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Abstract: An integrated distributed moving horizon estimation (DMHE) and model predictive
control (DMPC) approach is developed for complex process networks using an adaptive spectral
community detection-based decomposition. The proposed approach employs the weighted graph
representation of the process network model to identify optimal communities for distributed
estimation and control architectures. The resulting decomposition dynamically adapts as the
network transitions across different operating conditions. Consequently, adjustments are made
to the integrated DMHE and DMPC architecture to optimize closed-loop performance and
enhance robustness. A benchmark benzene alkylation process under various operating conditions
is employed to substantiate the proposed methodology’s efficacy. Simulation results demonstrate
the effectiveness of the proposed method, showing improved closed-loop performance and
computational efficiency compared to traditional unweighted hierarchical community detection-
based decompositions.
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1. INTRODUCTION

The widespread adoption of integrated processes, driven
by the imperative to reduce costs, optimize resource con-
sumption, and enhance process efficiency, particularly in
reducing material waste and energy use, poses significant
operational and control challenges. The intricate dynam-
ics of these integrated processes are exacerbated by the
nonlinear behavior of individual units and the interactions
arising from their connectivity and recycle streams, inten-
sifying overall process nonlinearity and complexity (Baldea
and Daoutidis [2012]). Model Predictive Control (MPC),
a sophisticated technique offering substantial advantages
over alternative methods (Schwenzer et al. [2021]), ad-
dresses these challenges by transforming the control prob-
lem into an optimization task. However, the real-time
solution of dynamic optimization problems, subject to
process constraints for determining manipulated inputs,
as MPC requires, imposes considerable computational bur-
dens (Lopez-Negrete et al. [2013], Rawlings et al. [2017]).
These burdens result in significant time delays, particu-
larly in highly integrated processes (Lopez-Negrete et al.
[2013], Pannocchia et al. [2007], Wang and Boyd [2009]),
leading to undesirable products and financial losses due to
delays in controller decision-making.

Distributed model predictive control (DMPC) is an effi-
cient alternative to centralized MPC, offering faster com-
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putations while maintaining control quality comparable
to the centralized approach. In DMPC, multiple control
agents collaborate to address the dynamic optimization
problem, diverging from the reliance on a single agent in
centralized MPC. The initial step in implementing DMPC
involves decomposing the control structure, determining
the number of communities, and allocating manipulated
inputs, controlled outputs, and constraints among them.
An optimal decomposition minimizes community interac-
tion, implying that when dividing the control system into
P subsystems, each subsystem ideally makes autonomous
decisions with minimal interference from others (Leicht
and Newman [2008]).

The exploration of optimal decomposition, referred to as
community detection, has been the subject of extensive
research, with a primary focus on hierarchical approaches
based on network adjacency matrix (Heo and Daoutidis
[2016], Heo et al. [2015], Leicht and Newman [2008], Tang
et al. [2018a]). Community detection involves identifying
subsystems that exhibit heightened internal density within
the subsystem or diminished connectivity across distinct
subsystems (Newman [2006]). The effectiveness of com-
munity detection algorithms is quantitatively evaluated
using modularity, which measures the proportion of edges
(or weights) covered by communities compared to their
expected value in a randomized graph. Optimizing mod-
ularity involves minimizing linkages between subsystems
or maximizing connections within individual subsystems
(Leicht and Newman [2008]). Utilizing an input-output
bipartite graph as the basis for community detection has
been explored by Tang and Daoutidis [2018], along with
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using long-time and short-time responses for detecting
optimal communities (Tang et al. [2018b]). Community
detection based on unweighted graphs has been studied by
Newman [2013] and later extended to weighted networks
(Jogwar [2019]). The spectral properties of unweighted
graphs for community detection were initially investigated
by Newman [2013]. This approach was subsequently ex-
tended to weighted networks by Jogwar [2019].

