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Abstract: In this paper, a data-based methodology for performance monitoring of control
loops under set point tracking and disturbance rejection is presented. A benchmark based on
historical data is validated using well-known time domain performance indexes and then used
for performance monitoring. Performance indexes are proposed based on the tasks performed
by the controller and statistical tests provide evidence about changes in the performance. The
methodology is illustrated through its application to a temperature control loop subject to set
point changes and measured and unmeasured disturbances. The introduced faults were detected
and discriminated based on the change in the proposed performance indexes.
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1. INTRODUCTION

Control loop monitoring in the industry has been continu-
ally increasing to improve performance, reduce costs, and
while keeping product quality. Many studies on control
performance assessment have been proposed, ranging from
PID to model predictive controllers. Those methods based
on the so-called stochastic performance criteria are based
on the variance of the outputs ((Eriksson, 1994), (Huang
and Shah, 1999), (Julien et al., 2004)) and those called
deterministic performance criteria are based on system
response to set point changes and measured disturbances
((Yu et al., 2014),(Begum and Radhakrishnan, 2018),(Mu-
naro et al., 2023)). In both approaches, one usually as-
sumes the knowledge of the process model and a design
method to obtain the controller parameters. This way, re-
sults from the design of one benchmark that can be used to
monitor the performance of the controller under operation.
However, a key requirement for the assessment of control
loops in the industry is that data from routine operation
and closed-loop control should be used. This requirement
favors the use of historical benchmarking techniques (Li
et al., 2004), (Gao et al., 2002). This approach can be
deceitful if the performance indexes chosen eclipse unde-
sirable behaviors the controller may have under specific
conditions.

In this paper, three different types of control performance,
namely, stochastic disturbance rejection, deterministic dis-
turbance rejection, and setpoint tracking are considered.
Criteria to select historical data that characterizes the
desired performance and statistical tests to compare the
desired and actual performance are proposed. This pro-
cedure increases the confidence that data characterizes
appropriately the desired performance. The technique is
applied to a temperature control loop subject to set point
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Fig. 1. Block diagram considered

changes and measured disturbances, allowing to illustrate
widely the possibility of application on industrial control
loops requiring only routine operation data first for bench-
marking and then for monitoring.

2. PERFORMANCE ASSESSMENT OF CONTROL
SYSTEMS

A typical control system is depicted in Fig. 1. The con-
troller C(s) should be designed to fulfill different tasks:
to track R(s), and to reject the measured disturbance
D(s) and the unmeasured disturbance W (s). Thus, the
performance must be associated with such tasks, using
specified indices and benchmarks (Eriksson, 1994).

These tasks are usually associated with performance in-
dexes of the form

η =
Jdes
Jact

(1)

where Jact is the actual value obtained from measured data
and Jdes is an ideal, desired, or optimal value for a given
performance criterion. The optimal value of Jdes is fre-
quently replaced by a user-specified benchmark, defined,
for example, by a reference model, a desired closed-loop
behavior, or historical data (Jelali, 2012).
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2.1 Stochastic disturbance rejection

The original performance index proposed by Harris (Eriks-
son, 1994) aimed to minimize the variance due to stochas-
tic disturbances, with Jdes = JMV = σ2

MV , obtained with
the minimum variance controller. An alternative is the use
of IMC benchmark, with JMV replaced by JIMC obtained
via IMC design to have a balance between performance
and robustness ( (Jelali, 2012), pp.70). Closed loop data is
required to obtain the closed loop model and an estimate
of the time delay to compute JMV . To obtain JIMC , an
open-loop model is required for the IMC design. Another
approach for this benchmarking is to consider the control
effort (Huang and Shah, 1999) using the so-called general-
ized minimum variance index. For static weightings, it is
given by

J = E{y2(k + τ) + ρ∆u2(k)} (2)

where τ is the time delay. In the well-known LQG bench-
mark (Huang and Shah, 1999) ∆u2(k) is replaced by
E{u2(k)}.

