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Abstract: State observation is necessary for feedback control but often challenging for nonlinear
systems. While Kazantzis-Kravaris/Luenberger (KKL) observer gives a generic design, its
model-based numerical solution is difficult. In this paper, we propose a simple method to
determine a data-driven KKL observer, namely to (i) pass the measured output signals through
a linear time-invariant dynamics, and (ii) reduce the dimensionality to principal components.
This approach is especially suitable for systems with rich measurements and low-dimensional
state space, for example, when videos can be obtained in real time. We present an application to
a video of the well-known Belousov-Zhabotinsky (B-Z) reaction system with severe nonlinearity,
where the data-driven KKL observer recovers an oscillatory state orbit with slow damping.
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1. INTRODUCTION

Characterizing the nonlinearity in process dynamics is
of critical importance to process control. While model-
based control methods, especially model predictive control
(MPC) (Rawlings et al., 2017), have been well established
in the existing literature, the difficulty of obtaining ac-
curate nonlinear models has motivated the development
in the directions of both nonlinear system identification
(Nelles, 2020), especially for neural models (Ren et al.,
2022), and model-free data-driven nonlinear control (Hou
and Wang, 2013; Tang and Daoutidis, 2022). This work
focuses on model-free control, and is motivated by as
well as complements our previous works on input–output
data-driven control methods (Tang and Daoutidis, 2019,
2021; Tang and Woelk, 2023), where machine learning
techniques are adopted to analyze input and output tra-
jectories for the synthesis of output-feedback controllers.

For nonlinear process control, state-space forms are the de
facto standard representation – when a state-space model
is available, an optimal or pole-placing state-feedback
controller is synthesized, and as a prerequisite for such
state feedback, a state observer should be first designed to
estimate the states from input and output history (Sontag,
1998; Haddad and Chellaboina, 2008). A state observer
refers to an auxiliary dynamical system that takes the
plant inputs and outputs as its inputs, and outputs a signal
as the estimation of the states (Kravaris et al., 2013).
For observable linear systems, the Luenberger observer
(Luenberger, 1966) achieves exponential decay in the state
observation errors. For nonlinear systems, observer designs
based on extended Kalman filters (EKF), input–output
linearization, high-gain feedback, and other ideas have
been proposed; a comprehensive recent review can be
found in Bernard et al. (2022).

⋆ This work is supported by the faculty start-up fund from NC State
University.

Here we in particular focus on a special type of observers,
initially proposed in Kazantzis and Kravaris (1998) as
an extension of the Luenberger observer in nonlinear
systems with a local exponential convergence guarantee.
Their global existence and properties were studied in An-
drieu and Praly (2006), which also pinned down its nam-
ing as Kazantzis-Kravaris/Luenberger (KKL) observers.
Multiple extensions of KKL observers were proposed in
the literature (Duan and Kravaris, 2020; Kravaris and
Venkateswaran, 2021). We especially note that, even with-
out the knowledge of a state-space model, KKL observer
provides a salient structure (i.e., a linear state dynamics
and a nonlinear static output map) that is amenable to
machine learning, especially neural network approaches
(Niazi et al., 2023; Miao and Gatsis, 2023; Tang, 2024). To
avoid the nonconvexity in neural network training, Tang
(2023) recently proposed a linear parameterization of the
observer in the form of Chen-Fliess series, which can be
recursively learned through online least squares.

In this paper, we consider the scenarios where a rich
amount of measured variables are obtained from an (au-
tonomous) system with low-dimensional state space. This
is motivated by the growing interest in utilizing im-
age/video information for process modeling, monitoring,
and control (Shi et al., 2020; Jiang and Zavala, 2021;
Wang et al., 2022), which in principle provides higher
capacity of understanding and handling the nonlinear pro-
cess dynamics (Chiang et al., 2022). However, exploiting
such rich visual information for state observation, despite
being a natural usage, has not been reported so far to our
knowledge. The present work thus aims to bridge this gap,
especially for reactive systems with severe nonlinearity.
To showcase the applicability, we will consider as case
study a representative nonlinear autonomous system – the
Belousov-Zhabotinsky (B-Z) reaction system (Zhabotin-
sky, 1991), which exhibits repetitive oscillations across a
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spectrum of colors due to the periodic variations of the
concentrations of reactive species.