Solving MPC problems requires real-time access to state
values. While previous studies have made this assumption,
practical scenarios often limit the feasibility of measur-
ing all states using sensors. Moving Horizon Estimation
(MHE) has emerged as a compelling alternative for esti-
mating unmeasurable values based on historical data, as
it can be formulated as a dynamic optimization problem
similar to MPC (Rao et al. [2003], Rawlings and Bak-
shi [2006]). However, like MPC, solving such optimiza-
tion problems for large-scale, highly integrated systems
is computationally expensive. Delays in estimation can
compromise closed-loop control system performance, given
that control decisions rely on knowledge of all states (Guay
et al. [2015]). In response to the computational challenges
of centralized estimation, a strategy akin to the DMPC
method, namely the DMHE framework, is employed. This
framework comprises local estimators that collaboratively
share information (Pourkargar et al. [2019], Yin et al.
[2018], Yin and Liu [2019]). A unified min-max optimiza-
tion approach is proposed, combining centralized MPC
and MHE (Copp and Hespanha [2014, 2017]), demonstrat-
ing that the estimated states remain bounded under the as-
sumptions of controllability and observability of nonlinear
processes. Unlike centralized implementations, distributed
designs using community detection-based decompositions
enable expedited computations without significant perfor-
mance degradation. Case studies on a benchmark reactor-
separator process network, the benzene alkylation pro-
cess with ethylene, and an amine gas sweetening plant,
conducted on different optimization platforms, with vary-
ing communication patterns between local controllers and
accounting for model uncertainty, reveal the efficacy of
this approach (Pourkargar et al. [2017a,b, 2019]). Prior
research has predominantly focused on hierarchical com-
munity detection for optimal decompositions in control
and estimation based on an unweighted network.

The primary objective of this study is to understand how
interactions among network components influence the op-
timal decomposition of control and estimation problems
across diverse operational settings. Specifically, this work
explores the creation of distributed control and estimation
architectures and assesses the computational efficiency of
the corresponding decomposition processes. In contrast to
conventional hierarchical community detection methods
that iteratively divide subsystems until achieving rela-
tively high modularity, our proposed methodology employs
spectral community detection. This approach efficiently
divides the system into the intended number of subsystems
in a single iteration, leveraging graph spectral properties
to assess component closeness and assign them to specific
subsystems. The resulting integrated DMHE and DMPC
based on adaptive spectral community detection-based de-
composition are applied to regulate a benchmark benzene
alkylation process. Evaluation of closed-loop performance

and computation time is conducted under varying operat-
ing conditions. Simulation results underscore the efficacy
of the adaptive community detection-based distributed
control and estimation method in regulating critical char-
acteristics of the benzene alkylation process. Moreover,
the study highlights differences in optimal decomposition
across different operational circumstances. The subsequent
sections of the paper are organized as follows: Section 2
presents the nonlinear process network model, its char-
acteristics, and the mathematical formulation of nonlin-
ear MPC, MHE, DMPC, and DMHE. Section 3 provides
detailed insights into forming control and estimation net-
works, developing an adaptive community detection ap-
proach rooted in weighted graphs, and the design of a
distributed architecture. Finally, Section 4 presents the
results of the benzene alkylation simulation study.

2. PROBLEM DESCRIPTION

2.1 Process model

Consider the following general nonlinear state-space model,
which describes the process network dynamics

ẋ(t) = f(x(t), u(t)) + ω(t), y(t) = g(x(t), u(t))

ŷ(t) = h(x(t), u(t)) + ν(t)
(1)

where x(t) ∈ Rn represents the vector of state variables,
u(t) ∈ Rm is the vector of manipulated inputs, ω(t) ∈ Rn

denotes the vector of additive disturbances to the process,
y(t) ∈ Rr is the vector of controlled outputs, ŷ(t) ∈ Rs

represent the vector of measured outputs, ν(t) ∈ Rs is the
vector of measurement noises, t is the time, and f : Rn ×
Rm → Rn, g : Rn ×Rm → Rr, and h : Rn ×Rm → Rs are
smooth nonlinear functions. The equilibrium point for the
process network model in its unforced state is assumed to
be at the origin.

