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Abstract: This paper presents an efficient approach for state estimation of post-combustion
CO2 capture plants (PCCPs). The approach involves extracting lower-dimensional feature
vectors from the high-dimensional operational data of PCCPs and constructing a reduced-order
process model through proper orthogonal decomposition (POD). Multi-layer perceptron (MLP)
neural network is then constructed and trained to approximate the dynamics of reduced-order
process. For state estimation, a reduced-order extended Kalman filtering scheme, grounded in
the POD-MLP model, is developed. Our simulations demonstrate that the proposed POD-MLP
modeling reduces computational complexity in comparison to the POD-only model when applied
to nonlinear systems. Additionally, the proposed algorithm can accurately reconstruct complete
state information of PCCPs while markedly improving computational efficiency.

1. INTRODUCTION

In recent years, post-combustion CO2 capture plants (PC-
CPs) have gained considerable attention due to their po-
tential in reducing greenhouse gas emissions and mitigat-
ing global warming. The carbon capture efficiency and
economic cost of PCCPs are highly dependent on the per-
formance of advanced control systems used for managing
process operations (Manaf et al., 2019; Liu et al., 2023a).

Real-time information of the key quality variables of the
PCCP is essential for the advanced control system to make
the most appropriate decisions for safe and efficient pro-
cess operation. However, measuring all quality variables
online through deploying hardware sensors is unrealistic
(Liu et al., 2023b). Therefore, it is crucial to exploit
state estimation and parameter identification algorithms
for PCCPs. Unfortunately, results on state estimation of
PCCPs have been limited. Yin et al. (2020) made an
initial attempt on estimating the states of the absorber
of a PCCP by developing a distributed moving horizon
estimation scheme. Wang et al. (2022) presented a robust
soft sensor using a neural network and moving horizon
estimator to monitor key operating parameters in the
carbon capture process. In the context of nonlinear state
estimation, there have been some algorithms that have the
potential to be leveraged for state estimation of PCCPs
⋆ This work was supported by the National Natural Science Foun-
dation of China (No. 62203187) and the Natural Science Foundation
of Jiangsu Province (China, BK20221064).

(Pan et al., 2022b), e.g., extended Kalman filtering (Liu
et al., 2022; Li et al., 2023), moving horizon estimation
methods (Pan et al., 2022a), and finite impulse response
(FIR) (Pan et al., 2023). Recently, some identification
ideas and identification principles have been proposed for
determining model parameters, which have the poten-
tial for identifying PCCP parameters, such as the multi-
innovation identification theory (Xu, 2023; Ding et al.,
2024a; Xu et al., 2024b), the hierarchical identification
principle (Ding et al., 2024b; Xing et al., 2024; Xu and
Ding, 2023; Yang and Ding, 2023), the data filtering meth-
ods (Liu et al., 2024; Xu et al., 2024a; Ding et al., 2023)
and the separable identification (Xu, 2022). However, most
of nonlinear estimation algorithms require accurate first-
principles dynamic models of the underlying nonlinear
processes.

Data-driven modeling using neural networks has been
widely used as an alternative to first-principles modeling
for various nonlinear processes. However, one of the major
challenges in applying these methods to state estimation
of PCCPs is the large computational cost associated with
training and testing neural networks on high-dimensional
data. To address these limitations associated with state
estimation of PCCPs, we propose a solution that combines
data-driven modeling using NNs with model reduction
techniques. Proper orthogonal decomposition (POD) has
been widely adopted in various engineering fields for
reducing the dimensionality of high-dimensional data sets
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while preserving dominant patterns or features of the data
(Zhang et al., 2023).

Motivated by the observations above, we propose a neural
network-based state estimation approach for PCCPs us-
ing POD reduced-order models. Specifically, we normalize
the data before POD and use the POD approach to ob-
tain a reduced-order model. Then, we train a multi-layer
perceptron (MLP) neural network to capture the domi-
nant dynamics of the reduced-order model from the low-
dimensional data. We develop a reduced-order extended
Kalman filtering algorithm based on the POD-MLP model
to estimate the states.

2. MODEL DESCRIPTION

This diagram of the post-combustion capture plant con-
tains the four key components: the absorption and desorp-
tion columns, lean-rich heat exchanger (LRHE), and the
reboiler. The flue gas, which contains a high concentration
of CO2, is introduced at the bottom of the absorber from
the power plant and is then mixed with a lean solvent
having low CO2 levels. 5M Monoethanolamine (MEA) is
used as the solvent in this study. The treated flue gas with
a reduced amount of CO2 leaves the absorption column,
while the rich solvent with a high concentration of CO2

is heated via the heat exchanger by exchanging heat with
the lean solvent coming from the reboiler. The rich solvent
is then fed into the top of the desorption column, where
it is heated through contact with the hot vapor from the
reboiler. In the desorption column, the CO2 is stripped
from the rich solvent, which is then recycled back to the
absorber. The discharged CO2 gas, with a high concen-
tration of CO2 (90-99%), is obtained from the desorption
column.