We argue that when video measurements are available, the
output mapping of the KKL observer can be approximated
as an affine one, thus allowing a simple approach for data-
driven KKL observer synthesis. Specifically, we propose
to determine the observer through two steps, namely (i)
passing the output measurements through a pre-assigned
linear time-invariant (LTI) dynamics, to obtain the ob-
server states that stand for a lifting of the process states,
and (ii) reducing the dimensionality of the observer states
through principal component analysis (PCA) that retains
the information in a low-dimensional subspace with most
data variations. Through these two steps, we obtain as
outcomes a state trajectory that is topologically equivalent
(in the sense of a diffeomorphism) to the actual one. When
the true states (with physical meanings) are not known, re-
covering such an equivalent representation is theoretically
necessary for subsequent state-space modeling, dynamical
analysis, and state-feedback control.

The remainder of the paper is organized as follows. We
provide preliminaries of the KKL observer in Section 2
and discuss the PCA algorithm and its applicability in
Section 3. Then, focusing on an oscillatory reaction system
with video measurements, we apply the proposed PCA-
based data-driven KKL observer approach in Section 4,
showcasing its capability of recovering the limit cycle
behavior. Conclusions are given in Section 5.

2. KKL OBSERVER FOR NONLINEAR SYSTEMS

Consider a nonlinear autonomous system in continuous
time, described by the equations:

ẋ(t) = F (x(t)),

y(t) = H(x(t)),
(1)

where x ∈ Rn is the vector of state variables, and y ∈
Rp represents the measured outputs. It is assumed that
F : Rn → Rn and H : Rn → Rp are supposed to be
smooth to guarantee the existence and uniqueness of the
flow. However, the algebraic expressions of F and H are
unavailable for model-based state observation. To pursue a
data-driven state observer for this black-box dynamics, we
assume that the state space is intrinsically low-dimensional
(i.e., n is small) and that the available measurement
is rich, with a sufficiently high output dimension (p).
The low-dimensional state space typically arises from
process units with dissipative flows. In such systems, the
dynamics naturally separates into a fast self-stabilizing
subsystem that converges to an inertial manifold and
slow patterns that dominate the long-term behavior. See,
e.g., Christofides (2001); Baldea and Daoutidis (2012).
The high-dimensional measurement typically comes from
a video captured from the system, when p in principle can
be as large as the number of pixels in each image frame.

The most classical form of state observer is known as the
Luenberger observer (Luenberger, 1966), which is suitable
for linear systems (i.e., F (x) = Fx and H(x) = Hx for
matrices F and H) and represented as:

ż(t) = Az(t) +By(t),

x̂(t) = T †z(t).
(2)

Here z ∈ Rnz (nz ≥ n) is the observer states, and x̂ is
the vector of state estimates as the observer outputs. The
observer dynamics is a linear one specified by the matrices
of appropriate dimensions (A, B, and T †). To ensure that
the observation error e := x̂(t) − x(t) vanishes to 0 as
t → ∞, the following three steps are taken:

(i) Assigning the observer state dynamics (A,B), under
the restriction that (A,B) must be a controllable pair
and A should be Hurwitz;

(ii) Solving the Sylvester equation

TF −AT = BH (3)

for T ∈ Rnz×n under the given (A,B); and
(iii) Finding T † as a left pseudo-inverse of T .

Remark 1. A special case occurs when (A,B) is chosen
such that A = F − BH, resulting in T = I. The
observer then reduces to a linear dynamics driven by the
“innovation” quantity y −Hx̂:

˙̂x(t) = Fx̂(t) +B(y(t)−Hx̂(t)). (4)

The observer gain B can be optimally designed via solving
an algebraic Riccati equation. This is the (continuous-
time) Kalman filter.

