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Abstract: For training the Physics-Informed Neural Networks (PINNs), the allocation of
collocation points in the geometric domain plays a pivotal role in determining the model’s
performance. We present a novel sampling method tailored for optimal point allocation in
PINNs. The method involves an initial meshing of the domain, followed by a calculation of
the sensitivity matrix relating the losses for each mesh element to local changes in the locations
of the training points. Subsequently, based on the principles of A-optimal experimental design,
the sampling probability is dynamically redistributed over the domain. In this way, areas of high
sensitivity and corresponding physical significance receive further representation in the training
data. Preliminary results illustrate the effectiveness of the proposed method when applied to the
problem of developing flow between two parallel plates. This sensitivity-based sampling (SBS) is
shown to increase the overall precision of PINNs since it can specifically capture sharp gradients
in critical points within the geometric domain.

Keywords: Deep Learning, PINNs, Design of Experiments (DOE), Optimal Design, Surrogate,
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1. INTRODUCTION

Deep learning modeling approaches have recently gained
attention for solving physical transport problems with
spatio-temporal variations. A major challenge for the
training of deep learning models is the need for a large
amount of data for training. To address this challenge,
Raissi et al. (2019) proposed a deep learning method called
Physics-Informed Neural Networks (PINNs). This method
uses prior knowledge, e.g., first-principles mass and energy
balances, experimental data, initial condition, boundary
conditions, etc., thus partially overcoming the limitations
of data scarcity by constraining the Neural Network (NN)
model (Raissi et al. (2019)). The training of PINNs is
based on the minimization of a loss function related to
the satisfaction of some or all of the following: i- the
partial differential equations defining the target problem
in continuous time or spatial domains; ii- initial/boundary
conditions at specific time/space coordinates iii- in-silico
data from simulations, such as CFD; and iv- measured
data from experiments (Eq. 1).
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+ θsimulation ∗MSEsimulation

+ θexperiment ∗MSEexperiment

(1)

ti and xi define the coordinates of the collocation points
in time and spatial domains used for training; f is a linear
summation of each term of the objective PDEs where the
variables and their nonlinear operations (e.g., divergence,
gradient, Laplacian operator) therein are replaced by the
output values (uNN ) of the neural network and its non-
linear derivatives using automatic differentiation; θ is a
weight for a specific loss term.

PINNs are trained by minimizing the total loss function
(refer to Eq. 1). This problem poses important challenges.
A key challenge is related to the collocation points to
be chosen for PINN training. The proper location of the
points for training the PINN is key for obtaining a model
that provides accurate predictions over the entire domain
of the problem. Conventionally, the collocation points
are chosen uniformly across the domain, which means
assigning the same importance to every region within the
domain. This may not be optimal in terms of convergence
and model accuracy. A second challenge is that different
terms in the loss function may have divergent/convergence
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properties, leading to suboptimal training results. This
necessitates a judicious choice of weights for each term
within the loss function to avoid emphasizing one term
over another.

Regarding the distribution of collocation points, some
studies developed sampling methods tailored to optimize
the locations of training points for improved convergence
and accuracy. For example, uniform, random, and adaptive
sampling methods have been reported in different studies
(Nabian et al. (2021); Wu et al. (2023); Fang et al.
(2023)) Importance sampling or residual-based sampling
is a very popular approach where sampling probabilities
are assigned to each region in proportion to the loss thus
resulting in improved convergence and accuracy (Nabian
et al. (2021); Wu et al. (2023); Mao and Meng (2023)).

However, those methods only consider the effect of collo-
cation points on the residual with the model available at
the current epoch. In contrast, in this work, we propose
a methodology that takes into account changes in the
loss function resulting from models obtained at different
epochs. Our approach is motivated by the recognition that
changing the collocation points will result, through back-
propagation, in the change of the weights and consequently
of the trained models obtained at two different epochs.
This approach enables the influence of points at any loca-
tion on the resulting residuals or errors at other locations
across the geometric domain, which it is not possible with
importance sampling methods that rely solely on a current
model for sampling. The results of the case study will
illustrate the superiority of our approach as compared to
conventional sampling methods.