2.2 Setpoint tracking

The seminal paper Swanda and Seborg (1999) proposed
a method for performance monitoring based on set-point
response. The main performance index is the integral of
absolute error(IAE),

J = IAE =
1

Tr0

N∑
i=1

|r − y(i)|. (3)

where r0 is the amplitude on the step reference and T is the
sampling time. In the original paper, IAE was also normal-
ized by the time delay. Estimates of the IAE, settling time,
gain, and margin phase are obtained considering an IMC-
PI controller, a first order plus time delay transfer func-
tion model, and four other models with similar behavior.
Using IAE, settling time, and maximum overshoot, a PI
controller was classified into three classes of performance.

These results were later extended for the use of more
general controllers and the calculation of the correspond-
ing minimum IAE values in Huang and Jeng (2002).
References other than step were considered in Yu et al.
(2014). A bound for performance measured by IAE is
used in these methods. A data-driven approach defining
a confidence interval of IAE to evaluate performance for
different reference signals was presented in Munaro et al.
(2023). When model predictive control (MPC) is used for
control, the objective function JMPC(ρ) is the weighted
sum of the squared error and the squared variation of
the control signal in the prediction and control horizon,
respectively.

2.3 Deterministic disturbance rejection

The results from Swanda and Seborg (1999) were extended
to performance monitoring for set-point changes and dis-
turbances in Yu et al. (2014) and its extension to unstable
systems in Begum and Radhakrishnan (2018). A bound
for IAE was proposed based on open-loop parameters, the
desired closed-loop time constant, and the amplitude of

the step disturbance added to the control signal. However,
the control effort was measured as well, and the combi-
nation of this index and IAE was used for monitoring. In
Yu and Wang (2016) a performance metric was given by
the integral square error (ISE) and total square variation
(TSV),

J = (1− γ)
ISE

ISEact
+ γ

TSV

TSVact
. (4)

where γ is a weighting factor, and TSV is given by TSV =
1
T

∑∞
i=1(u(i)− u(i− 1))2 and T is the sampling time.

In Yu et al. (2014) a similar index is proposed, given by

η = ηIAE .ηTV (5)

with ηTV based on the control effort given by TV =∑N
i=1 |u(i+ 1)− u(i)| and ηIAE is based on IAE value.

The performance indexes given by equations 2, 3, 4, and 5
were used to obtain linear controllers and later to monitor
their performances. Using 2, for example, allows obtaining
the trade-off curve as a function of ρ. A trade-off curve for
a PID controller for the objective function J(ρ) = ISE +
ρTSV was used in Gao et al. (2017) to design a PID
controller and then to monitor its performance. However,
the design is not in the scope of this paper.

All indices except the index given by 3 consider the
error and the control effort. However, when is required to
monitor the performance of control loops from industrial
processes that are under operation, the information about
parameters used for controller design is scarcely available.
This issue justifies the development of methods based
on collected data, as discussed in Li et al. (2004). In
this situation, performance indexes such as E{y2(k)},
E{∆u(k)}, IAE, ISE, TSV, and others can be calculated
but they cannot be combined using the design parameters.
On the other hand, they are important features that can be
used to characterize the desired and actual performance.

2.4 Proposed performance indexes for the three tasks

The IAE index will be used here for setpoint tracking
to measure the similarity between the actual response
and the desired one, like most of the reviewed papers.
The combination of IAE and control effort (CE) gives
important information for diagnosis. Here, IAE given by
equation (3) will be used.

For CE, a variation of TV is proposed:

CE1 =
1

NdR

N−1∑
i=1

|u(i+ 1)− u(i)|. (6)

This index captures the aggressive behavior of the control
signal, being normalized by the number of samples N and
also by dR. For setpoint tracking, dR is the amplitude
of the change in the reference. This is a very common
performance index, but it has a drawback: it may be not
sensitive to variations of the control effort under steady-
state. Also, under saturation, it may give misleading
information, since ∆u(k) = 0. To capture this control
signal feature, the index CE2 is proposed,

CE2 = uss − ûss(R) (7)
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where uss is the control signal in steady-state, ûss(R) =
β0+β1R, β0, β1 are estimated via least squares using mea-
surements of uss and the set point R under normality, and
ûss(R) is the expected value of uss. Thus CE2 measures
the deviation of the control signal to the expected value in
the steady state while CE1 measures the deviation of the
control effort during the transient state.