For nonlinear systems, the Luenberger observer was gen-
eralized to the concept of Kazantzis-Kravaris/Luenberger
(KKL) observer. The KKL observer is expressed as:

ż(t) = Az(t) +By(t),

x̂(t) = T †(z(t)),
(5)

where the observer states z are still driven by the process
outputs y through an LTI dynamics (A,B), but the output
map is replaced by a nonlinear one, T †(·), which is the left-
pseudoinverse of a smooth nonlinear mapping T : Rn →
Rnz that is locally non-degenerate everywhere (i.e., T is an
immersion). Here, by left-pseudoinverse, we mean that T †

is a mapping satisfying T †(T (x)) = x for all x on the state
space, or simply T † ◦T = id. It can be verified that, if T is
the solution to the following system of partial differential
equations (PDEs):

∂T

∂x
(x)F (x) = AT (x) +BH(x), (6)

then z becomes an asymptotic estimate of T (x), repre-
senting the transformed states. Here ∂T/∂x refers to the
Jacobian matrix of T (x). The mapping T † transforms the
observer states z back into the estimated state variables x̂
in Rn, thus generating asymtotic state estimates (due to
the non-degeneracy of T ).

The existence of KKL observers for nonlinear systems was
proved in the literature under mild back-distinguishability
assumptions on the flow (Andrieu and Praly, 2006;
Brivadis et al., 2023). We note that for nonlinear systems,
the order of state observer dynamics is not guaranteed
to be equal to n, with nz > n expected. Specifically, if
the pole placements in A are allowed to be complex, the
observer order should be chosen as n+1 for a single-output
system, which implies that with p outputs, a sufficient
order of state observer is nz = p(n + 1). This makes T
a lifting into a higher-dimensional space and thus T † a
dimensionality reduction from p(n+ 1) to n dimensions.

While the construction of this inverse mapping is crucial
for observing the original state variables, its reliance on the

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

791



a model-based PDE system often makes it not amenable
to numerical solution. Nevertheless, it was noted (Tang,
2023) that even if the states (x-data) are unavailable for
the supervised learning of the observer, dimensionality
reduction techniques on the z-data can determine a map-
ping P : Rnz → Rn, which generally makes P ◦ T a
diffeomorphism (namely a smooth bijective mapping that
has a smooth inverse). That is, P (z) will yield a topologi-
cally equivalent representation of the states, containing all
the state information despite the absence of the “ground
truth”. For dimensionality reduction, there are abundant
tools of machine learning. Next, we introduce and justify
the use of PCA algorithm to this end.

3. DIMENSIONALITY REDUCTION FOR STATE
OBSERVATION USING PCA

In a dimensionality reduction algorithm, the reduction
mapping P is learned (i.e., optimized according to a
sample) within a class of candidate mappings, denoted as
P. In order that P ◦ T becomes a bijection through such
a learning procedure, we make the following assumption.

Assumption 2. The “ground truth” mapping to recon-
struct the states, T †, can be left-composed by an (un-
known) bijection S : Rn → Rn, and then be contained
in the model class P, i.e., S ◦ T † ∈ P.

This assumption in practice is satisfied only approxi-
mately. To ensure better approximation, P should be a
rich model class. For example, in Tang (2023), we proposed
to use kernel PCA in the presence of low-dimensional
measurements and large data, so that the P can cover
the linear span of a large number of kernel functions. In a
different vein, in this paper, we consider the setting that
the measurement dimension p is large, i.e., the system’s
output mapping H = (H1, . . . ,Hp) contains a large num-
ber of nonlinear functions. As such, for the underlying
immersion T as a very high-dimensional vector-valued
mapping, its left-pseudoinverse T † not only exists but also
has a sufficiently large degree-of-freedom.