The strategy proposed in the current study is based
on a combination of sensitivity analysis and an optimal
experimental design approach where the sensitivity is
defined as follows:

Sensitivity =
dLoss

dX

=

√(dLossx,y
dx

)2
+
(dLossx,y

dy

)2 (2)

We hypothesize that, within the entire domain, assign-
ing higher sampling probabilities to regions with higher
sensitivity of the loss function with respect to changes of
their coordinates will generate a training set with higher
information density. This will enhance the local and over-
all training efficiency of the model. Moreover, following
the normalization of the variables, we show that training
with a high-information-density dataset ensures that each
part of the loss function is adequately considered, thereby
eliminating overfitting/underfitting related to any specific
objective.

Our sensitivity-based sampling (SBS) consists of three
steps: 1. Mesh the domain into elements (it is not possible
to consider sensitivity for each point because of com-
putational complexity); 2. Compute the sensitivity and
construct a sensitivity matrix S for all the mesh elements;
3. Based on this sensitivity matrix, allocate sampling
probabilities to each mesh element and allocate points
accordingly.

This work is organized as follows: Section 2 reviews PINNs’
theory. Section 3 details the proposed methodology. Sec-
tion 4 presents the case study. Section 5 discusses the case
study results, and Section 6 presents concluding remarks.

2. PRELIMINARIES

2.1 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) seamlessly
integrate physical principles, represented as ordinary
(ODEs) or partial differential equations (PDEs), into
a supervised deep learning algorithm. The neural net-
works (NN) are trained to satisfy fundamental physical
constraints including mass and momentum balances and
boundary and initial conditions. This is achieved by train-
ing the network to minimize loss functions involving all
these constraints (Eq. 1).

A typical PINN formulation (Raissi et al. (2019)) consists
of two parts: a trainable approximator network for the
solution, and a residual network for reconstructing the
physical laws during the training procedure. The neural
network inputs are spatial x, y, z and time (t) coordinates
from the simulation domain and the outputs are field
values (e.g., velocity u, pressure p, temperature T ) at
the given coordinates. The field values generated by the
approximator inform the residual network which encodes
the PDEs through the automatic differentiation capability
of the neural network. This operation leverages the chain
rule in neurons coupled with nonlinear computations,
making it fast and efficient. The reconstructed partial
differential equations are enforced by the different terms
in the loss functions which are weighted and summed up
with other loss terms (Eq. 1).

3. PROPOSED METHODOLOGY

The key element of our method lies in the sensitivity
analysis we proposed, along with the sampling probability
allocation based on an optimal experimental design ap-
proach to find the locations of the sampling points. The
motivation for this approach is as follows. Let us assume
that at a particular learning epoch during the training,
the loss function is equal to L0, and the sensitivity matrix
composed of local sensitivities as defined Eq. 2 is S. Then,
following a simple Taylor expansion of the loss function
about the value of the loss L0 achieved at a current epoch,
the change in the loss with respect to changes in the
positions of the sampling points is as follows:

L − L0 = S · δX (3)

where δX is a vector of changes in the point’s position
with respect to the coordinates used to obtain a loss of L0.
Then, since the final goal is to drive the final loss (L → 0),
from Eq. 3 we obtain:

−L0 = S · δX (4)

This problem can be viewed as a regression problem with
respect to the changes in the sampling point positions
where the latter can be interpreted as the regression pa-
rameters. Then, optimal design approaches can be applied
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to find the changes in the positions of the collocation
points to be used for training. The reason that A-optimal
(maxTr(STS)) design is preferred here over other opti-
mality criteria, is due to the screening objective relevant
to the current work. A-optimality focuses on penalizing
subsets of factors, i.e., in our case different locations within
the geometric domain, that have the most impact on the
loss function. The expectation for finding such locations is
two-fold: the overall loss will be minimized and particular
locations with large sensitivity will be emphasized.

