∈X

αt(x) (3)

where αt : X → R is the acquisition function induced
from the Gaussian process model conditioned on the past
t measurements {(xi, yi)}ti=1. There are several choices
for acquisition functions such as expected improvement,
lower confidence bound, Thompson sampling etc. See for
example Frazier (2018) and the references therein for
further details. The crucial idea here is that the acquisition
function balances exploration and exploitation to find
the optimum of the unknown function by sequentially
interacting with the system.

Contextual Bayesian optimization: To account for vari-
ables that are not directly under our control, such as prices,
feed rates etc., the Bayesian optimization problem can be
extended to account for these external factors. Here the
optimization problem is formulates as

min
x∈X

F (x,d)

where d ∈ Rl denotes the external factors, also known
as contexts. In this case, the GP model is used as a
surrogate for F (x,d) by conditioning on the observations
{([xi,di]

T, yi)}i. For a given contextual information dt+1

at time step t + 1, the next action is computed by
optimizing

xt+1 = argmin
x∈X

αt(x,dt+1) (4)

where αt : X ×Rl → R is any suitable acquisition function
derived from the GP surrogate conditioned on the past t
observations. The literature on constrained Bayesian opti-
mization that accounts for additional nonlinear constraints
is not included, as these will not be utilized in this paper.

3. BAYESIAN OPTIMIZATION WITH EMBEDDED
CONSTRAINT CONTROL (ECCBO)

Assumption 1. The cost and constraint functions J(·, ·)
and gi(·, ·) in (1) are unknown, but are measured in real-
time.

The main objective is to find the optimum of the real-time
optimization problem (1), under Assumption 1. In search
for the optimum using Bayesian optimization, we want to
ensure that no infeasible setpoints are explored.

In this paper, we propose to exploit constraint control to
safely find the optimum of the black-box system. To do so,
we transform the inequality constrained problem (1) to the
following equality constrained optimization problem.

min
u,z

J(u,d) (5a)

s.t. gi(u,d) = zi, i ∈ I1:n (5b)

where z = [z1, . . . , zn]
T denotes the optimum value of the

constraints.

We use n degrees of freedom to tightly control the n
constraints to their corresponding setpoints zi using decen-
tralized feedback control loops. The n degrees of freedom,
and the n constraints are paired such that the steady-state
relative gain array (RGA) of the resulting transfer matrix

is non-negative and close to identity matrix at crossover
frequencies. In order to minimize large time delays it would
be preferable to pair constraints that are physically close
to the manipulated variable (pair-close rule). One must
also try to avoid pairing important constraints with degree
of freedom ui with tight bounds Ui (Krishnamoorthy and
Skogestad, 2022).

We know that if a constraint gi is optimally active, then
zi = 0, and if a constraint gj is not optimally active, then
we want zi > 0. However, there are two challenges. Firstly,
we do not know which of the constraints are optimally
active, and which are not. Secondly, for the inactive
constraints gj ⊈ gA, we do not know the exact value of
zj > 0. This paper proposes to use unconstrained Bayesian
optimization to find the optimal setpoints zi ∈ [0, z̄i] for
i = 1, . . . , n constraint controllers, and for the remaining
unconstrained degrees of freedom un+1, . . . , um.

Assumption 2. (Perfect control). The constraint controllers
are designed such that the desired setpoint zi ∈ [0, z̄i] is
asymptotically achieved for all i = 1, . . . , n.

Since the constraints are tightly controlled to their corre-
sponding setpoints zi, we can equivalently rewrite (5) as

min
x∈X

F (x,d) = min
u∈U,z∈Z

J(u,d) (6)

s.t. gi(u,d) = zi, i ∈ I1:n
where x := [z1, . . . , zn, un+1, . . . , um]T . Let us define Zi =
[0, z̄i], where z̄i is some arbitrarily large upper bound for
the constraint set points. This leads to the constraint set
X := Z1 × · · · × Zn × Un+1 × · · · × Um.

We can see that (6) is an unconstrained black-box op-
timization problem, which can be solved using standard
contextual Bayesian optimization. Here, we use a Gaussian
process as a surrogate for the cost function F (x,d) as a
function of x and d. The GP is conditioned on the cost
observed with the embedded constraint controllers that
control gi to a setpoint of zi using ui as the manipulated
variable.

Remark 1. (Steady-state wait-time). Note that the Gaus-
sian process model used in the Bayesian optimization algo-
rithm is updated based on steady-state cost measurement.
As such, the BO-based RTO scheme requires a steady-
state detection algorithm to ensure that GP models are
conditioned on steady-state data.

Let us define the violation of the ith constraint at steady-
state as vi,t = − [gi(ut,dt)]

−
and the cumulative violation

over T RTO iterations as

VT =

n∑
i=1

T∑
t=1

vi,t

Theorem 1. Under Assumption 2, the ECCBO framework
achieves a cumulative violation of VT = 0 for any acquisi-
tion function.

