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Abstract: This paper explores some hierarchical extended parameter estimation algorithms
for finite impulse response moving average (FIR-MA) model from observation data, including
the hierarchical extended stochastic gradient algorithm, the hierarchical multi-innovation
extended stochastic gradient algorithm, the hierarchical extended gradient algorithm, the
hierarchical multi-innovation extended gradient algorithm, the hierarchical extended least
squares algorithm and the hierarchical multi-innovation extended least squares algorithm. The
proposed hierarchical algorithms for the FIR-MA systems can be extended to other stochastic

systems with colored noises.
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1. INTRODUCTION

System identification is the theory and methods of explor-
ing and constructing the mathematical models of static
and dynamical systems from observation data (Ljung,
1999; Xu et al., 2024; Miao, 2023). Such systems include
linear systems, bilinear systems and nonlinear systems
(Liu et al., 2022). The gradient identification methods
are derived through minimizing the criterion functions by
using the negative gradient search (Xu et al., 2020; Liu
and Chen, 2023; Liu et al., 2024). The least squares is the
basic methods of investigating the identification of linear-
parameter systems and has been applied to many fields
(Pan et al., 2023). The basic idea of separable identifi-
cation is to decompose the system parameters into two
parameter sets and to use the existing gradient and least
squares identification methods for interactively estimating
two parameter vectors. Xu proposed a separable Newton
recursive estimation method through system responses
based on dynamically discrete measurements with increas-
ing data length (Xu, 2022). Xu et al developed a separable
stochastic gradient estimation method for multivariable
systems (Xu and Ding, 2023).

Recently, some identification ideas and identification prin-
ciples have been proposed for building the mathematical
models and determining the model parameters, such as the
multi-innovation identification theory (Ding, 2013), the
hierarchical identification principle (Ding, 2024; Ding et
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al., 2024), and the coupling identification concept (Ding,
2013). These promote the development and prosperity of
system identification. The multi-innovation identification
theory can enhance parameter estimation accuracy (Xu
et al., 2024; Yang, 2023). The hierarchical identification
principle can greatly enhance computational efficiency of
identification algorithms especially for large-scale complex
systems (Ding et al., 2024, 2023; Yang, 2024; Xing et al.,
2024). The coupling identification concept can reduce com-
putational amount of identification algorithms for multi-
variable systems. They can be used for linear systems and
nonlinear systems. The separable projection algorithms,
the separable least squares algorithms, the separable gra-
dient algorithms and the separable Newton algorithms
belong to the category of hierarchical identification.

2. FINITE IMPULSE RESPONSE MOVING
AVERAGE SYSTEMS

Consider the following finite impulse response moving
average (FIR-MA) system described by

y(r) = B(z)u(r) + D(2)v(7), (1)
where {u(7)} and {y(7)} are the input-output sequences
of the system, {v(7)} is a stochastic white noise sequence
with zero mean and variance o2, and B(z) and D(z) are
the polynomials in the unit backward shift operator z~!
(27 Yy(r) =y(r — 1) or 2zy(7) = y(7 + 1)) and defined as

B(z):=biz7 4 boz 2 4 4 by 2™,
D(z):=14+diz7 4 doz™? 4+ + dp, 27"
Define the parameter vectors b and d and the information

vectors ¢(7) and 1 (7) as
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bi,ba, -, bn,|T € R™,
dl) d dnd] S Rnd?
@() i=[u(r — 1), u(r —2),- - u(r —m)]" €R™, (2)
Y(r) = [v(r = 1),0(r = 2), - ,v(r = ng)]" €R™. (3)
Suppose that u(7) and y(7) are avallable input-output
data. Note that the information vector ¢(7) consisting of
the system input u(7 — ) is known, and the noise vector
t(7) is unknown. The objective of identification in this
paper is to investigate some hierarchical parameter esti-

mation algorithms for identifying the system parameters
b; and d; from collected input-output data u(7) and y(7).

bi=|
di=|
)=

Define the disturbance noise

w(T) := D(2)v(T). (4)
Suppose that the orders n; and ng are known, and let
n = ny + ng. The initial values of all variables are set to
zero, i.e., u(r) = 0 and y(7) = 0 for 7 < 0.