Most controller designs are based on a linearized model,
with good performance in the region it was designed for.
A change in the gain requires adapting the controller to
resume the performance. The index CE2 can detect this
situation.

For disturbance rejection, IAE is replaced by var(Y ),
since in this case, one expects that the deviation of the
output is minimal. CE2 is calculated using 7 for tasks
ii and iii. CE1 is calculated using 6, with dR = 1 for
unmeasured disturbances and dR equal to the variation of
the disturbance D when it is measured.

The approach in this paper considers those situations
common in industrial processes: the control loops are
running and one wants to monitor deviations in their
performance. No information about the process model,
controller parameters, and method used for controller
design is available. The calculation of IAE, CE1, CE2,
and var(Y ) poses no problem in this case. The challenge
is to compare these features that characterize control
loop performance with a given reliable benchmark, that
was not obtained during the controller design optimizing
these features. We highlight that instead of comparing
just one performance index J several indexes are used for
comparison. They are not sensitive to noise and handle the
magnitude of references and measured disturbances.

2.5 Performance using historical data

Historical benchmarking techniques do not require a pro-
cess model or knowledge of process delay and therefore
are suitable for monitoring time-varying and nonlinear
processes as well. This benchmark was introduced un-
der different denominations, such as baselines in (Gerry,
2002), historical data benchmarks (HIS), reference data set
benchmarks (Gao et al., 2002), or reference distributions
(Li et al., 2004). This approach can fail if the performance
is validated without a careful check of the available evi-
dence that the control loop will perform the tasks it was
designed for.

When performance assessment of control systems is imple-
mented in industrial processes, the alternative to design
controllers that optimize a given index is seldom. The
control loops are under operation, and if their performance
is suitable, this is the level of performance that should be
monitored.

For setpoint tracking, the indexes IAE, CE1, and CE2 are
computed. However, to validate the actual performance
the maximum overshoot (UP), settling time (Ts), the
absolute value of the maximum steady-state error (Emax),
and saturation are measured from data since these time
domain indexes are easily interpreted for approval of
each control loop. Many times, this information is readily
available on the screen of the supervisory system of the
plant. Saturation is computed as the percentage of samples

in the given window that violated the given limit and is
denoted by Sat.

For disturbance rejection, the indexes var(y), CE1, and
CE2 are computed for performance monitoring. However,
the maximum steady-state error, maximum amplitude,
and Sat of the control signal are measured, so that the
operator can infer if the actual performance is acceptable.
If Sat is large, for example, the output of the controller
may experience difficulty in reaching the setpoint.

Finally, since the performance of control loops tends to get
worse slowly, the measurement of the performance indexes
is usually done periodically, using batch data. Thus, the
historical benchmark is represented by the indexes com-
puted in the collected data that characterize the desired
performance, and compared to the performance indexes of
the new data used during monitoring.

This procedure is similar to machine-learning approaches
(Grelewicz et al., 2023), in which models are trained based
on labeled training data. A drawback of these approaches
is the usual requirement of large amounts of labeled data
for training. On the other hand, model-based methods
use knowledge encapsulated in the models to predict
the expected behavior compared to that obtained from
new data. The method here is a combination of these
approaches, using a few historical labeled data for training
and the knowledge of the user about the expected time
domain desired performance.

2.6 Statistical tests

All these indexes are computed from data, under the effect
of random behaviors arising from noise and disturbances.
Thus, statistical tests play an important role in supporting
decisions, as discussed in Julien et al. (2004) for building
confidence limits for the variance. Increasing the number
of calculations of the performance indexes will increase the
confidence of the statistical tests.

