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Abstract: In the context of parameter estimation, under input uncertainty, the probability
distribution function (pdf) of the measurement data mismatches the true pdf of measurement
with accurate input. In this scenario, the Cramer-Rao bound (CRB), which is widely used
in optimal experimental design, may become an overoptimistic lower bound on parameter
estimation error covariance. To tackle this issue of mismatched measurement distribution subject
to input uncertainty, in this work, a novel optimal sampling time design is proposed that employs
the misspecified Cramer-Rao bound (MCRB), with the aim to collect informative data for high-
quality parameter estimation. The MCRB is formed following the Cauchy-Schwarz inequality
using the true pdf of the measurement, approximated by the statistics of measurement samples.
In the numerical study, large samples from the input uncertainty space are generated and applied
to the underlying system model; the outputs are calculated and used to approximate the true
measurement pdf. The proposed MCRB-based sampling time design is formulated as a non-
convex integer programming optimisation problem solved by a conjugate direction method.
Three sampling time designs, the uniform sampling, the CRB-based design and the MCRB-
based design, are tested on a benchmark enzyme reaction system model. The results show the
necessity and superiority of using MCRB for experimental design under input uncertainty.

Keywords: Input uncertainty, misspecified Cramer-Rao bound (MCRB), optimal experimental
design (OED), sampling time design, parameter estimation.

1. INTRODUCTION

A model-building problem includes two key questions: how
to obtain the observation data and how to process the data
to reach credential conclusions (Lehmann and Casella,
2006)? To answer the former question, the design of exper-
iments, first proposed by Fisher (1937), provides insights
on the effective running of experiments and data collection
so that the generated and collected data is of the best
value for modelling. The experimental design methodology
that utilises the prior knowledge of the system’s underlying
physics is called optimal experimental design (OED) (Barz
et al., 2010; Franceschini and Macchietto, 2008) since it
often involves an optimisation design based on the Fisher
information matrix (FIM).

Collecting measurement data following a well-designed
sampling strategy will reduce the experimental efforts and
ensure that the collected data contain rich information for
modelling (Yu et al., 2018). For the parameter estimation
purpose in modelling, rich information means samller
parameter estimation error covariance. Lower bounds on
parameter estimation error covariance matrix are usually
considered as objective functions in OED, especially when
the lower bound can be proven tight. The most widely used
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lower bound for parameter estimation is the Cramer-Rao
bound (CRB) (Cramér, 1946; Radhakrishna Rao, 1945).

However, due to imperfect knowledge of the system and
imprecise experimental settings in actual implementations,
uncertainties are inevitable in both the model and the
input signal. This may hamper the reliability of CRB-
based design. In our earlier works on sampling time design
that incorporate model uncertainty, iterative design strate-
gies (Wang and Yue, 2019) and one-off robust methods
are developed using the expected value criterion and the
minimax criterion (Wang and Yue, 2020), respectively. For
a system with input uncertainty, the sampling time points
were selected to minimise the change of output variance
caused by input uncertainty, though the design does not
consider the information content (Wang and Yue, 2021).

Compared to CRB, the misspecified Cramer-Rao bound
(MCRB) is proved to be a tighter lower bound on the er-
ror covariance of parameter estimators when the assumed
data distribution is different from the true one (Fortunati
et al., 2017). The performance of the maximum likelihood
estimator (MLE) under the misspecified data model was
first studied in Huber et al. (1967) and further developed
into a systematic approach in statistics (Vuong, 1986).
These fundamental results have been valued in recent
applications mainly in signal processing, such as blind
channel estimation (Abed-Meraim et al., 2021), MIMO-
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Radar (Levy-Israel et al., 2022) and direction-of-arrival
estimation (Fortunati et al., 2017). Very few works exploit
the potential of MCRB in OED. Rosenthal and Tabrikian
(2022) proposed a model selection design method in which
MCRB is used to assess the performance of linear regres-
sion models of different orders. To our knowledge, the
MCRB has not been applied to any OEDs for parameter
estimation under model or data mismatches.

In this work, a new sampling time design strategy is
proposed considering the mismatched measurement pdf
from the true one due to input uncertainty, in which the
MCRB is used to provide the lower bound for parameter
estimation errors. The remaining of the paper is organised
as follows: preliminaries are presented in Section 2; in
Section 3, the optimal sampling time design is proposed
based on the MCRB; the proposed MCRB-based OED is
tested with a benchmark enzyme reaction system in Sec-
tion 4, and compared with two other sampling strategies;
conclusions are given in Section 5.