Equations (4) and (1) can be written as

w(r) =4 (r)d + v(7), (

y(r)=¢" (T)b+w(r

ot
N

)
)

—~~
D
~

= ¢ (Nb+ " (T)d + (7). (7
Define the fictitious output
y1(r) == y(r) — ¢ (7)d € R.
From (7), we have
yi(r) =" (1)b+ (7). (8)

Equations (8) and (5) form the decomposition-based hier-
archical identification model of the FIR-MA system in (1).
Such a decomposition leads to the coupled variables b
and d between two subsystems in (8) and (5). Therefore,
when exploring their identification methods, we must use
the hierarchical identification principle to coordinate the
associate items between them.

3. HESG ESTIMATION ALGORITHMS

The decomposition-based identification methods are called
the hierarchical identification methods. Here discusses
the hierarchical recursive extended stochastic gradient
(HRESG) algorithm for FIR-MA systems. The HRESG
algorithm is called the hierarchical extended stochastic
gradient (HESG) algorithm for short.

For the hierarchical identification models in (8) and (5),
define two gradient criterion functions:

Ti(b) = 5l () = 67 ()b,
Ta(d) = 3 fuwlr) — 47 (7).

PR
Let b(t) € R™ and d(7) € R™ be the estimates of b and

d at time 7. Using the negative gradient search, we can
obtain the gradient-based recursive relations:

b(r) =b(r — 1) + ;’i((:))
x[y(r) =" (1)d — ¢"(1)b(r = 1)],  (9)
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ri(r)=ri(t = 1) +[|o(7)|?, ri(0) =1, (10)
d(r)=d(r —1) + 28

x[y(T) — ¢T(T)b — T (r)d(T —1)], (11)
ra(7) =ra(r — 1) + [[op(7)|?, 72(0) = 1. (12)

The algorithm in (9)—(12) involves the unknown (7), d
and b. Here uses the hierarchical identification principle to
realize the parameter estimation.

Let 0(7) be the estimate of the noise v(7). According to
the definition of ¥ (7) in (3), use the residual o(7 — i) to
define the estimate of (1) as

P(r) = [o(7 — 1),
From (7), we have
(1) =y(7) = " (1)b— ¥ ()d.
Replacing the unknown vectors (1), b and d with their

corresponding estimates ¥ (7), b(7) and d(7), the estimate
of v(7) can be computed through

(1) =y(r) = " (T)b(r) =P (1)d(r).  (14)
According to the hierarchical identification principle, re-
placing the unknown vectors 4 (7), d and b in (9)-(12)
with their estimates ¥(7), d(7 — 1) and b(r — 1), getting
(15)—(19) and combining (2) and (13)—(14) obtain the
hierarchical extended stochastic gradient (HESG)
algorithm for estimating b and d of the FIR-MA systems:

B(r —2), -, 0(1 — ng)]T € R™(13)

bir) =btr = 1)+ £ Telr) (15)
e(r) =y(r) = ¢"(T)b(r — 1) = " (7)d(r — 1), (16)
ri(r)=r(r—1)+ |[¢(T)\\27 r1(0) =1, (17)
d(r)=d(r —1) + Z((ge(f), (18)
ro(r) =ra(r — 1)+ [h(7)|%, r2(0) =1, (19)
o(7)=[u(t —1),u(r —2), - ,u(t —nyp)|", (20)
1])(7_) = [QA)(T - 1)3@ TAf 2)7 A ’6(7-A7 nd)]Tv (21)
o(1) =y(r) — " (1)b(1) — ™" (1)d(7), (22)
6(r)=[b"(7),d"(7)]". (23)

In the HESG algorithm in (15)—(23), e(7) € R is called the
innovation. The noise vector ¢(7) in (21) is composed of
the residual 9(7 — i), so the HESG algorithm in (15)—(23)
is called the residual-based HESG algorithm. If we make
the modification:

(1) =le(t —1),e(r —2), et —ny)|", (24)
which is composed of the innovation e(r — i), then we
obtain the innovation-based HESG algorithm in (15)-(20)
and (22)—(24).

