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Abstract: A novel Metabolic Graph Neural Network (MGNN) model is proposed for simulating
the dynamic behavior of metabolites involved in oxidative stress metabolic pathways in a
bacterial cell culture. The developed MGNN model is trained and validated with in-silico data
generated from the mechanistic model. By using the a priori known metabolic network, the
proposed MGNN model effectively reduces the overfitting issue as compared to a fully connected
network that does not uses the metabolic network knowledge. The MGNN exhibits a superior
fit for both training and testing datasets. The proposed MGNN is highly interpretable since
it efficiently computes the relevance of each metabolite on any other metabolite by applying
gradient computation and back-propagation operations to the neural network. The proposed
model is also shown to be useful for fault detection.
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1. INTRODUCTION

With the development of improved computer technology
and the availability of large amounts of biological data,
accurate modeling of biochemical processes has become
increasingly important to leveraging these data to predict
biological systems’ behavior.
The traditional kinetic modelling (KM) approach that has
been widely used for modelling dynamic bio-processes is
based on the formulation of mass balances for key metabo-
lites. For example, Lei et al. (2001) proposed a continuous
mechanistic model for pyruvate metabolism in saccha-
romyces cerevisiae fermentation. The model presents the
dynamic of eight key metabolites of pyruvate metabolism
in saccharomyces cerevisiae with 12 reactions which all
were modelled based on Michaelis–Menten kinetics with
respect to a given substrate and with a first order depen-
dency on the active biomass pool. These kinetic models
rely on explicit functional relationships connecting the rate
of change of metabolites and the enzyme kinetics involved
in each reactions. Michaelis–Menten kinetics is the most
commonly used kinetic rate expression although the true
mechanistic kinetic rate law for each specific reaction is
unknown a priori for most enzymes. Because each such
kinetic expression involves a number of parameters, overall
KMs require a large number of parameters that must be
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calibrated via nonlinear optimization based on generally
noisy and scarce data. The problem becomes more pro-
nounced in large metabolic networks due to the large
number of metabolites and reactions involved. Generally,
the structure of these models is only loosely based on prior
knowledge about the interactions between metabolites.
Dynamic metabolic flux modelling, especially the dynamic
flux balance analysis (DFBA) is an alternative approach
that uses detailed knowledge of the metabolic network
of reactions. Mahadevan et al. (2002) described two dif-
ferent formulations of DFBA, which incorporate rate of
change of flux constraints. The resulting DFBA models
were able to describe the dynamics of diauxic growth of
Escherichia coli on glucose and acetate as well as the
dynamics of key metabolites’ concentrations. The DFBA
model of Mahadevan et al. (2002) consists of four ordinary
differential equations for extracellular glucose, acetate,
oxygen and biomass. DFBA are generally formulated by a
constrained optimization problem where a biological objec-
tive, e.g. growth rate is maximize subject to stoichiometric
and other constraints. Although this approach has the
potential to reduce the number of model parameters as
compared to the traditional kinetic modelling approach,
stoichiometric constraints alone are not sufficient to fully
describe dynamic behaviour as they ignore enzyme kinetics
limitations. To address this problem, additional kinetic
rate constraints are added to the constrained optimization
problem. Since these additional constraints involve tuning
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parameters, a crucial challenge in DFBA is to identify a
minimal number of kinetic constraints to fit data while
avoiding over-fitting. This search often requires the so-
lution of mixed integer optimization problems that are
difficult to solve. Also, DFBA and KM are less suitable
for monitoring due to model error unless the latter will be
accounted for as in e.g. Du et al. (2015).
As an alternative to the aforementioned KM and DFBA
approaches, data-driven models such as machine learning
models can be used when large datasets and computing
power. Costello and Martin (2018) developed a machine
learning algorithm to predict pathway dynamics in an
automated fashion. For example, a Python code called
TPOT (Tree-based Pipeline Optimization Tool) which re-
lies on a Genetic optimization algorithm is used to auto-
matically select the most suitable model among different
candidates and to choose among different preprocessing
algorithms that are included in the scikit-learn Python
package. This method was tested on Limonene pathways
and compared to the Michaelis-Menten kinetic model with
10 ordinary differential equations. However, the results
exhibited considerable offset with respect to experimental
data. The lack of fit was explained by the occurrence of
highly nonlinear behaviour combined with scarce data for
training.
Deep learning (DL) models can be used to effectively re-
construct highly nonlinear trajectories but there is always
the possibility of data overfitting due to the high number
of parameters in DL models. In case of over-fitting, this can
be reduced by either increasing the amount of data or by
pruning the neural network model to decrease the number
of parameters. Data is generally limited and pruning of the
network requires the use of empirical thresholds that are
generally difficult to determine in the presence of noise.
In this work we propose an alternative DL modelling
approach where a priori knowledge about the metabolic
network stoichiometry is used to constraint the structure
of the neural network thus eliminating the need for empir-
ical pruning methods.
This paper introduces Metabolic Graph Neural Networks
(MGNN) as a novel approach for dynamic prediction of
metabolites’ concentrations and for detection and diagno-
sis of faults. In this special neural networks, the neurons
contain information about metabolites and the network
architecture is constrained based on a priori biological
information about the network of metabolic reactions. The
use of such constrained architecture is expected to lead to
several benefits: i- overfitting of data will be avoided as
compared to a fully interconnected network that does not
use a priori information about the network of reactions,
ii- by capitalizing on currently available powerful deep
learning algorithms, this MGNN model is easier to tune as
compared to other stocihiometry based approaches such as
DFBA that require the solution of a challenging NLP, iii-
the nonlinear form of the kinetic constraints in DFBA, e.g.
Monod, Hill and other, must be decided a priori whereas
MGNN does not require such choice , iv- the resulting
MGNN can provide explainability since the neurons are
associated to metabolites and thus the interconnection
signals are associated to fluxes. The proposed methodology
is tested on the oxidative stress metabolic network of B.
Pertussis which is a bacteria used for the manufacturing of