3.1 Calculation of local and global sensitivity matrices

We propose two methods for the sensitivity-based analysis:
i- local sensitivity-based or ii- global sensitivity-based.

i- The elements of the local sensitivity matrix are the
derivatives of the local loss function at the center of a
mesh element with respect to changes in the location of
the corresponding collocation point in situ. These deriva-
tives (Si,i = dLi/dXi) can be calculated by automatic
differentiation to compose a diagonal sensitivity matrix,
S.

ii- The global sensitivity considers the network’s weight
updates (∆w) through a user prescribed number of train-
ing epochs. This procedure involves implementing one or
more steps of back-propagation operations. The rationale
for global sensitivity analysis is that the changes in the
location of a collocation point will affect in subsequent
epochs all the weights in the network. Accordingly, the
change in the location of a particular collocation point
at a particular epoch will affect the loss function at all
other points of the domain in subsequent epochs. This
clearly contrasts with the local sensitivity analysis where
the change in location of a particular point only affects
the local sensitivity, i.e. the sensitivity at that particular
point and at that particular epoch. (Eq. 5: illustrates the
basic weight update operation in a single layer NN, where
α is the learning rate, N is the batch size, σ, and σ′ are
activation function, and its derivative, b is the bias.).

∆w = −α∂L
∂w

L =
1

N

N∑
i=1

(ŷi − yi)
2

yi = σ(w · xi + b)

∂L
∂w

=
−2

N

N∑
i=1

[(ŷi − yi)× σ′(w · xi + b)× xi]

(5)

Due to the weight updates, it is not possible to use the
automatic differentiation method of the network between
two different epochs. Instead, we perform a numerical
evaluation of the global sensitivity by calculating the
change in the losses between two different epochs with
respect to the changes in the positions corresponding to
these losses. The number of epochs in the future that are
considered for calculation of the global sensitivity following
changes in locations of training points is thereafter referred
to as a prediction horizon h and it is considered as a user-
defined parameter in this proposed method. The resultant
loss changes are then normalized by each perturbation
(δx, δy) to obtain the resulting sensitivities as :

Sensitivityi,j =
∂Lossi
∂Xj

=

√
(Lk+h(xi + δxi, yi + δyi)− Lk(xj , yj))2

(δxj)2 + (δyj)2

(6)

Based on the calculated sensitivities, a square global
sensitivity matrix can be formulated as follows, S (Si,j =
∂Li/∂Xj , i and j are the indexes of row (loss) and column
(perturbation) respectively).

3.2 Proposed sampling based on sensitivity matrices

Utilizing the sensitivity matrices derived from the preced-
ing step, an A-optimal experimental design criterion is ap-
plied to determine the sampling probability allocation. Let
the sensitivity matrix, Si,j = ∂Li/∂Xj . Then, a positive
definite matrix can be obtained, (STS)i,j = (∂Li/∂Xj)

2

(Fisher information matrix). Then, maximization of the
trace of this matrix, i.e., S is equivalent to maximization
of sensitivity.

Tr
(
STS

)
=

m∑
j=1

m∑
i=1

(
∂Lossi
∂Xj

)2

(7)

As decision variables for the optimization problem we
use a fraction λ and formulate accordingly the following
optimization problem:

max
λi

Tr

(
m∑
i=1

λiv
T
i vi

)
s.t. λUB ≥ λi ≥ λLB ,∀ i = 1, ...,m

m∑
i=1

λi = 1

(8)

vi is the row vector of sensitivity matrix S, with dimen-
sions m×m; m also represents the number of regions ob-
tained through meshing. This parameter can be adjusted
to control the resolution of the mesh depending on the
complexity of the specific problem under study.

For the local sensitivity approach for which the sensitivity
matrix is diagonal, the trace is computed as follows:

Tr

(
m∑
i=1

λiv
T
i vi

)
=

m∑
i=1

λi

(
dLossi
dXi

)2

(9)

The derived fraction, λi, serves as the sampling probability
(pi) for position i.

For the global sensitivity approach, the trace to be maxi-
mized is as follows:

Tr

(
m∑
i=1

λiv
T
i vi

)
=

m∑
j=1

m∑
i=1

λi

(
∂Lossi
∂Xj

)2

(10)

To obtain the optimal sampling probabilities (pj) for each
location j, the fraction of points λi allocated to each row
i is further distributed proportionally across columns j
based on their respective sensitivity values ∂Li/∂Xj .

pj =

m∑
i=1

λi
∂Li/∂Xj∑m
j=1 ∂Li/∂Xj

(11)

A notable difference between the local approach and the
global approach is that the former can only allocate
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sampling probabilities at one position that affects the
loss at that position whereas the latter approach can
allocate sampling probabilities at one position that affects
that same position or another different position in the
domain. For instance, the global approach can calculate
the sensitivity of the boundary condition loss with respect
to coordinates’ changes in collocation points located away
from the boundary.