(1) To initialize, let 7 = 1, b(0) = 1,,, /po, d(0) = 1,,,/po,
r1(0) =1, 72(0) = 1, u(r —4) = 1/po, (7 — i) = 1/po,
t =1, 2, -+, max[ny,ngl, po = 10°. Set a small
positive number ¢.

(2) Collect the input-output data u(7) and y(7). Form
the information vector ¢(7) using (20) and the noise

vector ¢(7) using (21).
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(3) Compute the innovation e(r) using (16), r;
ing (17) and ro(7) using (19).

(4) Update the parameter estimation vectors b(r) us-
ing (15) and d(7) using (18). Compute the residual
0(7) using (22).

(5) If ||b() — b(r — 1)|| + [|ld(7) — d(7 — 1)|| > e, then
increase 7 by 1, and go to Step 2; otherwise, output

the parameter estimates b(7) and d(7) and terminate
this recursive calculation process.

For the HESG algorithm in (15)—(23), let r1(7) in (15)
equal ro(7) in (18), and take

ri(r) = ra(7) = 7(r) = v(m = 1) + [|p(n)|* + [|l9(7)I?,
with 7(0) = 1, then the HESG algorithm reduces to the
extended stochastic gradient (ESG) algorithm for the FIR~
MA systems.

(1) us-

4. HMI-ESG ESTIMATION ALGORITHMS

Let the positive integer p denote the innovation length.
According to the multi-innovation identification theory
(Ding, 2013), define the stacked output vector Y (p, 7) and

the stacked information matrices ®(p,7) and ¥(p,7) as

Y(p,7):=[y(r),y(r = 1), ,y(r —p+ 1", (25)
®(p,7) = [¢(7), (T — 1), 3¢>A(T—p+1)]» (26)
@(p.7) = [(r), (T = 1), (T —p+ 1)) (27)

Based on the hierarchical extended stochastic gradient
algorithm in (15)— (23) expanding the scalar innovation

e(r) = y(r) = #"(7)b(r — 1) — " ()d(7 — 1) € R in (15)

and (18) to an innovation vector

E(p,7):=Y(p,7) — ¥ (p,7)b(1 — 1)
~&" (p,7)d(7 — 1) € R”, (28)
expanding the information vectors ¢(7) and 9(7) in (15)—

(19) to the information matrices ®(p,7) and ¥ (p, 1), ob-
taining (29)—(33) and combining (25)—(28) and (20)—(23),
we obtain the hierarchical multi-innovation extended
stochastic gradient (HMI-ESG) algorithm for iden-
tifying the parameter vectors b and d as follows:

b(r)=b(r 1)+ 2T (.7, (29)
E(pa T) = Y(pa 7_) - @T(p’ T)I;(T - 1)
~&"(p,)d(r 1), (30)
ri(r) =ri(r = 1) + |2, I, (31)
d(r)=d(r—1)+ Wr(%) E(p,7), (32)
ra(7) =ra(r = 1) + [ (p, 1), (33)
Y(p,7)=[y(r),y(r = 1), ylr —p+ D", (34)
S(p,7)=[d(7): p(r — 1), (T —p+ 1), (35)
B (p,7) = [(7). (1 = 1), h(r —p+ 1), (36)
&(7) =[u(r —1),u(r — 2), su(t — nb)] ., (37)
Bp(r) =[0(r = 1),0(r - 2), ﬁ(T—nd)}T, (38)
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(1) =y(r) — ¢ (1)b(7) — " (7)d(7). (39)
This is the residual-based HMI-ESG algorithm. Letting
p = 1, the HMI-ESG algorithm reduces to the HESG
algorithm in (15)—(23). The steps of recursively computing
the parameter estimation vectors using the HMI-ESG
algorithm in (29)—(39) are listed here.