the whooping cough vaccine. The model is compared with
a dynamic mechanistic model developed by Vitelli et al.
(2023) for the same biochemical system.

2. PROPOSED METHODOLOGY

2.1 Graph Neural Networks

Processes involved a variety of phenomena that can be
understood in terms of the relationships between the
elements. A set of elements, and the connections between
them, can naturally be expressed as a graph. In recent
years, neural networks that operate on graph data (called
graph neural networks, or GNNs) have been developed
for a wide range of applications, such as antibacterial
discovery Stokes et al. (2020) or for quantum chemistry
Gilmer et al. (2017).
In the graph based modelling approach, the nodes of
a graph represent objects or concepts, and the edges
represent their relationships or interactions. For example,
in the graph description of metabolic pathways, the nodes
in the graph represent the metabolites and the connections
between the nodes represent the reactions.
Typically, biochemical systems exhibit highly nonlinear
behaviour due to the nonlinear kinetics regulating indi-
vidual reactions among metabolites. On the other hand
the connections between nodes in neural networks are also
regulated by nonlinear activation functions but these can
only represent simple nonlinear behaviour such as sig-
moidal or semi-linear behaviour (Relu functions). Hence,
single connections between two neurons can not capture
the full nonlinear dependencies of the biochemical process.
Instead, we propose in this work the use of one or more
layers of neurons to connect between two neurons that are
associated to individual metabolites. In addition to nonlin-
earity, the operation of bioprocesses in batch or perfusion
modes, requires consideration of dynamic behaviour. To
address the expected nonlinear dynamic behaviour a graph
neural network model is proposed in this study as shown
in Figure 1. This particular neural network is used for
predicting state xi at current time k + 1 which is fed by
those states which are connected to state xi according to
the graph edges at time k.