2.2 Integrated MPC and MHE formulation

The centralized MPC problem for the process network
model of 1 can be formulated as follows

min
u

∫ tk+NcT

tk

(
(y − yss)TP (y − yss)

+ (u− uss)TW (u− uss)
)
dt

(2)

subject to the system constraints

ẋ = f(x, u) + ω, y = g(x, u), umin ≤ u ≤ umax

ξ(x, u, t) ≤ 0, ϕ(x, u, t) = 0
(3)

The notations tk, Nc, and T represent the k-th sampling
time, the number of sampling times in the control hori-
zon, and the sampling period, respectively. The vectors
yss(t) ∈ Rr and uss(t) ∈ Rm represent the desired con-
trolled outputs and corresponding steady-state manipu-
lated inputs, respectively. Furthermore, the optimization
problem’s objective function incorporates two positive def-
inite matrices denoted as P ∈ Rr×r and W ∈ Rm×m to
penalize the output regulation errors and the magnitude of
the inputs in the MPC’s underlying dynamic optimization
problem. The lower and upper bounds of the manipulated
input vector are denoted by umin ∈ Rm and umax ∈ Rm,
respectively. This study also considers generic nonlinear
vector functions of ξ and ϕ to describe inequality and
equality constraints. The vector of manipulated variables
is determined by solving the dynamic optimization prob-
lem described by Eqs. 2 and 3 within the control horizon
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[tk, tk + NcT ]. At time tk, only the first element of the
calculated manipulated inputs trajectory is applied to the
process in the subsequent time step, t ∈ [tk, tk + T ].
The prediction horizon then advances by a time step,
prompting the optimization problem to be reformulated
with a new prediction horizon, [tk + T, tk + (Nc + 1)T ].

The centralized MHE for estimating the unmeasured state
variables can also be formulated as follows

min
xk

∫ tk

tk−NmT

(
νTRν + ωTQω

)
dt (4)

subject to the system constraints

ẋ = f(x, u) + ω, ŷ = g(x, u) + ν

xmin
k ≤ xk ≤ xmax

k , ξ(x, u, t) ≤ 0, ϕ(x, u, t) = 0
(5)

The variable xk denotes the vector of immeasurable states
necessitating estimation. The variable Nm represents the
number of sample instances employed in the MHE. Ad-
ditionally, R ∈ Rs×s and Q ∈ Rn×n denote positive
definite weight matrices utilized to penalize disturbances
and noise, respectively. The upper and lower bounds for xk

are represented by xmin
k ∈ Rs and xmax

k ∈ Rs, respectively.
Fig. 1 illustrates the integration of MHE and MPC.

Fig. 1. A schematic of integrated MHE and MPC.

2.3 Distributed architecture and DMPC/DMHE design

Consider the control problem discussed previously for the
system described by the state space model 1. Assume
that the process network can be decomposed into L
subsystems, each of which can be represented by the
following submodels

ẋ(i)(t) = f(i)(x(t), u(i)(t)) + ω(i)(t), i = 1, . . . , L

y(i)(t) = g(i)(x(t), u(i)(t))
(6)

where x = [xT
(1) xT

(2) . . . x
T
(L)]

T , u = [uT
(1) uT

(2) . . . u
T
(L)]

T ,

ω = [ωT
(1) ωT

(2) . . . ω
T
(L)]

T , y = [yT(1) yT(2) . . . y
T
(L)]

T , f =

[fT
(1) fT

(2) . . . f
T
(L)]

T , and g = [gT(1) gT(2) . . . g
T
(L)]

T with

f(i) : Rn × Rmi → Rni and g(i) : Rn × Rmi → Rri denote
the respective components of functions f and g for the i-th
subsystem. The state variables, manipulated inputs, addi-
tive disturbance, and output variables of i-th subsystem
are described by x(i) = [xT

(i),1 xT
(i),2 . . . xT

(i),ni
]T , u(i) =

[uT
(i),1 uT

(i),2 . . . uT
(i),mi

]T , ω(i) = [ωT
(i),1 ωT

(i),2 . . . ωT
(i),ni

]T ,

and y(i) = [yT(i),1 yT(i),2 . . . yT(i),ri ]
T , respectively, where

n =
∑L

i=1 ni, m =
∑L

i=1 mi and r =
∑L

i=1 ri.

The DMPC problem for the i-th control agent assigned to
the i-th subsystem is formulated as follows

min
u(i)

∫ tk+NcT

tk

(
(y(i) − yss(i))

TP(i)(y(i) − yss(i))

+ (u(i) − uss
(i))

TW(i)(u(i) − uss
(i))
)
dt

(7)

subject to

ẋ = f(x, u) + ω, y(i) = g(i)(x, u)

umin
(i) ≤ u(i) ≤ umax

(i) , ξ(x, u, t) ≤ 0, ϕ(x, u, t) = 0
(8)

where the positive definite matrices P(i) and W(i) penalize
the output regulation errors and the magnitude of the
inputs associated with the i-th control agent. At each sam-
pling time, the control agents compute the sequences for
optimal manipulated input vectors for the associated sub-
systems by solving the optimization problems outlined in
7 and 8. Following this computation, the control agents ex-
change these manipulated input sequences. Subsequently,
each control agent reevaluates the manipulated input vec-
tor. This iterative process continues until the discrepancy
in magnitude between two successively manipulated input
vectors falls below a predefined threshold.