(1) To initialize, let 7 = 1, set the innovation length p and
the data 1ength L., i)( ) - 1’ﬂb/p07 A( ) - 1nd/p0>
r1(0) = 1, r2(0) = 1, y(T—J) =0, u(r —j) =0,
o(r—j)=1/po, j = 1 2, ,p+1nax[nb,nd] po is a
large positive number, e.g., pg = 106.

(2) Collect the input—output data u(7) and y(7).

(3) Construct the information vectors ¢(r) and (7)
using (37) and (38).

(4) Form the stacked output vector Y (p,7) using (34)
and the stacked information matrices @(p,7) and
W (p,7) using (35)-(36).

(5) Compute r1(7) and r9(7) using (31) and (33), and the
innovation vector E(p, T) using (30).

(6) Update the parameter estimation vectors b(r) and
d(7) using (29) and (32
using (39).

(7) If 7 < L, then increase 7 by 1 and go to Step 2;
otherwise, obtain the estimates b(L.) and d(L.) and
terminate this procedure.

). Compute the residual ()

5. HEG ESTIMATION ALGORITHMS

According to the hierarchical identification models in (8)
and (5), define two criterion functions:

J3(b) == — &(7)b||%,

Tild) = L[ W(r) @ (r)dl.

where the stacked output vector Y (7), the stacked infor-
mation matrix @(7), the stacked fictitious output Y;(7),
the stacked noise vector W (7) and the stacked noise ma-
trix (1) are defined as

1
§HY1(T)

Y(7):=1[y(1),y(2), - ,y(n)]" €R,
P(7) :=[p(1), $(2),- -+, p(7)]" € RT"™,
Yi(r):=[p(1),51(2),- -, (7)]" €RT,
W(r) = [w(),w(2), -, w(r)]" €R7,

P (r):= (1), 4(2),- -, p(r)]" € R

Let b(7) € R™ and d(r) € R™ be the estimates of the
parameter vectors b and d at time 7. Minimizing J3(b) and
Jy(d), we can obtain the hierarchical extended gra-
dient (HEG) algorithm for identifying the parameter
vectors b and d of the FIR-MA systems:

b(r) = b(r = 1)+ —[6:(7) = Ra(7)b(r — D). (4)
nr) =n(r - 1)+ ¢ (4n)
£1(1) =17 — 1)+ $(ly(r) — ¥ (r)d(r - D, (42)

Ri(r) = Ra(r = 1) + $(1)" (7). (43)
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d(r)=d(r —1) + (7 )[Ez( 7) = Ry(r)d(r — 1)],(44)
ra(r) =r2(r = 1) + || (7) %, (45)
&a(r) = &(m — 1) + P(T)y(r) — ¢ (1)b(7 — 1)], (46)

Ry(7) = Ro(r — 1) + 9(1)9" (1), (47)

o(7) = [u(r — 1), u(r = 2), - u(r —m)]", (48)
P(r)=[0(r —1),8(7 = 2),- ,0(7 —na)]", (49)

o(r) =y(r) — ¢ (1)b(r) — " (7)d(r) (50)

(1) To initialize, let 7 = 1, b(0) = 1,,/po, r1(0) = 1,

51(0) = ]-nz,/p07 Rl(o) = Inb/pOa d(O) = 1nAd/pOa
712(0) =1, 52(0) = lnd/p07 RQ(O) = Iﬂd/p07 U(T -
i) = 1/po, u(r —4) =0, i =1, 2, -+, max[np, nal,
po = 10°. Give a small positive number &.