The details of the PCCP model are briefly described in
the following (Decardi-Nelson et al., 2018):
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(1g)
The dynamic models for the absorption column and des-
orption column are described by the partial differential
equations (1a)–(1d), where i = CO2,MEA,H2O,N2, and
the subscripts L and G denote liquid and gas phases,
respectively. The dependent variables vary with time t and
axial position l of the column. It is assumed that each stage
in the two columns is well mixed. Their dynamic models
are similar except for a few details like the direction of

Table 1. Process variables of each unit of the
PCCP.

Notation Definition Unit
Ci Molar concentrations of component i mol/m3

Sc Cross-sectional area of the column m2

F Volumetric flow m3/s

Ni Mass transfer rate kmol/m2s

T Temperature K

l Height of the column m

Cp Heat capacity kJ/kmol/K

Q Heat transfer rate kJ/m2s

aI Interfacial area m2/m3

V Volume m3

ρ Average molar density kmol/m3

H Enthalpy kJ

f Flow rate mol/s

reactions, temperature, and reaction rate constants. The
energy balance equations in (1e)–(1f) represent the dynam-
ics of the lean-rich heat exchanger, where V̇ (m3/s) and
Q̇(kJ/s) represent the volumetric flow and heat transfer
rate, respectively, the subscripts tu, sh, in and out denote
the tube-side, shell-side, inlets and outlets of the heat
exchanger, respectively. It is assumed that the mass inside
the heat exchanger remains constant. Equation (1g) is the
energy balance equation of the reboiler, where Treb(K)
represents the temperature of the reboiler, the subscripts
in, out, V , and L denote inlet, outlet, vapour and liquid,
respectively, and Qreb(kJ/s) is the heat input. The defini-
tions of other variables and parameters of the PCCP can
be found in Table 1. Physical property calculations of gas
and liquid phases are necessary for the model development,
and they are estimated from seven nonlinear algebraic
correlations. Details of these calculations are not included
in this work but can be found in (Decardi-Nelson et al.,
2018).

The PCCP model consists of partial differential equations
for the two columns, and ordinary differential equations for
the heat exchanger and reboiler, as well as some algebraic
equations for parameter calculations. As the variables in
the columns exhibit temporal and spatial distributions,
the partial differential equations are discretized using
the method outlined in (Decardi-Nelson et al., 2018) to
convert them into ordinary differential equations, with
the column length divided into five stages. Therefore,
the model presented in (1) is expressed as a system of
differential-algebraic equations (DAEs):

x(k + 1) = F (x(k),a(k),u(k)) +w(k), (2a)
G(x(k),a(k),u(k)) = 0, (2b)
y(k) = H(x(k),u(k)) + v(k), (2c)

where x(k) ∈ R103 is the state vector, and state variables
of two columns are discrete at the jth discrete point
(j = 1, 2, . . . , 5), a(k) ∈ R7 is the algebraic state vector,
u(k) = [FL, Qreb, FG] ∈ R3 denotes the input vector:
solvent flow rate in L/s, reboiler heat in kJ/s, and flue
gas flow rate m3/s, and w(k) is the process noise.
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3. POD AND ITS APPLICATION TO PCCP

In this section, we employ the proper orthogonal decom-
position (POD) to derive a reduced-order model that ap-
proximates the dynamics of the PCCP that originally has
103 state variables. This is accomplished by computing
the singular value decomposition (SVD) of the data ma-
trix, which yields a set of orthonormal basis vectors that
represent the most significant patterns of variability in the
data.

For general nonlinear systems described by (2), we obtain
a state trajectory by capturing and sampling the system’s
response to a typical input trajectory at fixed time inter-
vals δ. Then, we sample the resulting state trajectory to
construct a matrix of process states from time 0 to N ,
denoted as:

χ = [x(0) x(1) . . . x(N)] ∈ Rn×(N+1), (3)
where the snapshot matrix χ is composed of the actual
state at each sampling interval, the number of state
variables is denoted as n, and the number of sampling
intervals is represented by N . To ensure a sufficient number
of samples, we require N to be much larger than n.