Algorithm 1 Sensitivity-Based Adaptive Sampling
Global Approach (SBS-G)

1: Generatem grids for the training data set(s) uniformly
and have their geometric centers {Xj}mj=1, and initial-
ize the sampling probability pj = 1/m for each grid.

2: Set up the model and specify the maximum epoch
number E, the size of mini-batch N , the update step
length T , and the size of horizons H.

3: for k = 0 : E − 1 do
4: Randomly sampling N collocation points. Allocate

the number of points to each region j with respect to
their local probability pj as Nj = pj ∗N .

5: Training the neural network.
6: if T mod (k − 1) = 0 then
7: Record the model’s parameters θk.
8: for repeats in 1, . . . , 10 do
9: Calculate the loss Lk

j at grids’ centers Xj .
10: for h = 0 : H − 1 do
11: Calculate the loss at grids’ centers and

train the neural network.
12: end for
13: Calculate the loss Lk+h

j at new coordinates
Xj + δXj

14: Calculate the global sensitivity numerically
and record (Eq. 6).

15: Recover the model back to θk.
16: end for
17: Calculate the averaged global sensitivity

∂Li/∂Xj from 10 records and build the sensitivity
mastrix S.

18: Solve the optimization problem (Eq. 8) and get
optimal fraction λi.

19: Update the probabilities, pj from λi (Eq. 11).
20: end if
21: end for

4. PROBLEM DESCRIPTION & PROGRAM SETUP

4.1 Case study description: developing flow between two
parallel plates

To validate the effectiveness of our method, a two-
dimensional incompressible developing flow between two
parallel plates was used as a case study. For simplicity,
steady-state conditions are assumed.

It is assumed that fluid enters between two parallel plates
with a uniform velocity profile (Fig. 1). The plates are as-
sumed to be infinitely large in the direction perpendicular
to the x-y plane. Due to the no-slip boundary conditions,
the fluid velocity is zero at the walls (plates). The flow
is gradually decelerated in the x direction close to the
walls, while the velocity of the fluid at the midsection
has to gradually increase to satisfy mass conservation.

Fig. 1. The development of velocity between two parallel
no-slip boundaries.)

In the flow developing region, the velocity exhibits large
gradients within a boundary layer region but is almost
flat within an irrotational flow region where gradients are
small (Fig. 1). In the direction of velocity, the region before
the cross-section where the boundary layers from the two
walls merge at the center is called the entrance region.
This entrance region is then followed by the developed
region wherein the velocity profile remains approximately
constant between the plates(Fig. 1) for subsequent axial
locations.

Since the steady state is considered for simplicity, only two
spatial coordinates, x and y, are considered as inputs to
the PINN and the outputs are the velocity in x direction
(u), velocity in y direction (v), and pressure (p). This
system is described by the two-dimensional incompressible
continuity and momentum equations:

Continuity:
∂u

∂x
+
∂v

∂y
= 0

Momentum (x): ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
+
∂p

∂x

− µ

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0

Momentum (y): ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
+
∂p

∂y

− µ

(
∂2v

∂x2
+
∂2v

∂y2

)
= 0

(12)

ρ is the fluid’s density and µ is the dynamic viscosity.