(2) Collect the input-output data u(7) and y(7). Form

the information vectors ¢(7) and ¢(7) using (48) and
49).

(3) éOI)npute r1(7) using (41), the vector & (7) using (42),
and the matrix Ry (7) using (43). Update the param-
eter estimation vector b(t) using (40).

(4) Compute ro(7) using (45), the vector &€2(7) using (46),
and the matrix Ro(7) using (47). Update the param-
eter estimation vector d(7) using (44). Compute the
residual (1) using (50).

(5) If ||b(r) — b(r — 1)|| + [|d(7) — d(7 — 1)|| > &, then
increase 7 by 1, and go to Step 2; otherwise, output
the parameter estimates 6(7’) and Ci(T), and terminate
this recursive calculation process.

6. HMI-EG ESTIMATION ALGORITHMS

Let the positive integer p denote the innovation length.
Based on the HEG algorithm in (40)—(50), replacing y(7),
¢(7) and (1) on the right-hand sides of (40)—(47) with
Y (p,7), ®(p,7) and ¥(p,7), getting (51)~(58) and com-
bining (25)—(27) and (48)—(50), we can obtain the hierar-
chical multi-innovation extended gradient (HMI-

EG) algorithm for identifying the parameter vectors b
and d of the FIR-MA systems:

b(r) = b(r = 1)+ —[61(7) = Ra(r)blr = 1)), (5D
(@) =rlr =1+ 8@ n0)=1, (52)
61(r) =& (r — 1) + B(p, 7)Y (p,7) ~ &7 (p, )7~ 1)),

(53)
RBy(r) = Ri(r — 1) + 8(p, 7)&" (5, 7) (54)

d(r) = d(r ~ 1) + —[6a(r) = Ra(r)dr = 1)), (55)
ra(r) =ra(r = 1) + |8, ), (56)
&2(r) = &a(r — 1) + B (p, 7)Y (b, 7) — B (p, 1)o7 — )],

657)

Ry(7) = Ro(r — 1) + ¥ (p, )" (p, 1), (58)
Y(paT):[y(T)vy(Tf]-)v"’ ,y(’r*p+1)}Ta (59)
B(p,7) =[(r), ST~ 1), ST —p+ 1)), (60)

@(p,7)=[(r), P(r — 1), (r —p+1)], (61)
o(7) = [u(r — 1), u(r = 2),--  u(r —m)]", (62)
P(r)=[0(7 —1),0(r = 2), -, 8(7 —na)]", (63)
o(r) =y(r) = ¢ (1)b(r) — " (7)d(r). (64)

If one takes p = 1, the HMI-EG algorithm in (51)-

(64) reduces to the HEG algorithm in (40)—(50). The

procedures of computing the parameter estimation vectors

b(r) and d(r) using the HMI-EG algorithm in (51)(64)

are as follows.

(1) To initialize, let 7 = 1, set the innovation length p
and the data length L., b(0) = 1,,/po, r1(0) = 1,
51(0) = ]-’I’Lb/p07 Rl(o) = nb/p07 ( ) - 1’nd/p07
7‘2(0) = 17 52(0) - 1nd/p07 RQ(O) - nd/p07 U(T -
Z) = 1/p03 U(T*Z) :0’ i = 1, 27 ~~~,p+max[nb,nd}
po = 109,

(2) Collect the input-output data u(7) and y(7). Form
¢(7) and +(7) using (62) and (63).

(3) Form Y (p, 7) using (59) and form &(p, 7) and ¥ (p, 7)
using (60) and (61).

(4) Compute ri(7) using (52), the vector &; (1) using (53),
and the matrix R;(7) using (54). Update the param-
eter estimation vector b(r) using (51).

(5) Compute ro(7), €2(7), R2(7) using (56)—(58
d(7) using (55). Compute 9(7) using (64).

(6) If 7 < L., then increase 7 by 1, and go to Step 2;
otherwise, output b(7) and d(7), and terminate.