For PCCP, the magnitudes of different states vary greatly.
To ensure that the POD reduction method is not biased
towards states with larger magnitudes in PCCP, each
state variable xi (where i = 1, 2, . . . , 103) in the data
matrix χ is normalized using (4) prior to performing SVD
decomposition:

xi,norm =
xi − xi,min

xi,max − xi,min
. (4)

This normalization transforms each state variable xi to
xi,norm, where xi,min and xi,max are the minimum and
maximum values of xi in the original dataset, respectively.
The resulting normalized matrix χnorm constructed by
xi,norm has all states with magnitudes between 0 and 1.
SVD is then performed on the normalized matrix χnorm

as follows:
χnorm = UΣV T, (5)

where U ∈ Rn×n and V ∈ R(N+1)×(N+1) are orthogonal
matrices, and the rectangular matrix Σ ∈ Rn×(N+1)

has non-negative real values on its main diagonal. The
diagonal entries σi represent the singular values of the χ
matrix, where i ∈ 1, 2, . . . , n. These values are sorted in
descending order on the main diagonal of Σ.

To construct a reduced-order model, we select a positive
integer r that is smaller than the number of states 103,
and truncate Σ at the rth column and row to form the
reduced-order matrix Σr ∈ Rr×r using the first r singular
values σi. Accordingly, we select the first r columns of
U and the first r rows of V T to form the matrices Ur

and V T
r , respectively. Using these matrices, we obtain a

reduced-order approximation of normalized process data,
given by

χnorm ≈ UrΣrV
T
r . (6)

We define ξ ∈ Rr as the state vector of the reduced-
order model, and set ξ(k) := UT

r x(k). Using the truncated
SVD matrices, the original nonlinear model in (2) can be
expressed as a reduced-order model in state-space form:

ξ(k + 1) = UT
r F (Urξ(k),a(k),u(k)) +UT

r w(k), (7a)

G(Urξ(k),a(k),u(k)) = 0, (7b)
y(k) = H(Urξ(k),u(k)) + v(k). (7c)

The evolution of ξ(k) in the reduced-order model can be
used to approximate the actual state trajectory of the
original nonlinear process through the mapping x(k) ≈
Urξ(k).
Remark 1. In this section, we improve the accuracy of
the model approximation by normalizing the data prior
to applying the POD method to obtain a reduced-order
model. The effectiveness of the normalization for POD will
also be illustrated through simulations in Section 6.

4. APPROXIMATING REDUCED-ORDER MODEL
WITH MLP NETWORKS

The POD technique is commonly applied in linear systems
to decrease computational costs by reducing the dimen-
sionality of the problem. However, it does not yield similar
advantages for nonlinear systems due to the challenge
in explicitly expressing UT

r F (Urξ,a,u) in terms of the
reduced basis Ur. Consequently, evaluating the reduced-
order model may require more time than evaluating the
original nonlinear function F . Different approaches have
been adopted to address this issue. For instance, a linear
parameter varying model was utilized to approximate the
reduced-order model, however, the benefits were found to
be insignificant (Zhang and Liu, 2019).

To address this issue, we present a method to speed up the
evolution of reduced-order models for nonlinear systems
such as (2). The method employs a multi-layer perceptron
(MLP) neural network to fit the reduced-order model and
hence decrease the computation time. The MLP neural
network model of ξ is given by:

ξ(k + 1) = fmlp(ξ(k),u(k)) +wr(k), (8)
where the vector function fmlp ∈ Rr approximates the
dynamic behavior of ξ in (7a), and wr ∈ Rr denotes the
process noise and model error. Consequently, we do not
have to evaluate the vector function F : R103 → R103 of
the full-order model, leading to significant time savings.

MLP models are a type of artificial neural network widely
used to approximate complex and nonlinear problems.
An MLP typically consist of an input layer, one or more
hidden layers, and an output layer. Each layer in an MLP
contains multiple fully connected neurons, which are con-
nected to the next layer by weights. In supervised learning,
the weights are adjusted to approximate each target value.
The number of neurons in the input and output layers
is determined by the input and output variables, respec-
tively. The computation time required for MLP output
is relatively short, as only a few matrix multiplications,
vector additions, and function evaluations are necessary.
Given these characteristics, MLP is a suitable choice for
approximating the vector function fmlp in equation (2)
after POD model reduction. The basic model formulation
of MLP is indicated below:

z(l) = σh(w
(l)z(l−1) + b(l)), y = woz(l) + bo (9)

where z(l) denotes the output vector of the l-th hidden
layer, obtained by applying an activation function σh to
the weighted sum of the input vector z(l−1) and the bias
vector b(l). The weight matrix of the l-th hidden layer is

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

693



Fig. 1. The structure of the POD-MLP model.

denoted by w(l). The input vector z(0) is the MLP input,
and the output vector y is obtained by applying the weight
matrix wo to the output vector of the last hidden layer
and adding the bias vector bo. It is worth noting that the
MLP output layer is typically linear, while the activation
function of the hidden layer can be chosen from various
options based on the specific problem being solved.