Similar to the control network decomposition, the estima-
tion problem for the system described by Eq. 1 can be
partitioned into N subsystems, as detailed below

ẋ(j)(t) = f(j)(x(t), u(t), t) + ω(j)(t), j = 1, . . . , N

ŷ(j)(t) = h(j)(x(t), u(t)) + ν(j)(t)
(9)

where ŷ = [ŷT(1) ŷ
T
(2) . . . ŷ

T
(N)]

T and h = [hT
(1) h

T
(2) . . . h

T
(N)]

T .

The measurement noises for j-th subsystem is represented

by ν(j) = [νT(j),1 νT(j),2 . . . νT(j),sj ]
T with s =

∑N
j=1 sj .

The DMHE problem for the j-th estimator agent can be
formulated as follows

min
xk,(j)

∫ tk

tk−NmT

(
νT(j)R(j)ν(j) + ωT

(j)Q(j)ω(j)

)
dt (10)

subject to

ẋ = f(x, u, t) + ω, ŷ(j) = g(j)(x, u, t) + ν(j)

xmin
k,(j) ≤ xk,(j) ≤ xmax

k,(j)

ξ(x, u, t) ≤ 0, ϕ(x, u, t) = 0

(11)

The positive definite matrices R(j) and Q(j) are introduced
to penalize the measured outputs and estimated state
variables of the j-th subsystem, respectively. Like DMPC,
the j-th local estimator estimates the immeasurable state
values of the j-th subsystem at each sampling instance and
shares these values with other estimators. Subsequently,
each local estimator updates its estimated values based
on the information received from other estimators. This
iterative process continues until the magnitude difference
between the vectors of estimated states from two con-
secutive iterations falls below a predetermined threshold.
Figure 2 presents a block diagram of integrated DMHE
and DMPC.

3. ADAPTIVE DISTRIBUTED ARCHITECTURE
DESIGN

This section investigates the optimal system decomposi-
tion for integrated process networks, aiming to design a
distributed estimation and control architecture adaptable
to varying operational conditions. The proposed approach
leverages the weighted graph representation of the process
systems, generating an adjacency matrix that describes
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Fig. 2. Integrated DMHE and DMPC block diagram (L
local control agents and N local estimation agent).

dynamic relationships among input, state, and output
variables. Modularity metrics are then employed to assess
the effectiveness of potential decomposition candidates.
While previous research has extensively addressed weight
determination for control networks using the control affine
state space model (Jogwar [2019], Tang and Daoutidis
[2018]), our study introduces a generalized graph weighting
methodology applicable to a broader spectrum of state
space models, catering to both estimation and control
purposes. In constructing the dynamic adjacency matrix,
we represent the magnitude of the input-state, state-state,

and state-output impacts by
∣∣∣ ∂fj∂ui

∣∣∣, ∣∣∣∂fj∂xi

∣∣∣, and ∣∣∣∂gj∂xi

∣∣∣, respec-
tively. The diagram presented in Figure 3 illustrates an es-

Fig. 3. Estimation network

timation network. In this network configuration, the mea-
sured states function as inputs, while the immeasurable
states serve as outputs. For clarity, the nodes designated
as ”measured” and ”unmeasured” have been intentionally
included in the diagram.