4.2 Setup of PINN

In this study, a fully connected neural network was
constructed using the PyTorch framework. The hyper-
parameters were found by cross-validation. The resulting
network is made of six hidden layers with 400 neurons
each. For better convergence, the self-scalable tanh (Stan)
activation function was used. To ensure the conservation of
mass and reduce the number of terms in the loss function
(Eq. 1), the velocities were calculated by automatic differ-
entiation of the vector potential (ψ) (Eq. 13). This reduced
the number of output variables to two, the potential ψ and
the pressure field p.

u =
∂ψ

∂y
v = −∂ψ

∂x

∂u

∂x
+
∂v

∂y
=
∂2ψ

∂x∂y
− ∂2ψ

∂x∂y
≡ 0

(13)
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To train the PINN, collocation points were assigned within
a 2D domain situated in the narrow gap between two
plates, where x ∈ [0, 1] and y ∈ [0, 0.015]. We grouped
these collocation points into 5 subsets according to the
different terms occurring in the loss function as follows:
1. Inlet boundary (x = 0; y ∈ (0, 0.015)); 2. Upper wall
boundary (x ∈ [0, 1]; y = 0.015); 3. Lower wall boundary
(x ∈ [0, 1]; y = 0); 4. Outlet boundary (x = 1; y ∈
(0, 0.015)); 5. PDE equations (x ∈ (0, 1); y ∈ (0, 0.015)).
Also, the differences between the solution from CFD
(simulation) and PINN were used within an additional
term in the loss functions. Since the terms in the loss
function related to the PDE and boundary conditions
have different magnitudes, a normalization procedure was
carried out. For this purpose, all variables were formulated
in non-dimensional form so as to ensure that all values
are of the order of 1 (O(1)). We define the scale factors
xs = 1, ys = ymax/2 = 0.0075, us = uinlet = 0.02,
vs = (us ∗ ys)/xs = 0.00015, ps = ρ ∗ u2s = 0.4, and
pref = patm = 0. The fluid density ρ is 1000 and the
dynamics viscosity is 0.0001.

During the training process, which spans 3,000 epochs, the
Adam optimizer is employed for the initial 1,000 epochs
and then, the optimization is transitioned to the L-BFGS
optimizer as done in an earlier study (Markidis (2021)).
Following the normalization of the variables as explained
above, all loss functions’ weights are set to 1 and remain
unchanged throughout the training process, except for the
loss of the CFD predictions. Since the CFD loss term
serves only as a reference and it is desired to minimize
its effect on the final model, its weight undergoes gradual
annealing for the initial 1,000 epochs from 0.1, stabilizing
at 0.035 for the subsequent 2,000 epochs during L-BFGS
training.

5. RESULTS AND DISCUSSION

The probabilities are assigned for five different subsets
corresponding to the inlet condition, wall condition, and
PDE(x) loss respectively. To implement our sampling
method, we uniformly divided the sampling regions for
the inlet boundary, upper and lower wall boundaries, and
PDE into 50, 34, and 40 (x(5) × y(8)) segments or grids,
respectively. In each training epoch, mini-batches of 600,
400, and 600 collocation points are sampled for inlet, wall,
and PDE respectively according to the probabilities calcu-
lated for each of these sub-regions. The points’ locations
are allocated randomly within each sub-region.

For evaluating our method and comparing it to other sam-
pling methods, the same mesh is used for 4 different cases:
1. Uniform (the probabilities for each region are the same
and constant); 2. Local (probabilities are updated based
on local sensitivity analysis); 3. Global (probabilities are
updated based on global sensitivity analysis); 4. Residual-
based (probabilities are updated based on the impor-
tance sampling (residual-based) proposed by Nabian et al.
(2021)). All four cases start from the same probability dis-
tribution at the initial epoch of training and subsequently,
probabilities are updated every 50 epochs for cases 2,3 and
4 above. For uniform sampling, the probabilities are not
changed. The log of training errors (mean squared error,
MSE) is recorded to evaluate the training process. For

Fig. 2. The prediction of the velocity profiles at the inlet
(x = 0).

these 4 cases, the Mean Square Error (MSE) is calculated
based on points drawn from points distributed uniformly
within the corresponding mesh element, regarded as vali-
dation. This avoids biased calculations towards particular
locations within a mesh element.

5.1 Mean squared error

The global approach demonstrated superior training con-
vergence and predictive performance compared to the
other three methods since it results in the lowest MSE
in both the training and validation datasets (Table 1). As
expected, the global sensitivity approach requires longer
GPU time due to the sensitivity calculation.