2. PRELIMINARIES

Consider the following state-space model for a dynamic
system

Ẋ = f (X;θ) , X (0) = X0, (1)
where f (·) are nonlinear functions which are continuous
and first-order differentiable; X = [x1, . . . , xNX

]⊤ ∈ RNX

is the vector of the state variables; X0 ∈ RNX is the initial
condition of the states; θ ∈ RNp is the parameter vector.
The output of the system is represented by

Y (t) = g (X (θ, t)) + ϵ (t) (2)
g (·) is considered as a selection function of the states,
the measurement noises, ϵ (t) = [ϵ1 (t) , . . . , ϵNY

(t)]⊤, are
assumed to be independently Gaussian distributed, that
is, ϵ (t) ∼ N(0,Σ).

2.1 Evaluate Parameter Estimation Quality

A straightforward method to evaluate the quality of an
estimator θ̂ is to use the mean square error with respect
to (w.r.t.) the true parameter θ:

MSE = E
{
(θ̂ − θ)(θ̂ − θ)⊤

}
. (3)

E {} is the expectation function. The best estimator is
the one that is unbiased and has the minimum MSE.
For an unbiased estimator, the MSE equals to its error
covariance matrix V(θ̂). In fact, for any estimators, V(θ̂)

is the smallest second-order moment, i.e., V(θ̂) ⪯ MSE.
Therefore, V(θ̂) is often used as a measure of parameter
estimation quality. Since the analytical form of V(θ̂) is
difficult to obtain for complex dynamic systems, a general
lower bound such as CRB serves as an alternative to
evaluate the parameter estimation quality.

Assume the experimental data has the assumed pdf, f , the
mean of θ̂ is denoted by Ef{θ̂} = µf . Let ζ = θ̂ − µf be
the estimation error function. According to the Cauchy-
Schwarz inequality, there is

V(θ̂) ⪰ Ef

{
ζη⊤}E−1

f

{
ηη⊤}Ef

{
ηζ⊤} . (4)

where η = ∂(ln f)
∂θ . Though this inequality holds for any

score function ζ, it has been proven that the inequality

is most tight if ζ and η have zero means (Richmond and
Horowitz, 2015).

Using this score function and assume θ̂ is unbiased, the
inequality (4) is the famous Cramer-Rao inequality:

V(θ̂) ⪰ I−1(θ) ≜ CRB, (5)
where

I(θ) = Ef

{
∂(ln f)

∂θ

∂(ln f)

∂θ

⊤
}

= −Ef

{
∂2 ln f

∂θ∂θ⊤

}
(6)

is the noted Fisher information matrix (FIM).

2.2 Misspecified Cramer-Rao Bound (MCRB)

Under the input uncertainty, the pdf of measurement
data differs from the true measurement pdf with accurate
input. Denoting, the true pdf of measurements as p,
the expectation of parameter estimator under true data
distribution is written as µp = Ep{θ̂f (Y)}.
Since the covariance inequality (4) holds regardless of the
measurement pdf, we can replace the expectation function
Ef {·} by Ep {·}. Reform the error function and the score
function in Section 2.1 gives

ζ = θ̂f (Y)− µp, (7)

η =
∂ ln f(Y | θ)

∂θ
− Ep

{
∂ ln f(Y | θ)

∂θ

}
. (8)

The MCRB is written as
MCRB ≜ Ep

{
ζη⊤}E−1

p

{
ηη⊤}Ep

{
ηζ⊤} . (9)

When the true measurement data pdf is perfectly fit with
the assumed one, i.e., p = f , under the condition that
θ̂f (Y) is unbiased, ζ and η in (7)-(8) are equivalent to
those obained using CRB. Therefore, the MCRB can be
seen as a generalisation of CRB. It should be noted that
the true measurement distribution model p is difficult to
obtain in practice. The Monte-Carlo simulation can be
used to get the statistics of output distribution from a
large volume of samples (White, 1982).