For the statistical tests, we assume that the performance
indexes (IAE, CE1, CE2, var(Y)) will be computed M1

times for training and M2 times for monitoring. One can
make M1 = M2 = M . The confidence of the statistical test
relies on the number of values calculated. Also, a different
number of values can be used for training and monitoring.
As an example, assume the index to be tested is the
random variable X = IAE, with M1 samples collected
during training and M2 samples collected for monitoring.
The statistical test to compare the mean value of the
two populations µ1 from X1 and µ2 for X2 uses the null
hypothesis: H0 : µ1 = µ2 and the alternative hypothesis:
H1 : µ1 ̸= µ2.
The test statistic is given by:

T0 =
X̄1 − X̄2

Sp

√
1

M1
+ 1

M2

. (8)

The Student distribution is used and the rejection criterion
is t0 > tα/s,M1+M2−2 or t0 < −tα/s,M1+M2−2., where α is
the significance level and Sp = var(X1) = var(X2). The
p-value is computed to increase the rigor of the conclu-
sions drawn from data (Montgomery and Runger, 2010).
When variance of the output (var(Y)) is considered, the
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statistical test could be performed for each measurement.
However, since all other indexes are tested for M2 calcula-
tions, the same is done for the variance. Other parametric
or nonparametric statistical tests can be used to compare
the mean of two populations of indexes (Montgomery and
Runger, 2010).

2.7 Detection and diagnosis

Once a change is detected in the performance indexes, the
next step is to seek the cause of such change. One alterna-
tive is to seek the common causes of low performance using
specific methods. The presence of nonlinearities can be
confirmed using methods based on higher-order statistics
(Choudhury et al., 2004). The presence of oscillations
is another factor that degrades performance and can be
diagnosed with well-known methods (Jelali, 2012).

Another alternative is to generate features that can be
used for fault classification. We use the performance in-
dexes {IAE,CE1, CE2} for task i and {var(Y ), CE1, CE2}
for tasks ii and iii to define the vector of features

T k
Fj = sign{∆fm,m = 1, 2, 3} (9)

where ∆fm is the difference of the median of the three
performance indexes between fault j and normality un-
der task k. When the p-value is greater than α results
∆fm = 0. If ∆fm = 1 the index increased during the
fault. These features are then used for diagnostics. Some
features can be derived based on the knowledge about
their relation with the control loop. For set point tracking,
when IAE decreases and CE increases, a more aggressive
control action is happening, that may arise from the plant
operating in a region where process gain is higher, resulting
in a feature of the form {−1, 1, 1}. On the other hand,
when IAE increases and CE decreases, we have sluggish
control, that may arise due to lower process gain, i.e.,
{1,−1,−1}. Finally, we may have an increase of IAE with
no decrease of CE, caused by saturation, confirmed using
the index Sat, i.e.,{1, 0, 0}. Under the effect of only un-
measured disturbances, a more aggressive controller tends
to reduce var(Y ) while increasing CE1, with negligible
effects on CE2 ({−1, 1, 0}). In the general case, once data
related to the faults are labeled, new features are added,
and the classification can be performed using machine
learning algorithms, like in Grelewicz et al. (2023) . In
that paper, machine learning methods were used to detect
low performance using several binary classifiers, trained
with data obtained via simulation. The features from Table
1 could be used to train classifiers, but this procedure
requires labeled data of the faults to be predicted.

3. PROPOSED METHOD

The method for performance assessment here proposed
is completely data-based, and is applied for the three
following tasks of a control loop: i) setpoint tracking,
ii) unmeasured disturbance rejection, and iii) measured
disturbance rejection. No information about the controller
or the model is required, but only data from the loops will
be monitored, assuming the availability of the data related
to the tasks the controller was designed for. Considering
the control loop shown in Fig. 1, sample data from R,
U, Y, and D (measured disturbance) must be provided.

Data collected for task i) should not be affected by changes
in the measured disturbance D. If task iii) is considered,
data should not be affected by changes in the setpoint R.
This is the usual strategy to measure performance under
changes in the setpoint and the measured disturbances (see
e.g., Yu et al. (2014)). Table 1 summarizes the required
signals, time performance indexes computed to validate
the performance, and performance indexes that will be
used for monitoring.