Specifically, we will consider the case that the model class
P contains all affine mappings from Rnz to Rn. That is,

P = {P : z 7→ Qz − q, Q ∈ Rn×nz , q ∈ Rn}. (7)

With Assumption 2, we assume that there exists some
“true” model P ∗(z) = Q∗z − q∗, such that for some
bijection S∗ and for some pseudo-inverse T †, we have
S∗ ◦ T † = P ∗. This justifies the use of PCA (Jolliffe and
Cadima, 2016) as an appropriate tool, which determines a
dimensionality reduction mapping in an affine form:

x̂ = P (z) = Qz − q. (8)

Now, we summarize the major steps in the PCA approach.
First, by passing the measured output signal of the system
y(·) through an LTI dynamics (A,B), the observer states
z(·) can be simulated. With a certain sampling interval, we
may store the data of z[k] in discrete time k = 1, 2, . . . , N
into a matrix Z is of shape N × nz, namely

Z =


z[1]⊤

z[2]⊤

...
z[N ]⊤

 . (9)

With the data being a video captured from the physical
process, the number of discretized time instants N is the
number of frames from the video, and the number of data
features is nz. The first step in PCA is to determine the
average and sample covariance of each component:

z̄j =
1

N

N∑
k=1

zj [k], s2j =
1

N − 1

N∑
k=1

(zj [k]− z̄j)
2
, (10)

and thereby calculate the whitened data matrix Z̃, whose
(k, j)-th entry is:

z̃j [k] =
zj [k]− z̄j

sj
, j = 1, . . . , nz, k = 1, . . . , N. (11)

Then, we compute the covariance matrix Σ:

Σ =
1

N − 1
Z̃⊤Z̃, (12)

and perform eigenvalue decomposition on the covariance
matrix Σ:

Σ = UΛU⊤ (13)
where U = [u1, . . . , unz

] is the orthogonal matrix com-
prising of unit eigenvectors of Σ as its columns and Λ =
diag(λ1, . . . , λnz

) is the diagonal matrix of the correspond-
ing eigenvalues, which capture the variations of data along
the directions of the eigenvectors. It actually suffices to
perform a singular value decomposition algorithm on the
data matrix Z̃, which avoids the explicit calculation of
Σ. From the PCA result, the i-th principal component
of any sample point z[k] is u⊤

i z̃[k]. Hence, the principal

components of all data points can be stored as Z̃U .

Then we reduce the dimensionality from nz to n. To
maximize the variation encompassed by the reduced set of
principal components, we select the n leading eigenvalues
and their corresponding eigenvectors. Assuming that the
diagonal of Λ has been sorted in the descending order, we
denote by Ũ ∈ Rnz×n the matrix formed by the first n
columns of U . The proportion of total variance retained in
the n-dimensional subspace of these principal components
is
∑n

i=1 λi/nz, where λi represents the i-th eigenvalue.
Then, the principal components of any sample point z form
a vector

P (z) = Ũ⊤z̃ = Ũ⊤S−1(z − z̄), (14)

where S = diag(s1, . . . , snz ). Let Q = Ũ⊤S−1 and q = Qz̄.
We have determined a dimensionality reduction mapping
in the form of (8).

Remark 3. The PCA algorithm here introduced is an
offline one, which computes the reduction mapping after
a sufficiently large sample is collected, and this mapping is
not updated with new data. An online version, known as
recursive PCA, was proposed based on the perturbation
of spectral decomposition and used for online process
monitoring in Li et al. (2000). An online kernel PCA
algorithm can be found in Honeine (2011).

The complexity theory of subspace learning has estab-
lished general probabilistic relations between the sample
size N , error ϵ in the distance between the learned sub-
space Σ and true subspace Σ∗, and the confidence level
1− δ, in the form of

P[dist(Σ∗,Σ) ≤ ϵ(n, δ)] ≥ 1− δ. (15)

See, e.g., Rudi et al. (2013), where it was established that
the error is such that
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ϵ(n, δ) ∼ O

((
log(n/δ)

n

)−(1−r)/2r
)
, (16)

where r is the order of decay for the eigenvalues in
descending order. Thus, under Assumption 2, it can be
claimed that for the actual bijection from the states to the
principal components, S∗, the expected observation error,
defined as

e(x) := S∗(x)− P ◦ T (x), (17)

vanishes with increasing sample size. Since the Assump-
tion 2 holds only approximately, the observation error is
practically bounded instead.