). Update

7. HELS ESTIMATION ALGORITHMS

Here discusses the hierarchical extended least squares
(HELS) algorithm. Letting b = b(7) and d = d(7) make
J3(b) = min and J4(d) = min, and the gradients of J3(b)
and Jy(d) with respect to b and d at b = b(r) and d =
d(7) be zero, and we obtain the hierarchical extended
least squares (HELS) algorithm for identifying the
parameter vectors b and d of the FIR-MA systems:

b(r) =b(r — 1) + Li()e(r), (65)
e(r) =y(7) — ¢"(1)b(r — 1) = P™ (r)d(r - 1), (66)
_ Py(r —1)¢(7)

O T e P - De) o
Py(r)=[I Ly ()" (1) Pi(T — 1), (68)
d(t)=d(r — 1)+ Ls(r)e(7), (69)
2(7_) _ A-P2(T — 1)¢(7-) _ , (70)

L+ T (1) Po(r — 1)9(7)
Py(7) = [T, — Lo(r)§" ()| Po(7 — 1), (71)
¢(r) = [u (T— D,u(r —2), - ulr —m)]",  (72)
(T):[ (Tﬁ 1)7{)(7_A7 2)3A 7{)(7:7 nd)}Tﬂ (73)
o(m)=y(1) = " (1)b(r) — %" (1)d(7). (74)
The steps of the HELS algorithm in (65)—(74) are listed.
(1) To initialize, let 7 = 1, b(0) = L,,/po. d d(0) = 1,.,/po,
PI(O) = pOInba P2(O) = pOIng” (T - 7/) = 1/]70,
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u(t —i) = 0,4 =1, 2, -+, max[np, ngl, po = 10°.
Give a small positive number ¢.

(2) Collect the input-output data u(7) and y(7). Form
¢(7) and 9 (7) using (72) and (73).

(3) Compute the innovation e(7) using (66). Compute the
gain vectors L (1) and Ly (7) using (67) and (70), and
the covariance matrices Py(7) and Ps(7) using (68)
and (71).

(4) Update the parameter estimation vectors b(r) us-
ing (65) and d(1)
0(T) using (74).

(5) If [|b(r) = b(r — 1)|[ + [|d(7) — d(r — 1)]| > ¢, then
increase 7 by 1, and go to Step 2; otherwise, obtam the
parameter estimates b(7) and d(7), and terminate.

using (69). Compute the residual

8. HMI-ELS ESTIMATION ALGORITHMS

Based on the HELS identification algorithm in (65)—(74),

expanding the scalar innovation e(7) € R in (65) and (69)

to an innovation vector

E(pa T) = Y(p, T) - ¢T(pa T)B<T - 1) - WAT(p7 T)dA(T - 1)7
(75)

expanding the information vectors ¢(7) and 9(7) in (67)—
(68) and (70)—(71) to the information matrices ®(p, 7) and
W (p,7), getting (76) and (78)—(80) and combining (75) and
(72)—(74), we get the hierarchical multi-innovation
extended least squares (HMI-ELS) algorithm for
identifying b and d as follows:

b(r) =b(r — 1)+ L1 (1) E(p,7), (76)
E(p,7) =Y (p,7) = ®"(p,7)b(r — 1) —&" (p,7)d(r — 1),
(77)

Ly(7) = P(T)®(p,T)

P (r)=Pi(t—1)— Li(7)®" (p,7)Pi (T — 1) (78)

d(r)=d(r — 1) + Ly(7)E(p, 7) (79)

Ly(7) = Py(7)¥(p,T)

Py(7)=Py(1 — 1) — Lo(7)¥ " (p, 7) Po(7 — 1), (80)
Y(p,7)=[y(r),y(r = 1), ,y(r —p+1)]", (81)
D(p,7)=[p(7),d(T = 1), ,d(T —p+1)], (82)
@(p,7)=[h(r), (T —1),--+ (T —p+ 1), (83)

B(7) = [u(r —1),u(r —2), -+ ult —m)]", (84)

P(r) =[b(r — 1),0(r = 2), -+, 8(1 —na)]", (85)

o(r) =y(r) = ¢ (1)b(r) — 7 (7)d(7). (86)

The steps of the HMI-ELS algorithm in (76)—(86) with 7
increasing are listed here.