Proof. The Bayesian optimization using any acquisition
function by design searches over the setpoints zi ∈ [0, z̄i]
for i = 1, . . . , n. By controlling the constraints to a setpoint
zi ≥ 0 using the degrees of freedom ui, the constraint
violation at steady-state vi,t = 0 for all t ≥ 1, for all
i = 1, . . . , n, which results in VT = 0.
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Fig. 1. Proposed real-time optimization scheme using Bayesian optimization highlighted in gray, with embedded
constraint control (ECCBO) highlighted in blue. The process block shown here includes the lower level setpoint
control layer and the plant. (a) More degrees of freedom than constraint m > n. (b) More constraints than degrees
of freedom m < n. Note that the process block may further contain lower level regulatory controllers.

Denoting F ∗ as the minimum of (6) for a given disturbance
d, querying an action xt at time t may lead to a gap at
steady-state, which we define as the steady-state regret
rt = F (xt,d) − F ∗. The cumulative regret over T RTO

runs is then defined as RT =
∑T

t=0 rt.

Remark 2. (Regret). Since the Bayesian optimization in
ECCBO reduces to a standard unconstrained Bayesian
optimization, the regret bound for RT follows from BO
literature for specific acquisition functions under appropri-
ate conditions (Chowdhury and Gopalan, 2017). Bounding
the contextual regret is in general a challenging problem,
as regret is evaluated in relation to the best action for
each specific context. Consequently, the worst-case regret,
e.g., when employing GP-LCB, to identify the optimal
action x∗ can be determined after multiple instances of
encountering a particular context. This is also reasonable
in online process optimization of continuous processes,
where the goal is optimize for the steady-state operating
conditions, i.e. for a given d. As such, the standard regret
results from the BO literature will also hold for ECCBO.

Remark 3. (Overconstrained case m < n). If the number
of degrees of freedom is less than the number of con-
straints, we can have utmost m constraints optimally ac-
tive. In this case, max/min selector blocks can be used
along with the n embedded constraint controllers. The
choice of the selectors and the grouping of the constraint
controllers for each selector block follows the selector
design procedure as explained by Krishnamoorthy and
Skogestad (2020). The setpoint to the n controllers will
be determined by the unconstrained Bayesian optimiza-
tion. That is, the decision variables for the transformed
Bayesian optimization problem are x = [z1, . . . , zn]

T. The
is schematically shown in Fig. 1b.

The design procedure for the proposed model-free RTO
scheme, known as ECCBO-RTO can be summarized as
follows:

• Offline:
– Pair each constraint, denoted as gi, with an avail-
able degree of freedom using established pair-

ing rules from process control literature (Krish-
namoorthy and Skogestad, 2022).

– Tightly tune the constraint controllers to min-
imize steady-state wait time, and at the same
time ensuring clear time-scale separation from
any lower level controllers.

– Build a Gaussian process to model the cost
with respect to the contexts d, the setpoints zi
to the constraint controllers i = 1, . . . , n, and
any remaining unconstrained degrees of freedom
un+1, . . . , um.

• Online:
– If the process is operating at steady-state, update

the Gaussian process model by conditioning on
the past t observations of the cost measurement.

– Induce an acquisition function αt(x,d) based
on the updated Gaussian process model, where
x := [z1, . . . , zn, un+1, . . . , um]T contains the set
of setpoints for the constraint controllers, as
well as any remaining unconstrained degrees of
freedom.

– For a given context dt+1, optimize the acquisition
function α(x,dt+1) to compute the actions xt+1,
which is implemented on the process.

4. ILLUSTRATIVE EXAMPLE

This section demonstrates the proposed approach on a
benchmark Williams-Otto reactor example, which con-
verts raw materials A and B to useful products P and
E, through a series of reactions

A+B → C k1 = 1.6599× 106e−6666.7/Tr

B + C → P + E k2 = 7.2177× 108e−8333.3/Tr

C + P → G k3 = 2.6745× 1012e−11111/Tr

The feedrate FA with pure A component is an external
disturbance. The feedrate FB and the reactor temperature
Tr are the two degrees of freedom, that are used to
optimize the process.
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Fig. 2. Simulation results shown the performance of our proposed approach (solid black), compared with the true
steady-state optimum (red dashed lines). The decision variable for the Bayesian optimization, namely the setpoint
for the constraint controller is shown in yellow solid lines.

max
FB ,Tr

1043.38xP (FA + FB) + 20.92xE(FA + FB)

− 79.23FA − 118.34FB (7)

s.t. xG ≤ 0.08

xA ≤ 0.12

To design an ECCBO-RTO for this problem, we employ
two SISO constraint control loops.

(1) Control the concentration of component G to a set-
point zG using reactor temperature Tr.

(2) Control the concentration of component A to a set-
point zA using feed rate FB .