The reduced-order PCCP model is enhanced by utilizing
an MLP network, where the input is ξu := [uT, ξT]T ∈
R3+r, and the output is ξ̂ ∈ Rr. The input layer has
3 + r neurons, and the output layer has r neurons. The
MLP model is trained to minimize the mean-squared-error
(MSE) between the predicted output ξ̂ and the actual
output ξ:

L = MSE(ξ, ξ̂). (10)
The model structure of the proposed POD-based MLP
(POD-MLP) model is shown in Figure 1.
Remark 2. The POD-MLP model not only reduces the
order of the system, but also eliminates the need for solving
the DAEs in the original PCCP model. This is achieved by
extracting the dynamic information of the algebraic state
variable a from the data, and excluding a from the model.

5. EKF USING THE POD-MLP MODEL

In this section, we develop an extended Kalman filtering
(EKF) based on the POD-MLP model (the POD-MLP-
EKF algorithm for short) to estimate the actual process
states. The POD-MLP model is summarized in the follow-
ing:

ξ(k + 1) = fmlp(ξ(k),u(k)) +wr(k), (11a)
y(k) = H(Urξ(k),u(k)) + v(k). (11b)

Assuming that wr(k) and v(k) are two mutually uncorre-
lated Gaussian noise sequences with zero-mean, we further
assume that they have covariance matrices Qr and Rr.

Based on the above preparation, the POD-MLP-EKF
algorithm is designed in the following two steps:
Step 1: Prediction step:

ξ̂(k + 1|k) = fmlp(ξ̂(k|k),u(k)), (12a)
P (k + 1|k) = A(k)P (k|k)AT(k) +Qr, (12b)

where ξ̂(k + 1|k) is the prediction of the system state at
time k + 1 based on the current state estimate ξ̂(k|k)
and the input u(k), and P (k + 1|k) contains a priori
error covariance information, incorporating the prediction
error and the uncertainty associated with the system

dynamics through the covariance matrix Qr. The matrix
A(k) =

∂fmlp(ξ,u)
∂ξ |ξ=ξ̂(k|k) is the Jacobian matrix of the

MLP model with respect to the state vector ξ evaluated
at the predicted state estimate ξ̂(k|k).
Step 2: Update step:

K(k + 1) =
P (k + 1|k)CT(k)

C(k)P (k + 1|k)CT(k) +Rr
, (13a)

ξ̂(k + 1|k + 1) = ξ̂(k + 1|k) +K(k + 1)[y(k + 1)

−H(Urξ̂(k + 1|k),u(k))], (13b)
P (k + 1|k + 1) = [I −K(k + 1)C(k)]P (k + 1|k), (13c)

where the correction gain K(k + 1) is computed based
on the a priori estimation error covariance P (k + 1|k),
the measurement error covariance Rr, and the observation
matrix C(k), which maps the predicted state ξ̂(k + 1|k)
to the measurement space. The state estimate is then
updated to ξ̂(k + 1|k + 1) using the correction gain
and the measurement innovation y(k + 1) − H(Urξ̂(k +
1|k),u(k)), which represents the difference between the
actual measurement and the predicted measurement based
on the predicted state. Finally, the a posteriori estimation
error covariance matrix P (k+1|k+1) is computed based
on the updated state estimate and the correction gain,
which reflects the reduced uncertainty in the estimated
state after incorporating the measurement information.

Then, we can obtain the state estimates of the actual
PCCP states, denoted by x̂, by utilizing the reduced-order
state estimate ξ̂(k + 1|k + 1) and the linear mapping Ur,
as follows:

x̂(k + 1) = Urξ̂(k + 1|k + 1). (14)

6. SIMULATION RESULTS

To perform the model reduction, the input vector u(k) =
[FL, Qreb, FG] is used to excite the PCCP, which are
constrained as 0.48 L/s ≤ FL ≤ 0.66 L/s, 0.14 kJ/s
≤ Qreb ≤ 0.20 kJ/s and 0.8 m3/s ≤ FG ≤ 1.2 m3/s.
The dynamic model of the PCCP is discretized at a
sample interval of ∆ = 30s. Pseudo-random multi-level
signal is used as excitation signal. The system states
are sampled over a duration of 100 hours to construct
the snapshot matrix χ for POD reduction. With 12,000
sampling intervals, the requirement N ≫ n is satisfied.