This work endeavors to refine the spectral community
detection framework (Newman [2013], Zhang and Newman
[2015]), particularly in light of creating a weighted adja-
cency matrix. To identify the most optimal decomposition,
a precise representation of modularity is considered as
follows,

Q =
1

m

∑
ij

[
Aij −

didj
m

]
δgi,gj (12)

where di denotes the sum of weights from all edges directed
towards node i, and dj represents the sum of weights from
all edges emanating from node j. The total weight of
all edges in the graph is denoted by m. The Kronecker
delta is symbolized by δ. Eq. 12 computes the ratio of the
total edge weight covered by communities to its expected
value. In this equation, Aij represents the weight of the

edge connecting vertices j and i, while
didj

m signifies the
expected value in a randomized graph. The term δgi,gj
restricts the summation to pairs belonging to the same
communities. By introducing the modularity matrix as

Bij = Aij − di·dj

m and its symmetrical counterpart B1 =

B +BT , the modularity can be expressed as follows,

Q =
1

m

∑
ij

B1,ijδgi,gj (13)

Utilizing the spectral community detection approach ne-
cessitates assigning two distinct types of vectors: one al-
located to each node and another designated for each
subsystem.

3.1 Node vector assignment

Employing eigen decomposition, B1 can be represented as

B1,ij =

N∑
l=1

λlUilUjl (14)

where λl denotes the eigenvalue of B1 corresponding to
the lth position, and Uil is the element associated with
the orthogonal eigenvector matrix U . Additionally, the
Kronecker delta can be alternatively expressed as

δgi,gj =

P∑
s=1

δs,giδs,gj . (15)

By incorporating Eqs. 15 and 14 into the modularity
equation (Eq. 13), the modularity can be modified as
follows,

Q =
1

m

∑
ij=1

N∑
l=1

λlUilUjl

∑
s=1

δs,giδs,gj

=
1

m

N∑
l=1

λl

P∑
s=1

(
N∑
i=1

Uilδs,gi

)2 (16)

The spectral community detection approach is based on
Eq. 16, wherein a vector is assigned to each node. This
equation implies that maximal modularity is attained by
considering all positive eigenvalues in the node’s vector
definition. Nevertheless, this method renders the com-
munity detection process time-consuming and inefficient.
To mitigate this challenge, we introduce the subsequent
energy function,

E =

∑O
i=1 λN−i∑N

i=1 λN−i+1

> ϵ (17)

where ϵ denotes the threshold for the count of positive
eigenvalues. This threshold selectively retains only the
dominant eigenvalues in the node’s vector definition dur-
ing the community detection. This strategic application
of ϵ accelerates the community detection process while
preserving accuracy within a predefined acceptable range
of ϵ,

Q =
1

m

O∑
l=1

P∑
s=1

(
N∑
i=1

√
λlUilδs,gi

)2

(18)

Given this, a vector for each node, denoted as [ri]l, can be
expressed as [ri]l =

√
λlUil. Eq. 18 can then be condensed

to

Q =
1

m

P∑
s=1

O∑
l=1

(∑
i

[ri]l

)2

=
1

m

P∑
s=1

∣∣∣∣∣∑
i

ri

∣∣∣∣∣
2

(19)

By introducing the notation Rs =
∑

i ri, the modularity
can be expressed as
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Q =
1

m

∑
s

|Rs|2 (20)

3.2 Community detection algorithm

Eq. 20 defines modularity in terms of subsystem vectors.
This formulation identifies the optimal subsystem for
vertex i within the range of options from A to B. The
alteration in modularity value is computed by assessing
the transition of node i from B to A.”(21) The optimal
sub-community for node i is determined by maximizing the
positive change in modularity. As delineated in Zhang and
Newman [2015], spectral community detection employs a
recursive approach involving representative vectors, inner
product computations, and node assignments to optimize
modularity. Initially, representative vectors are established
based on an initial guess, ensuring that the sum of all
elements in vector Ri is zero. Subsequently, the inner
product of each representative vector with the vector
representing all vertices is calculated, identifying the group
to which the node is closest. Vertices are then assigned to
the representative vector with the highest inner product
value. The representation is refined by aggregating all
vectors within each subsystem, generating new vectors R
for each community. This iterative process continues until
no further modifications occur.