2.2 Oxidative Stress Metabolic Pathways

Oxidative stress metabolism in Bordetella pertussis fer-
mentations involves a complex network of reactions oc-
curring among various key molecules. At the heart of this
process lies NADPH (Nicotinamide Adenine Dinucleotide
Phosphate), a critical cofactor that plays a central role in
countering the damaging effects of reactive oxygen species
(ROS). When B. pertussis encounters ROS in the host
environment, NADPH becomes crucial for maintaining
redox balance and protecting the bacterium from oxidative
harm. The motivation for focusing on the mechanism of
oxidative stress is that it was found in previous studies by
our group to be highly correlated with low productivity
of antigens required in the formulation of the whooping
cough vaccine.
NADPH serves as an essential reactant (co-factor) in var-
ious enzymatic reactions. It is involved in the reduction
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Fig. 1. A schematic of graph neural networks (GNNs).
of NADP+ (the oxidized form of NADPH) into its re-
duced form, NADPH, through specific enzymatic reac-
tions, Vitelli et al. (2023). In this context, NADPH helps
activate antioxidative enzymes like superoxide dismutase
and catalase, which are crucial for neutralizing ROS, i.e.
superoxide radicals and hydrogen peroxide into less harm-
ful molecules, thus preventing cellular damage.
In response to oxidative stress, Bordetella pertussis shifts
its metabolism to emphasize reactions related to gener-
ation and quenching of ROS. NADPH is a co-factor for
anti-oxidative reactions catalyzed by superoxide dismutase
and catalase. By diverting energy away from anabolic
processes, e.g. cell growth, the bacterium uses NADPH
to quench ROS.
This metabolic adaptation helps Bordetella pertussis strike
a balance between growing and staying alive in the chal-
lenging host environment. By using NADPH and its an-
tioxidative enzymes, the bacterium can thrive and success-
fully establish itself within the respiratory system despite
the presence of harmful ROS.

2.3 Graph Neural Network for Oxidative Stress Metabolic
Pathways

In this study, we have developed a MGNN model
to represent the dynamic behavior of oxidative stress
metabolic pathways. Figure 2 illustrates the pathways in
the metabolic network of oxidative stress in Bordetella
pertussis bacteria. Metabolites Sext, S, A, B, C and Aext

represent extracellular glutamate, intracellular glutamate,
NADPH, ROS, NADP+ and extracellular NADPH respec-
tively. A metabolic neural network is developed based
on the presented metabolic network in order to predict
the concentrations of metabolites over time. Also, a fully
connected neural network is also developed for comparison
with the metabolic neural network model in terms of
performance and number of parameters. The training data
have been synthetically generated using the mechanistic
model developed by Vitelli et al. (2023) which was fully
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Component C
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Component B
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Growth, 

Fig. 2. An illustration of the metabolic pathways involved
in oxidative stress.

Fig. 3. Synthetic data produced by the mechanistic model
developed by Vitelli et al. (2023).

trained and validated with experimental data. In prac-
tice, the proposed MGNN could be also directly trained
with data. In this study, in silico data for 20 batches
are generated by considering different initial conditions
corresponding to perturbations around the experimental
initial conditions that were used in the actual experiments
. The data was split into 3 data sets to be used for training,
validation and testing respectively. The training set is used
to train the weights of the network for a particular set of
hyper-parameters, the validation set is used to find a best
set of hyperparameters and the testing set is used to test
the accuracy with data that is not used for neither training
or validation. Hence, the overall calibration of the model
involves successive iterations between training and valida-
tion steps from which a best combination of weights and
hyperparameters is found. In total, fifteen batches were
used in the training process, two batches in the validation
process, and three batches in the testing process. The total
fermentation time of each batch is 60 hours (120 samples
per batch) and includes the 6 metabolites presented above
plus biomass. Figure 3 shows the in silico dynamic profiles
of 6 metabolites and biomass concentrations obtained with
the mechanistic model in Vitelli et al. (2023) during the
Bordetella pertussis fermentation.
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3. RESULTS AND DISCUSSION