4. CASE STUDY: CONTINUOUSLY STIRRED
OSCILLATORY REACTION

Now we consider the case study on B-Z reactions. The
reaction kinetics is accurately described by the Field-
Kőrös-Noyes (FKN) mechanism which is further simplified
by the Oreganator model (Field et al., 2022). By using
video processing techniques, the oscillatory nature of the
Oregonator model can be confirmed and the dynamical
aspects was investigated in the recent work of Barzykina
(2020). Motivated by the abundance of videos on the B-Z
reaction system due to its use as a tutorial example, in this
work, we choose this system as a prototype reactor unit
with low-dimensional state space and high-dimensional
measurements, where the proposed data-driven state ob-
servation approach is applicable.

The Oregonator model for the B-Z reactions reduces the
five coupled reaction rate expressions into three differential
equations. These three equations can be put as a dimen-
sionless form:

ϵ
dx1

dt
= qx2 − x1x2 + x1(1− x1),

δ
dx2

dt
= −qx2 − x1x2 + fx3,

dx3

dt
= x1 − x3.

(18)

The constants are related to the rate constants of the
coupled reactions (for a detailed explanation, see, e.g.,
Barzykina (2020)). Here the constant values are ϵ = 3.6×
10−2, δ = 1.2×10−4, f = 1, and q = 2.4×10−4. Simulating
the model from a randomly selected initial condition, we
plot the trajectory of the states in a three-dimensional
space as in Fig. 1. After a short time duration, the
trajectory settles down on a limit cycle that has a bow-tie
shape seen from the chosen view. In addition, Fig. 2 plots
the trajectory of x2 versus increasing time, which confirms
that the orbit is periodic with sustained oscillations. Now
that we assume that the true model is unavailable (indeed,
the above model is only approximate), we examine whether
the proposed data-driven state observer is capable of
recovering this limit cycle behavior.

To this end, we obtained a video from Youtube, showing
the reaction occurring in a flask caught by a camera at a
fixed position 1 . Each video frame has 360× 640 pixels, in
which a 150×130-pixel area approximately covers the flask.

1 The video was uploaded by Bob Kulawiec at Edmund Burke
School on February 8, 2023 at https://www.youtube.com/watch?v=

ieh9qIkkMJQ.

Fig. 1. Simulated state trajectory in an Oregonator model
for the B-Z reactions.

Fig. 2. Trajectory of the second state component in the
Oregonator model.

Since the solution in the flask is continuously stirred by a
magnetic agitator, the solution color is not well captured in
the regions with vortices and bubbles. To guarantee data
quality, we selected a spatial domain with 10 × 10 pixels.
The total time duration used in this study is 34 seconds,
which is recorded at a rate of 0.075 seconds per frame. In
each video frame, every pixel is represented by a triplet of
scalars corresponding to three color channels – red (R),
green (G), and blue (B), respectively. The variation in
the RGB color vector at each pixel reflects the changing
compositions of the chemical species in the reacton. Thus,
each frame is converted to a 300-dimensional vector, i.e.,
the output dimension of the underlying system is p = 300.
In Fig. 3, we plot the variation of the color components
(averaged on the 100 pixels for each of the three channels)
with increasing time. Clearly, a synchronized periodic
oscillation exists on all color channels, which entails a limit
cycle behavior of the underlying states. All the processing
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Fig. 3. Variation of pixel-averaged color in three channels
with increasing frame number.

Fig. 4. Trajectory of principal components, which exhibits
a limit cycle topologically similar to the one predicted
by the model.

steps here utilizes the OpenCV library (version 4.8.1) in
Python.