The MCRB in (9) is explicitly presented by the score
function η in (8) that is applicable for a specific class of
estimators (conditions for these estimators can be found in
Richmond and Horowitz (2015)). It is proved in Fortunati
et al. (2016) that (9) holds for all misspecified (MS)-
unbiased estimators. An estimator is MS-unbiased if and
only if

Ep{θ̂(Y)} = θKL, (10)
where θKL is the parameter set that minimises the
Kullback-Leibler (KL) divergence between p and f :
θKL = argmin

θ∈Θ
Ep {ln(p/f)} = argmin

θ∈Θ
Ep {− ln f} . (11)

3. SAMPLING TIME DESIGN WITH MCRB

3.1 Standard Optimal Sampling Time Design

When the system is nonlinear to parameters, a typical
method to deal with the nonlinearity is to apply the first-
order Taylor expansion at a specific point, θ0, and ignore
the higher-order terms, which gives

X(θ) = X(θ0) + S⊤
0 (θ − θ0), (12)
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where S(θ) = ∂X(θ)
∂θ is the parametric sensitivity matrix

and S0 = S(θ0). Following the additivity of FIM, the
inverse of CRB of a nonlinear dynamic system, linearised
at θ0, can be calculated by the following summation:

A (θ0) =
∑
t

I (θ0, t) =
∑
t

S0(t)Σ
−1S⊤

0 (t). (13)

To perform the sampling time design, a binary weighting
factor, w = [w1, · · · , wNT

]⊤, is associated to NT measur-
able time points as follows{

t1 t2 · · · tNT

w1 w2 · · · wNT

}
. (14)

Here wi = 1 means the measurement is sampled at ti and
wi = 0 otherwise. Then, the OED for sampling time design
can be formulated as

w∗ =argmax
w

ϕ

(
NT∑
i=1

wiS0(ti)Σ
−1S⊤

0 (ti)

)

s.t.

NT∑
i=1

wi = N

(15)

where N is the given total number of sampling time points
to be included, and ϕ is a selected scalar function for
a matrix. Several scalar functions are commonly used in
OED, such as D-optimal (determinant), E-optimal (maxi-
mum eigenvalue), and A-optimal (trace). The optimisation
problem in (15) is a non-convex integer programming prob-
lem that can be solved using conjugate gradient methods.

In this OED, unbiased estimation is assumed, and the
CRB is used as the lower bound for parameter estima-
tion error covariance. With input uncertainty, the out-
put/measurement data distribution will be affected, and
the generated data series may become non-Gaussian.
Moreover, the input uncertainty may cause correlations
between the measurement states, losing the assumption
of states’ independence. Thus, CRB may not be suitable
for assessing parameter estimation quality. The MCRB,
on the other hand, considers the mismatch between the
true pdf and the assumed pdf of measurement data, which
could be a better criterion to quantify the lower bound of
parameter estimation error.

3.2 Misspecified Maximum Likelihood (MML) Estimator

Before utilising the MCRB in OED, we need to find an
MS-unbiased estimator similar to (10) to ensure MCRB
is a meaningful estimation quality criterion. The MLE
obtained under the assumed pdf model f becomes the
MML estimator θ̂MML, when the measurement data pdf
is p. It was proven that the MML estimator converges
almost surely (a.s.) to θKL when the number of data M
is sufficiently large (Huber et al., 1967):

θ̂MML (Y)
a.s.−−−−→

M→∞
θKL (16)

This attribute means that the MML estimator is asymp-
totic MS-unbiased.

Under suitable regularity conditions, the asymptotic at-
tribute of MCRB for the MML estimator can be obtained
(White, 1982), that is,

MCRB(θ̂MML)
a.s.−−−−→

M→∞
MCRB(θKL) (17)

This suggests that the MCRB(θ̂MML) can be used instead
of MCRB(θKL) under sufficient data, and the lower
bound of the MML estimator can be calculated even when
the true data pdf model p is unknown.

3.3 Optimal Sampling Time Design with MCRB

Denote p(Y(t)) as the true data pdf at time t, the mean
is µ(t) and the variance covariance matrix is ΣX(t).
Suppose the data at different time points are distributed
independently. The approximated MML estimator and its
expectation under the linearised model at θ0 are:

θ̂MML ≈ θ0+A−1(θ0)
∑
t

S0(t)Σ
−1(t)[Y (t)−g (X (θ0, t))]

(18)

µp = θ0 +A−1(θ0)
∑
t

S0(t)Σ
−1(t)[µ(t)− g (X (θ0, t))]

(19)

Then the estimation error function ζ and the score func-
tion η at θ0 can be obtained using (7) and (8) to give