Two different deep learning models were trained to pre-
dict metabolites’ concentrations over time: i- the MGNN
model, and ii- the associated fully connected neural net-
work model. The hyperparameters considered for these
models are: the number of layers, the number of units
within each layer, and the learning rate. Using the valida-
tion data set, these parameters are tuned to minimize the
loss function. The hyperparameter search is implemented
using Python’s Keras-tuner. To perform this search, a
grid of hyperparameters is defined, for the number of
hidden layers for correctly capturing nonlinear dynamics
of metabolites’ behavior = [1, 2, 3], number of neurons for
each layer = [1, 2, 4, 8], and learning rate = [0.1, 0.01,
0.001, 0.0001]. Figure 4 illustrates the architecture of the
metabolic graph neural network model that was developed
for predicting the concentrations of different metabolites
during oxidative stress in Bordetella pertussis fermenta-
tion. Figures 5 and 6 compare the dynamics of metabolite
concentrations between the fully connected neural network
and the mechanistic model in a training and in a testing
batch respectively. As depicted in these figures, the fully
connected neural network demonstrates a good fit for the
training batch but a notably poor fit for the testing batch,
indicating an overfitting issue in the fully connected neural
network model. As previously mentioned, overfitting is
caused by the high number of parameters in the fully
connected neural network. However, Figure 7 exhibits a
very good fit for the testing batch, addressing the overfit-
ting issue due to the model’s significantly lower number of
parameters. A comparison between the MGNN model and
the corresponding fully connected neural network model
in terms of the mean square error is shown in Table 1.
Physical explainability (interpretability) of the network
is a desired property of deep learning models. Also, the
proposed MGNN model has the ability to quantify the ef-
fect of input variables on the outputs by back-propagation
operations through the network. To interpret the MGNN
we consider the gradients of the time derivative of each
metabolite’s concentration with respect to each metabo-
lite’s concentration that can be directly obtained from
the network from the difference between the metabolite’s
concentrations at two consecutive times k and k+1. The
absolute values of the gradients are averaged over the
fermentation duration to quantify the average impact of
each metabolite on any other metabolite. Also, if the signs
of the gradients are considered, the actual positive or
negative correlation among metabolites can be inferred.
Figure 8 illustrates the absolute value of the impact of each
metabolite on each other metabolite in the metabolic net-
work. The figure accurately demonstrates that metabolites
not connected to a specific metabolite in the metabolic
graph exhibit no contributions in the change of that spe-
cific metabolite. Figure 9 also illustrate the positive or
negative impact of various metabolites on the change of
a particular metabolite.
For example, the first row of Figures 8 and 9, shows a pos-
itive impact from metabolites X (biomass), A (NADPH),
and S (glutamate) on the change in biomass concentration
which aligns with the mechanistic ODE equation devel-
oped for the dynamics of this metabolite:


dX

dt
= (µ−D)X

µ = αFAA
(1)

For Aext (NADPH extracellular), Figure 9 displays a
positive effect from X and A, in accordance with the ODE
equation below:

dAext

dt
= (Km +D)AX (2)

Eq. 2, indicates that the change dAext has a direct positive
correlation with variables A and X. Correspondingly,
according to the metabolic graph, Aext either converts into
intracellular A or accumulates outside the cell, aligning
with the negative influence of Aext on its own alteration,
as determined by the MGNN model.
Similarly, Figure 8 and 9 shows positive influences of
metabolites A, B, C, and X, as well and negative influence
of S on the change of metabolite A (NADPH). These
observations can be verified with the mechanistic ODE
equation describing the concentration dynamics of this
metabolite:

dA

dt
= FAA− kpAB + kmC − µA−KmA (3)

A (NADPH), S (glutamate), C (NADP+), and X (biomass)
contribute to the increase in B, while the consumption of
metabolite B in producing C and degradation of B result
in its decrease.

dB

dt
= FBA− kpAB + kmC − µB − dBB (4)

Regarding metabolite C (NADP+), Figures 8 and 9 depict
a positive influence from metabolites A, B, C, and S,
and a negative influence from X. This observation can be
again verified with the mechanistic model concerning the
dynamics of this metabolite.

dC

dt
= kpAB − kmC − µC

FA =
( v
1+S/Ksi

)S

KX + S
(

S

Kt + S
)1.5

µ = αFAA

(5)

Regarding metabolite Sext (extracellular glutamate), only
the intracellular glutamate (S) has the potential to posi-
tively impact the increase in Sext concentration, as it can
only be transported to the exterior of the cell. The con-
centrations of metabolites Sext, X, and A at the previous
time lead to a decrease in the concentration of Sext. This
can also be corroborated from the metabolic graph (Figure
2) and from the mechanistic model (Eq. 6):

dSext

dt
= − µX

YX/S
(6)