For simplicity, we assume that the state dimension n = 3
is a priori known. Hence, the KKL observer should have
a minimal order of nz = (n + 1)p = 1200. We thus
independently assign random numbers a1, . . . , a1200 within
the range of [1, 50] and let A = −diag(a1, . . . , a1200) so
as to make the observer’s LTI dynamics have time scales
between 0.02 and 1 and is also stable. The matrix B is
randomly picked as a full matrix of shape 1200 × 300. In
general, (A,B) should be a controllable pair, allowing the
formulation of a high-dimensional observer state vector z
that encapsulates the nonlinear behaviors of the true states
x. As pointed out in the previous section, it is reasonable
to postulate that the variations within the affine com-
binations of the observer state components z1, . . . , z1200
are sufficient to reflect the behavior of the underlying
states. Hence, PCA is performed to extract the 3 principal
components, capturing the most data variations, from a
superficial 300-dimensional measurement. Such a dimen-
sionality reduction is naturally expected, since the color
variation across the pixels should be small.

Fig. 4 visualizes the trajectory of the three principal
components, denoted as (π1, π2, π3) in a Euclidean space.
The principal components computed for each frame (i.e.,
sampling time instant) are represented by a circle marker
and these points are joined by line segments. Overall, the
geometric shape exhibited by the trajectories embodies a
limit cycle, showing a good topological correspondence to
the limit cycle as predicted by the model. In particular,
from the view of Fig. 4, a similar “bow-tie” shape can be
seen. These results verify that the principal components,
as “reconstructed” states, approximately form a diffeomor-
phism to the underlying unknown states. In addition, as
can be observed in Fig. 3, there exists a steep stage in each
period, namely when the red color component drops (and
the other two curves also drop simultaneously); this is also
seen in the model simulation in Fig. 2 where an abrupt
increase in x2 occurs in each period. In the PCA result
(Fig. 4), we indeed observe that there exists such long
“links”, on which the data points are scarce, between the
two ends (low-π1 and high-π1 regions) with denser data.

We note that the oscillations in Fig. 4 are in fact slowly de-
caying cycles instead of being fully periodic, which is con-
sistent with the physical reality that this reaction system
will in fact approach thermodynamic equilibrium, accord-
ing to the second law, despite being slow. This decay is not
captured by the simple Oregonator model, but honestly
reflected by our proposed data-driven approach. Another
apparent discrepancy between the PCA outcomes and the
Oregonator model is that the principal components ob-
tained are noisy and their trajectory is non-smooth. This
naturally results from the non-ideal measurements of the
camera (e.g., due to inaccurate recording of colors or slight
deviation from the fixed position), as well as the intrinsic
dynamic uncertainties (e.g., due to the incomplete mixing
of the fluid in the reactive system).

5. CONCLUSION

To avoid the difficulty of model-based nonlinear state
observer synthesis, this paper has considered a fully model-
free, data-driven approach. Specifically, by exploiting the
generic Kazantzis-Kravaris/Luenberger (KKL) observer
structure, we propose to (i) use an a priori assigned LTI
dynamics to convert the process outputs to observer states,
which stand for a lifting of the states into a higher-
dimensional space, and then (ii) perform a simple PCA
algorithm to recover the underlying state dimensions. The
resulting principal components provide a topologically
equivalent representation of the true states, despite un-
measurable, through a diffeomorphism.

The performance of the proposed approach relies on the
assumption of a low-dimensional state space and high-
dimensional outputs. This is the case for process units
with dissipative dynamics, on which a camera captures
real-time video measurements. In other words, when rich
measurements are available, the data analysis required for
obtaining the necessary state information can be largely or
even surprisingly simplified. Using the continuously stirred
B-Z reaction system as a representative example, the pro-
posed approach recovered its qualitative behavior, where
oscillations are observed with clear topological correspon-
dence to the limit cycle predicted by a standard model. As
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such, the present work makes a case for adopting image-
based (and in general, non-traditional) sensing technology
for industrial process control and monitoring purposes.

The current work, however, is restricted to autonomous
systems, where the LTI dynamics in the KKL observer can
be a priori given. For non-autonomous, controlled systems,
a KKL observer should theoretically involve a nonlinear
state-dependent term in its dynamical part (Bernard and
Andrieu, 2018). The learning of such a data-driven KKL
observer with more complex structure, is being actively
studied. Also, on the basis of learned state observers, we
will aim at achieving model-free feedback control in the
future research.
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