ζ = A−1(θ0)
∑
t

S0(t)Σ
−1(t)[Y (t)− µ(t)], (20)

η =
∑
t

S0(t)Σ
−1(t)[Y (t)− µ(t)]. (21)

Note the assumed independence between measurements at
different time points, there is

Ep

{
ζη⊤}=A−1(θ0)B (θ0) , (22)

Ep

{
ηη⊤}=B (θ0) , (23)

where B (θ0) =
∑

t S0(t)Σ
−1(t)ΣX(t)Σ−1(t)S⊤

0 (t). Ac-
cording to (9), the approximated MCRB for the nonlinear
dynamic system can be written as

MCRB
(
θ̂MML

)
≈ A−1 (θ0)B (θ0)A

−1 (θ0) (24)

Note that the MCRB in (24) only serves as a meaningful
(tight) bound of MSE between the MML estimator and
the true parameter value when θ0 is reasonably close to
the true parameters.

Define

A (w) =

NT∑
i=1

wiI (θ0, ti) , B (w) =

NT∑
i=1

wi ·Bi (25)

where Bi = S0(ti)Σ
−1 (ti)ΣX(ti)Σ

−1 (ti)S
⊤
0 (ti). The

MCRB is written as
MCRB(w) = A−1(w)B(w)A−1(w). (26)

Then, the optimal sampling time design with MCRB can
be formed as

w∗ = argmin
w

ϕ (MCRB (w)) (27)

s.t. 1⊤w = N

Since A (w) and B (w) are linear functions of w, the op-
timisation problem (27) can hardly be convex. Therefore,
conjugate direction methods, such as Powell’s method, are
considered to solve this optimisation problem.
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Fig. 1. Standard deviations of the pseudo-measurement data and the assumed data

Fig. 2. Chi-squared test with null hypothesis that the pseudo-measurement data follows Gaussian distribution

4. CASE STUDY

The benchmark enzyme reaction system (Yue et al., 2013)
represents a typical kinetically controlled synthesis and
is a moderate-sized nonlinear dynamic system with ten
state variables and eleven parameters. Only three states
[E,S,N ] have nonzero initial values [E0, S0, N0], which
are taken as inputs that can be implemented at the be-
ginning of the reaction process. The non-enzyme states
[S, P,N,Q,R] are measurable during the experiments,
which are taken as output Y. The kinetic reaction rate vec-
tor k = [k1, k−1, · · · , k6]⊤ ∈ R11 includes 11 parameters,
in which three of them, k2, k−3, k5W , are considered most
important according to the parametric sensitivity analysis
(Yue et al., 2013). The following assumptions are made for
the time sampling design.

• The experimental duration is 6,000 seconds to ensure
all state variables reach steady states under step input
stimulation.

• The experiment has 200 measurable sampling points,
uniformly distributed as [30:30:6000]s, and 20 sam-
pling points need to be selected (NT = 200, N = 20).

• The 5 measurable states are sampled simultaneously.
• The measurement error standard deviation is

σi(t) = γrxi(t), (28)

where xi(t) is i-th measurable state at t, γr is a
relative coefficient, a value of 0.1 is taken for outputs.
A small value of 10−6 is added to σi(t) to avoid zero
variance.

4.1 Impact of Input Uncertainty on Outputs

The preset inputs are U0 = [E0, S0, N0] = [1.5 ×
10−5, 0.8, 0.9]⊤. Assume the uncertainties of E0, S0, N0 are
independent of each other and follow Gaussian distribution
of N(0,Σ0), where Σ0 is a diagonal matrix obtained using
(28). The input uncertainty level is set to γr at 0.02.

The Monte Carlo method is employed to propagate the
input uncertainty to outputs. The key steps are briefed as
follows.

(1) Draw 50,000 samples from the uncertainty region of
U0(> 0) following the Gaussian distribution.

(2) Calculate the model outputs using the prior model
and those input samples.

(3) Add measurement noise to the outputs to produce the
pseudo-experimental output Y.

(4) Calculate the mean vector and variance matrix of Y.