Contextual Bayesian optimization is then used to find
the optimal setpoints zG ∈ [0.07, 0.08]kg/kg and zA ∈
[0.07, 0.12]kg/kg, for the two control loops, respectively,
for a given feed rate FA. Simply put, the decision variables
for the Bayesian optimization are zG and zA, and since the
search space for this decision variables do not exceed 0.08
and 0.12, respectively, we can guarantee by design that
the ECCBO-RTO layer will not compute any infeasible
setpoints.

The plant measurements and the constraint controllers are
sampled at a 1-second interval. For the two constraint
control loops, the PI controllers are tuned using SIMC
tuning rules. The GP surrogate for the cost used by
the Bayesian optimization algorithm uses the RBF kernel
along with a bias kernel, and the Bayesian optimization
uses the lower confidence bound (GP-LCB) acquisition
function 1 . The Gaussian process is modeled using GPy

1 Traditional BO literature considers maximization problem, and
hence uses the upper confidence bound (GP-UCB). The equivalent

package (GPy, since 2012), and the acquisition function is
optimized using L-BFGS algorithm from the SciPy library.

To initiate the Bayesian optimization routine, we employ
a well-established steady-state detection algorithm, widely
adopted in commercially available RTO tools. This algo-
rithm is based on a statistical test that compares the total
variance between consecutive signal points, ensuring the
process operates at steady-state conditions as described
by Cao and Rhinehart (1995); Câmara et al. (2016).

The simulation initiates with a feed rate of FA = 1kg/s,
and changes to FA = 1.9kg/s at time t = 10 h, and back to
FA = 1kg/s at time t = 25h. The set of active constraint
changes, as the feed rate FA varies. The true steady-
state optimum for the different conditions are shown in
red dashed lines in Fig. 2. Initially, when the feed rate
FA = 1kg/s, the constraint on xA is not optimally active.
Although this is unknown, the Bayesian optimization al-
gorithm finds the optimum setpoint for xA by sequentially
interacting with the system. Since the search space for
zA ∈ [0.07, 0.12], we can see that the setpoints are always
below 0.12, thus always ensuring constraint feasibility.
The setpoint zA computed by the BO algorithm is shown
in yellow in the top left subplot in Fig. 2. For feedrate
FA = 1.9kg/s, the constraint on xA will be optimally
active. In this case, the Bayesian optimization algorithm
converges to the limiting value of zA = 0.12kg/kg, without
exploring any infeasible setpoints. Although at t = 10h,
the constraint is dynamically violated, the setpoint com-
puted by ECCBO-RTO is feasible (i.e., no constraint vio-
lation at steady-state). Finally, when the feed rate reduces

acquisition function for a minimization problem is the lower confi-
dence bound.
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back to FA = 1kg/s, the setpoint computed by the BO
algorithm converges to the optimal setpoint in one step.
This is because, the GP has previously seen the data for
this “context”. Thanks to Gaussian processes conditioned
on previously observed data, our algorithm converges to
the optimum in one step. For this process, the purity con-
straint is very low and from engineering insight we know
that this constraint will likely be optimally active. This
can be incorporated in the GP prior, to avoid unnecessary
explorations. This is reflected in the setpoint zG.

In prior research, we assessed interior point-based safe
Bayesian optimization and constrained Bayesian optimiza-
tion on the same Williams-Otto reactor example. The
findings illustrated in (Krishnamoorthy and Doyle III,
2023, Fig. 5) demonstrated that traditional constrained
Bayesian optimization (Gelbert et al., 2012) frequently
explored infeasible setpoints, operating far beyond safe
limits until the next RTO update. This limitation makes
it impractical for real-time optimization in systems with
safety-critical constraints. In contrast, safe Bayesian op-
timization, depicted in (Krishnamoorthy and Doyle III,
2023, Fig. 4), avoided infeasible setpoints but required
independent Gaussian process models for each constraint,
which must be carefully calibrated. For the sake of brevity,
these results are not reiterated in this paper, and readers
are referred to Krishnamoorthy and Doyle III (2023).

5. CONCLUSION

In conclusion, this paper introduced a novel model-
free Real-Time Optimization (RTO) scheme, ECCBO
(Bayesian optimization with Embedded Constraint Con-
trol). By leveraging the simplicity of constraint control,
and the power of Bayesian optimization, this approach
addresses a critical challenge in model-free real time op-
timization of process systems with unknown constraints.
The main advantage of ECCBO is that it offers a practical
solution that ensures feasibility and safety using well es-
tablished control tools within the process control industry.
Specifically, we demonstrated that ECCBO achieves zero
cumulative constraint violation without imposing assump-
tions on the GP model used in Bayesian optimization.
Since ECCBO leverages the vertical decomposition with
respect to the information flow in plant-wide control, it is
important to note that this result is not generalizable to
the broader constrained Bayesian optimization literature,
where such lower level controllers are not implementable.
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