Table 1. Tasks, Signals, and indexes

Tasks Signals Performance indexes Time domain indexes

i R,U,Y IAE,CE1,CE2 UP, Ts, Sat, Emax
ii U,Y var(Y), CE1, CE2 Sat, Emax
iii U,Y,D var(Y), CE1,CE2 Sat, Emax, Ts

For any of the three tasks, the method is divided into
training and monitoring phases as below.

Training:

(1) Select M batches of the required signals.
(2) Measure the M time domain and performance indexes

from data.
(3) Validate the performance using the time domain

indexes or solve the problems in the loop (e.g. tuning,
maintenance) and return to step 1.

Monitoring:

(1) Select M batches of the required signals.
(2) Measure the M performance indexes from the data.
(3) Perform statistical tests to compare the performance

indexes with those obtained during training. If the
performance changes, proceed to the diagnosis.

A change in any of the performance indexes releases an
alarm that must be investigated since it confirms a change
in the error or in the control signal. Data generated by
changes in the setpoint or the input disturbance is easily
collected since these changes are easily detected. Data from
steady-state is required for task ii), and can be obtained
using tests from literature, like the well-known Augmented
Dickey-Fuller test (ADF Test) to detect stationarity.

An alternative for performance monitoring using online
data is to use the Exponentially Weighted Moving Aver-
age (EWMA) control chart. Every new set of computed
indexes (IAE, CE1, CE2, var(Y)) is used to compute
a test statistic. Set points other than steps can also be
considered. The interested reader is referred to Munaro
et al. (2023) for examples and further details.

4. APPLICATION AND RESULTS

A temperature control kit was used for the tests (Figure
2 ). It is similar to that used in de Moura Oliveira
et al. (2020). Heating is produced by a 100Ω resistor,
the temperature is measured by a one-wire temperature
sensor (DS18B20) which is stuck in the heatsink that
receives the thermal energy from the resistor. A micro
fan produces airflow that can cool the heatsink and is
used as a disturbance to introduce a fault. The input
to the resistor and the fan are PWM signals ranging
from 0 to 255 (8 bits). The output is the temperature
measurement in degrees Celcius. The data acquisition and
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Fig. 2. Temperature kit used for the tests

control are performed in a microcontroller Arduino Nano,
that communicates with Matlab via USB port. Matlab
sends requests and receives and analyzes data. The PID
controller is executed in the microcontroller with a sample
time of 1s. The temperature sensor is very sensitive to
room temperature, introducing small variations in the
measurements. The application to this kit is certainly
less challenging than using data from industrial processes
but is certainly far more realistic than using data from
simulation.

A step test was applied to obtain a first-order model, that
resulted in a gain of 0.3 and a time constant of 90 seconds.
The time delay is negligible when compared to the time
constant. A parallel PI controller was tunned via direct
synthesis with Kp = 22 and Ki = 0.22, to have a closed
loop time constant around 20s.

Two faults were introduced in this control loop: for fault
1 (F1) a signal of amplitude 50 was applied to the
micro fan, causing a reduction in the temperature and
requiring a control signal with higher amplitude to keep
the temperature close to the set point. Fault 2 (F2) was
produced introducing a limit of 150 in the control signal in
the software running in the microcontroller. The effect is
a temperature delay, increasing the error. Both faults are
present since t = 0.

One sample of data is shown in Fig. 3, collected with a
sample time of 1s. The set point r(t) = 39oC changed
at t = 0, and an input (measured) disturbance d(t) =
−35 was applied at t = 200s. The test was repeated
under the conditions of normality, fault 1, and fault 2
and the resulting control signal (U) and the output (Y)
are shown. During the step response, the control signal
saturates at 255 for normality and fault 1, and saturates
at 150 for fault 2, which aims to evaluate this limitation
on performance. When input disturbance d(t) is applied
the temperature decreases by almost 1oC and the control
signal increases to compensate for the disturbance. Both
faults cause some delay in the set point response, which
increases the IAE by some amount. The control effort
measured by CE2 increases under fault 1, since the steady-
state value is higher. The control signal remains under
the condition of saturation during more samples during
the step response for faults 1 and 2, when compared
to normality. However, no conclusion is possible about
the effect of the faults on the performance index CE1.
Finally, the variability of different responses emphasizes
the importance of statistical tests.
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Fig. 3. Data from normality and under faults 1 and 2