The results show that the simulated pseudo-measurement
data Y has the same mean as the assumed distribution.
The standard deviations of the five states are plotted
in Fig. 1, which shows a mismatch from the assumed
standard deviations. The Chi-squared test results of the
pseudo-experimental data are shown in Fig. 2, in which ’0’
means accepting the null hypothesis that the data follows
the Gaussian distribution, ’1’ rejecting this hypothesis. It
can be seen that the Gaussian assumption of the measure-
ments is also violated. The simulation study results show
that the true measurement distribution is mismatched
with the assumed one under input uncertainty.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

627



4.2 Sampling Time Design Results

The proposed MCRB-based sampling time design is
formed as (27) with the input uncertainty described in
the previous section. The D-optimal criterion is adopted
as it has been proved to be the most accurate inference
on parameter estimations (Ruess et al., 2013). The results
of the CRB-based design and the MCRB-based design are
shown in Fig. 3 and listed in Table 1, together with the
uniform sampling (no design). Compared to the uniform
sampling, the selected sampling points of the two OEDs
are more gathered in the time regions where sensitivities
appear to have larger values. The MCRB-based sampling
strategy selects fewer sampling points at the steady states
than the CRB-based sampling.

Table 1. Sampling strategies (D-optimal)

Design methods Sampling strategies (s)

Uniform sampling [300:300:6000]

CRB-based [510:30:690, 4140:30:4320, 5100:30:5250]

MCRB-based [30, 390:30:600, 3270:30:3600]

Fig. 3. Relative parameter sensitivities and three sampling
strategies (uniform, CRB-based and MCRB-based)

4.3 Performance of Sampling Design Strategies

To compare the performance on parameter estimation
quality of the three design strategies in Section 4.2, a
number of 4, 000 sets of parameter estimates are obtained
by taking the pseudo-measurement data into the MML
estimator (18) under the three sampling strategies.

Figure 4 shows the confidence ellipse of these estimations
for the three key parameters. It can be seen that compared
to the uniform sampling, the parameter estimation errors

have been reduced with both CRB-based and MRCB-
based designs. Moreover, the proposed MCRB-based de-
sign shows smaller confidence regions compared to the
standard CRB-based design.

The box-plot is produced to illustrate the locality and
spread of the parameter estimates (Fig. 5). The length
of the box is the interquartile range (IQR), which is the
distance between the first and third quartiles. The median
is shown as a horizontal line inside the box. The points
are outliers, for they lie beyond 1.5 times of IQR. The
whiskers are the locations of the non-outlier maximum
and minimum. The numerical results are listed in Table 2,
including the range of non-outliers, the median and the
mean of the parameter estimates under uniform sampling,
CRB-based and MCRB-based sampling designs.

Table 2. Statistics of parameter estimates

Parameter
(nominal) Strategy range of

non-outliers Median Mean

k2
(100)

uniform 28.05 100.8 101.0
CRB 20.69 100.7 100.8

MCRB 19.61 100 99.90

k−3

(200)

uniform 73.1 197.5 195.6
CRB 65.6 195.8 194.1

MCRB 63.2 200.8 200.1

k5W
(5000)

uniform 1673 5004 5003
CRB 1460 5050 5038

MCRB 1160 5005 4993

The box-plots in Fig. 5 and the results in Table 2 show
that, under the MCRB-based sampling strategy, the pa-
rameter estimates have fewer outliers and smaller non-
outliers range, and the mean and median are closer to
the nominal parameter values compared to the CRB-based
design and the uniform sampling. It can be concluded
that the MCRB-based OED suits better for a misspecified
measurement model. It is found from simulation studies
that this conclusion also holds for the E-optimal and A-
optimal design criteria.

5. CONCLUSIONS AND FUTURE WORK

Considering the input uncertainty, the assumed pdf of
measurements mismatches the pdf of the measurement
data under accurate input settings. This mismatch de-
grades the classical CRB-based OED for parameter es-
timation. This work proposes a novel sampling time de-
sign method that utilises the MCRB instead of the CRB
in OED to address the distribution mismatch in mea-
surement data. The developed design method is applied
to a moderate-sized benchmark case study system. The
simulation results show that this novel design surpasses
the classical CRB-based OED and the empirical uniform
sampling in that the collected data shows lower bounds
for parameter estimation errors. Therefore, MCRB-based
OED is a recommended design method for significant input
uncertainty.

The MCRB-based OED is developed based on model lin-
earisation around specific parameter values, which mainly
works when the nominal model parameters are close to the
selected point for linearisation. In addition, other lower
bounds except for CRB can be considered for OED with
a misspecified model.
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Fig. 4. Confidence ellipse of parameter estimates under three sampling strategies

Fig. 5. Box-plot of the parameter estimates under three sampling strategies
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