4. CHEMICAL PROCESS NETWORK CASE STUDY

Spectral community detection was employed with a
weighted graph representation of a benchmark integrated
benzene alkylation process (Fig. 4) to identify an optimal
architecture for distributed control and estimation. The
performance of the determined communities was system-
atically evaluated under diverse operational conditions,
focusing on analyzing the closed-loop performance at vary-
ing reflux ratios, specifically medium and low values. The

Fig. 4. Benzene alkylation process.

benzene alkylation process with ethylene involves four key
components: benzene (A), ethylene (B), ethylbenzene (C),
and 1,3-diethylbenzene (D). The following chemical reac-
tions take place within the first three continuous stirred
tank reactors (CSTRs),

Reaction #1: A + B → C
Reaction #2: C + B → D

and the following reaction occurs in the fourth CSTR,

Reaction #3: A + D → C

The benzene alkylation process produces ethylbenzene
(C) as the desired product, with the unintended byprod-
uct of 1,3-diethylbenzene (D). Pure benzene is fed to
the first CSTR, and the other CSTRs are supplied with

pure ethylene. The resulting effluent stream, comprising
benzene (A), ethylene (B), ethylbenzene (C), and 1,3-
diethylbenzene (D), is directed to the separator. From
the bottom fraction of the separator, ethylbenzene (C) is
extracted, where most benzene is separated and recycled
for use in the first and fourth CSTRs. Additionally, 1,3-
diethylbenzene (D) is introduced into the final CSTR to
facilitate the synthesis of ethylbenzene. The mathematical
model of the process (Liu et al. [2010], Pourkargar et al.
[2019]) involves a set of 30 ordinary differential equations
(ODEs) describing the holdup (V ), temperature (T ), and
key component concentrations (CA, CB , CC , and CD)
within the four CSTRs (process units 1, 2, 3, and 5) and
the separator (process unit 4). The control objective is to
regulate the holdup, temperature, and ethylbenzene con-
centrations in the CSTRs and the separator by adjusting
the 12 flow rates and 5 heat flow rates supplied to the
process units.

4.1 Distributed estimation and control

This case study investigated the system under two de-
fined operating scenarios: medium recycle, characterized
by a recycle ratio of R = 1, and low recycle, featuring
a recycle ratio of R = 0.001. The system decompositions
were obtained employing the proposed spectral commu-
nity detection method, utilizing the energy function and
the weighted adjacency matrix of estimation and con-
trol for both operating scenarios. Furthermore, using an
unweighted adjacency matrix that remains constant for
R = 1 and R = 0.001, facilitated an unweighted decom-
position, aligning with the results presented in Pourkargar
et al. [2019]. Tables 1 and 2 summarize the distribution
of the variables among the control and estimation agents
assigned to the subsystems, accompanied by the corre-
sponding modularity values. The decomposition analysis

Table 1. Distributed control structures.

Control Weighted Weighted Unweighted

agents (R=0.001) (R=1)

F1 F3 F5 F1 F3 F5 F1 F2 F3

F7 FR2
F7 FR2

F4 FR2
Q1

C1 V3 T1 CC1
CC2

V1 V2 CC2

CC1
CC2

CC3
T1 CC3

T1 T2 CC1

F2 F4 F4 F6 F10 F5 F6 F7

C2 V2 T2 V2 T2 T3 Q3 V3 T3

CC3

F6 F8 F9 F2 F8 F9 F8 F9 F10

F10 FR1 Q1 FR1
Q1 Q2 FR1

Q4 Q5

Q2 Q3 Q4 Q3 Q4 Q5 T4

C3 Q5 V4 V5 V3 V4 V5 V4 V5 T4

T3 T4 T5 T4 T5 CC4
T5 CC4

CC5

V1 CC4
CC5

CC4
V1

Q 0.6025 0.6017 0.2953

results, encompassing both estimation and control aspects,
underscore a notable distinction between the decompo-
sition patterns of the weighted adjacency matrix under
different operating conditions and those of the unweighted
adjacency matrix. Furthermore, the findings illustrate that
the most favorable decomposition varies across operating
conditions, particularly at R = 1 and R = 0.001.

4.2 Simulation results and discussions

An integrated DMHE and DMPC structure was designed
based on the spectral community detection of the weighted
and unweighted graph representations of the benzene alky-
lation process. The closed-loop performance for the output
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Table 2. Distributed estimation structures.