Furthermore, the mechanistic model ODE (Eq. 7) confirms
that the metabolites X, S, and A have positive impact and
metabolite S at the previous time has a negative impact
on the change of S.

dS

dt
= −FAA− FBA+ αA(Sext − S)− µS (7)

An interesting application of the MGNN model is for fault
detection. To assess this capability, a change (fault) was
intentionally introduced into the media (Sext) during the
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Fig. 4. Architecture of the metabolic graph neural network
for the oxidative stress metabolic network.

Fig. 5. Comparison of the predicted concentrations of
metabolites over time in a training batch using the
developed fully connected neural network with the
mechanistic model.

Fig. 6. Comparison of the predicted concentrations of
metabolites over time in a testing batch using the
developed fully connected neural network with the
mechanistic model.

Fig. 7. Comparison of the predicted concentrations of
metabolites over time in a testing batch using the
developed Metabolic Graph Neural Network (MGNN)
with the mechanistic model.

Table 1. Comparison of the Metabolic Neural
Network model (MGNN) and the fully con-

nected neural network (FCNN).

MGNN FCNN
MSE in the training dataset 3.6157e-04 8.2261e-05
MSE in the testing dataset 4.1534e-04 1.379e-01

Number of parameters 575 2247
Overfitting problem No Yes

Fig. 8. The relevance of metabolites at the previous time
to the change of metabolites at the current time using
the MGNN model.

time interval t = [20, 26] by increasing the concentration
of this metabolite by 10. Based on an online fluorescence
probe currently available in our lab, we assumed that the
concentrations of biomass (X) and extracellular NADPH
(Aext) can be measured online. The MGNN model, ini-
tialized with the same conditions as normal batches, was
simulated while forcing the predicted values of biomass
(X) and extracellular NADPH (Aext) to be equal to the
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Fig. 9. The positive or negative influence of each input
on the output direction; Green (Positive), Red (Neg-
ative), Yellow (Neutral)

Fig. 10. The contribution of different metabolites to detect
the imposed fault in the media (Sext) in t = [20, 26]
compared to their contributions in normal media.

measured values. Using the contribution plots’ algorithms
developed in Aghaee et al. (2023), the difference between
the response of the MGNN model for the faulty batch
and the average response for normal batches was back-
propagated through the MGNN model to determine the
contribution of different metabolites, as illustrated in Fig-
ure 10. These plots clearly show the detection of the change
in nutrient concentration and its impact on the other
metabolites.

4. CONCLUSION

This study proposes a novel Metabolic Graph Neural Net-
work (MGNN) as a modelling tool for simulating the dy-
namic behavior of metabolites within a metabolic network.
By incorporating prior knowledge of metabolic graph path-
ways, a neural network model with a significantly lower
number of parameters is obtained thus leading to less over-
fitting of data as compared to a fully connected NN that
does not use prior metabolism knowledge. The developed
MGNN model results in significantly better accuracy as

compared to the fully connected in terms of the mean
square errors.
Furthermore, the MGNN model is highly explainable since
it comprises multiple sub-neural network models, each
representing the dynamics of a specific metabolite. In
contrast, the fully connected neural network model cannot
be physically interpreted.
Moreover, the methodology can be used to generate a rele-
vance matrix that reveals the influence of different metabo-
lites on the change of a specific metabolite. The relevance
matrix correctly predicts (positive or negative) the corre-
lations among metabolites as verified by the mechanistic
model that was used to generate the in silico data and
by the metabolic graph associated with oxidative stress
phenomena. The derivation of MGNN is found to be signif-
icantly faster than the development of a mechanistic model
since the MGNN. While the mechanistic model requires a
priori decisions regarding the kinetic expressions relating
different metabolites, the MGNN does not require such a
priori assumptions regarding the forms of the nonlinear
kinetic terms relating the metabolites thus simplifying the
development of the model. The proposed model is also
shown to be useful for fault detection applications.
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