Table 1. Mean squared errors at convergence

Dataset Uniform Local Global Residual

Training 0.066 0.090 0.049 0.063
Validation 0.064 0.068 0.061 0.142

GPU time (s) 10380.87 11198.72 17226.59 7910.32

5.2 Prediction performance

The prediction of the specified inlet condition where the
sharp gradients are expected, i.e. at the inlet next to the
walls, is of particular interest since errors are expected
to be larger at this location. Moreover, the accuracy of
the inlet condition will be crucial to ensure that the
correct prescribed amount of flow rate is being fed into the
system. From the numerical point of view, it is particularly
difficult to reconcile the no-slip condition at the inlet with
the satisfaction of the momentum equations at locations
immediately adjacent to the plates (see Eq. 1). Moreover,
the inlet section will be very important for predicting the
highest shear stresses that will limit the design.

As shown in Figure 2, the prediction of velocity (u) by
the PINN trained with the global sensitivity approach
(red dashed) approximated the specified inlet condition
with the best accuracy as compared to the other sampling
methods. Among all methods, the velocity predicted at
the wall (y = 0 or 0.015) by the model based on the global
sensitivity was the closest to zero thus approaching the
actual no-slip boundary condition. Moreover, the model
based on the global sensitivity-based sampling generated
the closest profile to a uniform profile within the inlet’s
irrotational flow region as compared to the other sampling
methods. As anticipated, distinct gradients emerge within
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(a) (b)

(c) (d)

Fig. 3. The relative error of pressure (p). Red color means
the error is large. (a) Uniform; (b) Local; (c) Global;
(d) Residual-based.

(a) (b)

(c) (d)

Fig. 4. The relative error of velocity in x direction (u). Red
color means the error is large. (a) Uniform; (b) Local;
(c) Global; (d) Residual-based.

both boundary layers. Compared with the other three
cases, the global sensitivity-based sampling was able to
resolve the trade-offs between the different terms of the
loss functions (Eq. 1).

The results by CFD were used as a reference to calcu-
late the relative error. It should be noticed that a key
advantage of PINN is its significantly faster execution
time (milliseconds) than CFD (20 mins for this case). The
predicted pressure p by the PINN trained with uniform
random sampling exhibited a larger error at the region
close to the outlet (Fig. 3a), represented by the red color
regions. In comparison, the models trained with sampling
points chosen by the other 3 approaches, local sensitivity,
importance sampling, and global sensitivity, achieved a
relatively good prediction of pressure as shown by the lack
of red color regions indicating smaller errors (Fig. 3).

For this particular case study, we focused on the accuracy
of the prediction of velocity in the x direction (flow
direction) since the velocities perpendicular to the flow are
close to zero. Specifically, the two regions of interest are the
entrance region and the boundary layers, where significant
velocity gradients occur. For these two regions, the errors
resulting from the models trained with points chosen with
either the local or global sensitivity approaches were the
smallest as shown by the reduced areas of red color regions
for these two methods as compared to the other sampling
methods (Fig. 4b,c).

6. CONCLUSIONS

We proposed a novel sampling method for locating colloca-
tion points in the training of PINNs based on sensitivity
analysis. For the chosen case study, developing flow be-
tween two parallel plates, our proposed sensitivity-based
sampling by global analysis (SBS-G) showed significant
improvement in both training convergence and overall
prediction performance as compared to other sampling
methods. This method enabled more accurate predictions
at the inlet section between the plates, characterized by
sharp gradients, as well as more accurate predictions of
pressure and velocity profiles. Furthermore, the proposed
global sensitivity analysis served to effectively distribute
the sampling density across several sections of the ge-
ometric domain, e.g. boundaries versus interior points.
Consequently, our global approach to sensitivity-based
sampling successfully resolves conflicts between various
training objectives by optimizing the sampling probabil-
ity distribution for different objective functions related
to boundary conditions and partial differential equations.
The superior performance of the proposed approach is
particularly evident for model predictions at the inlet
section between the plates, where it simultaneously satis-
fies conditions for a uniform irrotational core flow region,
symmetric boundary layers with velocity gradients, and
no-slip wall conditions. Further studies are conducted to
investigate the effectiveness of sensitivity-based sampling
for the training of PINNs in more complex geometries such
as bioreactors.
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