Estimation Weighted Weighted Unweighted

agents (R=1) (R=0.001)

V1 V4 T1 V1 T1 CA1
V1 T1 CA1

E1 T4 CA1
CB1

CB1
CC1

CD1
CB1

CC1
CD1

CC1
CD1

V2 T2 CA2
V2 T2 CA2

V2 T2 CA2

E2 CB2
CC2

CD2
CB2

CC2
CD2

CB2
CC2

CD2

V3 T3 CA3
V3 T3 V4 V3 T3 CA3

E3 CB3
CC3

CD3
CA3

CB3
CC3

CB3
CC3

CD3

CA4
CB4

CC4
CD3

CA4
CB4

CD4
CC4

V5 T5 CA5
V5 T4 T5 V4 V5 T4

E4 CB5
CC5

CD5
CD4

CA5
CB5

T5 CA4
CB4

CC5
CD5

CD4
CA5

CB5

CC5
CD5

Q 0.7332 0.7342 0.5467

regulation problem is evaluated for both weighted and
unweighted decompositions, detailed in Section 4.1. The
number of control and estimation agents corresponds to
the number of subsystems, as indicated in Tables 1 and
2. We set control and estimation horizons of 10 minutes
and a sampling interval of 1 minute. Within the estimation
framework, white noise with a signal-to-noise ratio of 20
to the process model is considered to interfere with mea-
sured outputs. The weighting matrices for estimation and
control were chosen to balance the importance of output
regulation errors, manipulated inputs, and observed noise
within the objective functions. Upper and lower bound-
aries for manipulated inputs and estimated states were
set at ±%20 of the reference steady state values. The un-
derlying dynamic optimization for estimation and control
problems was solved at each sampling time by the interior
point optimization (IPOPT) method (Biegler [2010]). The
performance of the closed-loop system was consistently
observed by monitoring holdups, temperatures, and ethyl-
benzene concentrations.

Figures 5 and 6 illustrate the temporal profiles of two
selected controlled outputs (CSTR temperature and ethyl-
benzene concentration) and two selected manipulated in-
puts (feed flow rate and heat flow) for R = 1 and R =
0.001. The figures illustrate a more gradual convergence

Fig. 5. Temporal profiles of selected state variables and
manipulated inputs under integrated DMHE and
DMPC based on the decomposition obtained from
weighted graph representation for R = 1 and un-
weighted graph representation: (a) first CSTR tem-
perature, (b) ethylbenzene concentration leaving the
third CSTR, (c) flow rate from the first CSTR to the
second CSTR, and (d) heat provided to the fourth
CSTR.

Fig. 6. Temporal profiles of selected state variables and
manipulated inputs under integrated DMHE and
DMPC based on the decomposition obtained from
weighted graph representation for R = 0.001 and
unweighted graph representation: (a) third CSTR
temperature, (b) ethylbenzene concentration leaving
the separator, (c) ethylene feed flow rate to the first
CSTR, and (d) heat provided to the separator.

to the desired value when utilizing weighted decomposi-
tion. Furthermore, the variation in control action is less
erratic when employing weighted decomposition than un-
weighted decomposition. The dimensionless performance
index (DPI), introduced in Pourkargar et al. [2019], is
a performance metric with lower values showing lower
output regulation error and manipulated inputs. The per-
formance comparison is summarized in Figs. 7 and 8 for
medium and low recycle ratios.

Fig. 7. Closed-loop performance for R = 1.

Fig. 8. Closed-loop performance for R = 0.001.

The integrated DMHE and DMPC structure at the
medium recycle ratio shows a %18.3 improvement in DPI
when using a weighted graph decomposition. This im-
provement reduces to %13.2 for low recycling. The ob-
served enhancement can be attributed to the strategic
utilization of a weighted network, wherein each agent
makes decisions more optimally, closely resembling a sce-
nario in which control and estimation agents operate au-
tonomously.
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5. CONCLUSION

An adaptive spectral community detection-based decom-
position approach was developed for distributed state es-
timation and control of highly integrated process systems.
A weighted graph representation of the system was used to
identify the optimal decompositions under different opera-
tional conditions. An integrated DMHE and DMPC struc-
ture has been synthesized based on the proposed system
decomposition strategy to address the output regulation
problem of integrated processes. A benchmark benzene
alkylation process was used to illustrate the effective-
ness of the distributed estimation and control approach.
The closed-loop simulation results were analyzed for de-
compositions based on both weighted and unweighted
graph representations of the benzene alkylation process.
The findings highlighted a substantial enhancement in
the overall efficiency of the closed-loop performance when
adopting the weighted graph representation and adaptive
community detection approaches. This is attributed to the
exceptional capacity of the proposed approach to capture
not just the presence of interactions but also to quantify
the intensity of interactions among various components of
the process network.
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