(1) To initialize, let 7 = 1, set the innovation length p and
the data length L., b(0) = 1,,/po, d(0) = 1,,/po,
Pi(0) = pol,,, P2(0) = poln,, (T —i) =0, u(t —
i) =0, 9(r —i) = 1/po, i = 1,2,-++ ,p+ np + na- po
isa large positive number, e.g., po = 10°.

(2) Collect the input-output data u(7) and y(7). Con-
struct ¢(7) and +(7) using (84)(85).

(3) Form Y (p, 7) using (81) and form &(p, 7) and & (p, 7)
using (82) and (83).
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(4) Compute the gain matrices Lq(7) and La(7) us-
ing (78) and (80), and the covariance matrices P;(7)
and Py (7) using (78) and (80).

(5) Compute the innovation vector E(p,T) using (77),

and update the parameter estimation vectors b(7)
and d(7) using (76) and (79).

(6) Compute the residual o(7) using (86).

(7) If 7 < L, then increase 7 by 1 and go to Step 2;
otherwise, obtain the estimates b(L.) and d(L.), and
terminate this procedure.

9. SIMULATION EXAMPLE

Assume that the system considered has the following third-
order finite impulse response moving average representa-
tion:

y(r) = B(2)u(7r) + D(2)(7),
B(z) =132z +1.68272 + 0.76z %,

D(z)=1+diz ' +dpz™! =14+ 1.1027" +0.30272
The parameter vector to be identified is given by

0 = [by,b2,b3,dy,d2]" = [1.32,1.68,0.76,1.10,0.30]".
In simulation, the input {u(7)} is taken as an uncorrelated
uniform distribution random signal sequence with zero
mean and unit variance, {v(7)} is taken as a normal
distribution white noise sequence with zero mean and
variance 02 = 0.502. The corresponding noise-to-signal
ratio is 0,5 = 33.44%. We use the example parameters and
the input signal to generate the output sequence {y(7)}.

Taking the data length L. = 5000, applying the HESG,
HMI-ESG, HREG, HMI-REG, RELS and HMI-ELS al-
gorithms and the input-output data {u(r),y(r): 7 =
1,2,---, L.} to estimate the parameters of this system, the
HMI-ESG estimation errors § := ||0(7) — 0||/||€|| versus
7 under different innovation lengths p = 1, p = 2 and

p = 5 are shown in Figure 1, the HESG, HREG and HELS

estimation errors 0 versus 7 are shown in Figure 2, and the
HMI-ESG, HMI-REG and HMI-ELS estimation errors
versus 7 are shown in Figure 3 with p = 10.
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Fig. 1. The HESG and HMI-ESG estimation errors §
versus 7 under the innovation lengths p =2 and p =5

From Figures 1-3, we draw the following conclusions.

e From Figure 1, it can be seen that the HMI-ESG
estimation accuracies become high as the innovation
length p increases under the same data lengths.
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Fig. 2. The HESG, HREG and HELS estimation errors ¢

versus 7
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Fig. 3. The HMI-ESG, HMI-REG and HMI-ELS estima-
tion errors ¢ versus 7 for the innovation length p = 10

e From Figure 2, it is clear that the HREG and HELS
algorithms have higher estimation accuracies than
the HESG algorithm, and the HREG and HELS
estimation accuracies are close for large data lengths.

e Figure 3 shows that the HMI-ESG, HMI-REG and
HMI-ELS estimation errors become small and their
estimation accuracies are close for large data lengths.
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