Next, we apply the SVD to the matrix χ which has dimen-
sions 103 by 12000. This results in a unitary matrix U that
can be used for coordinate transformation. To evaluate
the reduced-order model accuracy, we use the root-mean-
square error (RMSE) to denote the model errors, which is
defined as follows:

RMSE :=

√∑N
j=0

∑103
i=1(xi,norm(j)− x̂i,norm(j))2

N
,

where x̂i,norm := Urξi is the ith approximated state
obtained from a reduced order model. To validate the
accuracy of a reduced-order model, we should use input
trajectories that are different from the ones used in POD
model reduction. Additional 600 sampling data are used
for validation. Based on the actual state trajectories and
reduced-order model state trajectories, the RMSE is calcu-
lated for each model. The values of log(RMSE) at different
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orders r = 20, . . . , 90 under the POD with normalization
and the POD without normalization are shown in Figure 2.
It shows that the degree of model mismatch increases with
the decrease in the model order for both cases. Moreover,
the RMSE value of POD with normalization is smaller
than that without normalization. This is because for the
POD method without normalization of the data matrix χ,
the approximation of the state with small numerical values
is not accurate when the model is reduced, and the model
approximation error is added to each state in the form
of absolute value. While the method that normalizes the
data matrix χ reflects the model approximation error in
the form of relative values for each state. Therefore, RMSE
values of reduced-order models at different orders obtained
from POD with normalization are smaller than those ob-
tained from POD. This can also be further demonstrated
from Fig. 3, which shows the trajectories of some of states
based on the original model and the reduced model with
order 30 using POD with normalization and POD methods
respectively. From the figure, it can be seen that for states
with large numerical values (x17, x101), both methods
provide very good approximation effects, but for states
with small numerical values or small fluctuations (x3, x11,
x26, x31), the approximation of POD with normalization
is significantly better than that of POD.

Fig. 2. The values of log(RMSE) at different orders.

Next, we will evaluate the open-loop prediction perfor-
mance of the POD-MLP model. Using the PRMS input
signal, we generate 100,000 samples for each state by
utilizing the first-principle model with Ur. These data are
split into training (70%), validation (20%), and testing
(10%) datasets. The developed POD-MLP model consists
of 3 hidden layers with 128 neurons, the input of the POD-

Fig. 3. The trajectories of some states based on the
original model and the reduced model using POD with
normalization and POD without normalization.

MLP is the normalized 33-dimensional vector ξu and the
output is the normalized state vector ξ. The activation
function for the hidden layers has been selected to be
Tanh, and a linear activation function is used in the output
layer. Figure 4 demonstrates the testing performance of
the POD-MLP model in multi-step open-loop prediction
for the actual state trajectory of the PCCP. It can be seen
that the fit is accurate.

Fig. 4. Multi-step prediction for the PCCP.

In the following analysis, we focus on the state estimation
of the PCCP using the POD-MLP-EKF algorithm. The
PCCP is subject to process disturbances, and the output
measurements are corrupted by random noise. Specifically,
each process disturbance sequence associated with the
ith state xi is generated following a normal distribution
with zero mean and a standard deviation 0.01xi,s, where
xi,s is the steady-state value of xi. Random noise is
added to each measurement yi as Gaussian white noise
with zero mean and a standard deviation 0.01yi,s, where
yi,s is the value of yi at steady-state. As a result, the
covariance matrices of process noise and measurement
noise are Q = diag((0.01xs))

2 and R = diag((0.01ys))
2,

respectively. The tuning parameters in the POD-MLP-
EKF are Qr = UT

r QUr and Rr = UT
r RUr. The initial

guess for the normalized states is set to 0.5×1103. Figure 5
shows some of the state estimates and the actual states.
The proposed estimation scheme provides accurate state
estimates.

We compare the computational efficiency of the proposed
POD-MLP-EKF algorithm, a centralized EKF design di-
rectly based on the PCCP model, and an EKF for POD
model, denoted as the POD-EKF. Specifically, we evaluate
the average computation time for 600 steps required by the
three algorithms, which is 125 s, 127 s, and 6.4 s, respec-
tively. The results demonstrate that the combination of
POD reduction and neural network significantly reduces
the computing time.

7. CONCLUSIONS

The proposed POD-MLP model can facilitate reductions
in the computational cost for model training and imple-
mentation of state estimation. The POD-MLP-EKF algo-
rithm provides a promising solution to state estimation of
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Fig. 5. The actual states and POD-MLP-EKF state esti-
mates for the PCCP.

PCCPs and can potentially be applied to other complex
systems with high dimension for efficient state estimation.
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