Considering Figure 3, the first 150 samples were used
to calculate the performance indexes for task i), the
samples from 151 to 200 for task ii), and the samples
from 200 to 350 for task iii) (see Table 1). It is important
to highlight that only data corresponding to normality
has to be collected for training. In this test, data was
collected 10 times. If industrial processes are considered,
there is no need to apply signals, since for many control
loops the set points are generated by the optimization
layer changing quite often, becoming available in the
historians or being collected directly from the controller
via OPC communication. The same applies to measured
disturbances.

Table 2. Tasks and time performance indexes

Tasks UP(%) Ts(s) Sat(%) Emax

i 15 78 1.50 0.08

ii - - 0 0.05

iii - 90 0 0.21

Before obtaining the benchmark based on historical data,
the time indexes from Table 1 are computed, and shown
in Table 2. For the step responses (task i), the mean
overshoot is 15%, the settling time is 78s, the saturation
is 1.5%, and the maximum steady-state error is 0.08. For
measured disturbance (task iii), the settling time is 90s, no
saturation, and the maximum steady-state error is 0.21.
Figure 3 allows checking these values. Finally, for unmea-
sured disturbance (task ii), no saturation is noticeable and
the maximum steady-state error is 0.05. Assuming these
time indexes are suitable, the corresponding data can be
used to compute the benchmark for the three tasks, and
the training phase is accomplished.

To evaluate the methodology, 10 instances of data were
collected under normality and under the described faults
1 and 2, with set points changing from 34 to 40oC. Steps
2 and 3 of the proposed methods are then applied. To
illustrate the effect of the faults in the four performance
indexes, a boxplot for the monitoring of the three tasks is
shown in Figure 4. In each boxplot, N stands for normality,
F1 for fault 1, and F2 for Fault 2. Column 1 shows the
performance indexes for task i, column 2 for task ii, and
column 3 for task iii. In task i, CE1 and CE2 are affected
by F1 and F2, while IAE is affected only by F2. For tasks ii
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Task i (SP) Task ii (UD) Task iii (MD)

F1 F2 F1 F2 F1 F2

IAE 0.7280 0.0072

var 0.4378 0.3158 0.1305 0.2300

CE1 0.0208 0.0001 0.1295 0.8236 0.3048 0.7324

CE2 0.0000 0.0012 0.0000 0.002 0.0000 0.0500

Table 3. P-values from hypothesis testing
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Fig. 4. Boxplots from the performance indexes

and iii CE2 is clearly affected by fault F1. No conclusions
about the other indexes can be made using this Figure.

The decision about changes in the performance indexes
comes from the statistical test, shown in Table 3. The p-
values are shown for all statistical tests comparing the
performance indexes of the benchmark data with the
monitoring data. A significance level of α = 5% was
used, and the bold values in the table show the tests
that rejected the null hypothesis, indicating a change in
the corresponding performance index. One certainly sees
that Table 3 is more suitable for decision support, and
both faults are detected under any of the three tasks.
The proposed features are then calculated for diagnosis
using 9, and results for task i in T i

F1 = {0,−1, 1} and
T i
F2 = {1,−1, 1}, and for tasks ii and iii in T ii

F1 = T iii
F1 =

T ii
F2 = T iii

F2 = {0, 0, 1}. These features are obtained using
the p-values of Table 3 and the boxplots from Figure 4.

These features show that faults 1 and 2 can be discrim-
inated under task i, but not under tasks ii or iii. It is
important to recall that the intensity of the fault produces
variations in the performance indexes. As more data is
associated with the same fault the corresponding feature
becomes more defined. These preliminary evaluation tests
show the feasibility of detecting the faults based on the
change in performance under any of the three tasks. Fur-
ther studies are required to improve diagnosability based
on the encouraging results, with the application to indus-
trial process control loops.
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