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Abstract: Power-split HEVs can improve their overall fuel economy by applying an appropriate
energy management strategy. One of the most popular energy management strategies is model
predictive control (MPC) which has attracted a great deal of attention in the HEV research
community. In this paper, we focus on the energy management of HEVs and propose a novel
energy management system using a new robust predictive control based on almost strictly
positive real properties. We also verify that the proposed method can improve fuel efficiency
compared with the existing rule-based control through numerical simulations.
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1. INTRODUCTION

In recent years, hybrid electric vehicles (HEVs) have
attracted a great deal of attention as a means to realize
a sustainable low-carbon society (Sciarretta and Guzzella,
2007a). The optimization method for this energy allocation
is called Energy Management Strategy (EMS), and various
methods have been proposed (Tran et al., 2020).

In particular, methods based on model predictive control
(MPC) have attracted much attention in the HEV research
community (Huang et al., 2017). MPC determines the
optimal input so as to minimize a given cost function se-
quentially, using a HEV numerical model to predict future
states (Camacho and Bordons, 2007; Clarke et al., 1987).
However, generally, MPC has the following characteristics
and problems.

• Control performance deteriorates in the presence of
uncertainties such as modeling errors and distur-
bances.

• The controller design process becomes more complex
for systems with the higher order because the MPC
requires states of the controlled system.

• In many cases, the optimal input is obtained numer-
ically using an iterative method, which is computa-
tionally demanding for on-board calculation.

To solve the above problem, a robust and simple output
predictive control (OPC) method with a parallel feedfor-
ward compensator (PFC) has been proposed (Fujii and
Mizumoto, 2017; Mizumoto et al., 2018). This method
realizes a robust and computationally inexpensive OPC by
introducing a PFC to ensure the Almost Strictly Positive
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and Industrial Technology Development Organization (NEDO).

Real (ASPR) properties of the system. Using this ASPR-
augmented system with a PFC, one can construct a pre-
dictive control system with a simple first-order predictor.
In particular, continuous-time robust output predictive
control proposed in Mizumoto et al. (2018) has been
applied to energy management strategies for HEVs and
shown to be effective (Nozaki et al., 2024). However, the
results in Nozaki et al. (2024) were obtained in the case
where the control system was configured assuming that
the unknown future driver demand power is constant,
but in practical case, the driver’s requirements change
significantly depending on driving conditions. Therefore,
control of the energy management system may perform
better by predicting future driver demand power in real
time.

In this regard, Sun et al. (2015); Hara et al. (2016);
Xiang et al. (2017) have proposed various forms of future
driver demand prediction methods including velocity and
power, and have achieved improvement in fuel economy by
designing MPCs with predicted driver demands. However,
as mentioned before, the general MPC algorithms used in
these proposals may have problems in terms of computa-
tional load and tolerance to uncertainty.

In this paper, we propose an energy management strategy
for HEVs based on robust and simple OPC using a real-
time driver demand predictor. In numerical simulations,
we use a power-split HEV model (No. 20008) provided
by the Japan Automotive Model-Based Engineering Cen-
ter (JAMBE). This model is a guideline-compliant model
created by the Ministry of Economy, Trade and Industry
”Simulation infrastructure construction project for accel-
erating development of next-generation vehicles (2018-
2020)” and JAMBE (from 2021). Various studies have
been conducted using this model as a benchmark.
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Fig. 1. Power-Split HEV
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Fig. 2. Planetary Gear

2. HEV MODEL

This paper deals with a power-split HEV as shown in
Fig. 1. The power-split HEV has an engine and two
motors, and their power is divided by planetary gear. In
the following, we consider modeling the power-split HEV
but derive only the models used to design the control
system. For the detailed model derivation, refer to Nozaki
et al. (2024); Borhan et al. (2012); Sciarretta and Guzzella
(2007b).

2.1 Planetary Gear

In a power-split HEV, a planetary gear plays an important
role in splitting the power between the engine, motor,
and generator, as shown in Fig.2. The planetary gear
characteristics allow the rotational speed equation to be
expressed as follows.

Rsws(t) +Rrwr(t) = (Rs +Rr)wc(t) (1)

ws(t) = wgen(t) (2)

wc(t) = weng(t) (3)

wr(t) = αwco(t) (4)

wmot(t) = βwco(t) (5)

where Rs[m], Rr[m] are the radius of the sun gear and the
inner radius of the ring gear, respectively, ws(t)[rad/s],
wr(t)[rad/s], wc(t)[rad/s] and wco(t)[rad/s] are the ro-
tational speeds of the sun gear, ring gear, carrier, and
counter gear. Also, wgen(t)[rad/s], weng(t)[rad/s], and
wmot(t)[rad/s] are the rotation speed of the generator,
engine, and motor. α is the radius ratio of the counter
gear to the outer radius of the ring gear, and β is the
radius ratio of the counter gear to the radius of the motor
gear.

The following relation holds for the vehicle speed and the
rotational speed of the counter gear.

wco(t) =
Gf

Rw
V (t) (6)

Gf is the differential gear ratio, Rw[m] is the tire radius,
and V (t)[m/s] is the vehicle speed. Furthermore, from
(1)∼(6), wmot(t) and wgen(t) can be transformed as fol-
lows.

wgen(t) =
Rs +Rr

Rs
weng(t)−

RrαGf

RsRw
V (t) (7)

wmot(t) =
βGf

Rw
V (t) (8)

Next, we derive the equations of angular motion for the
generator, engine, and motor. Neglecting the inertial force
of the planet gear and assuming that all the connecting
axes of the powertrain are rigid, the equations of angular
motion can be obtained as follows (Borhan et al., 2012).

Igenẇgen(t) = Tgen(t) + F (t)×Rs

Iengẇeng(t) = Teng(t)− F (t)× (Rs +Rr)

Imot
ẇmot(t)

β
= α(F (t)×Rr) + βTmot(t)−

Tdriver(t)

Gf
,

(9)

where Igen[kgm
2], Ieng[kgm

2], Imot[kgm
2] are the iner-

tia of the generator, engine and motor. Tgen(t)[Nm],
Teng(t)[Nm], Tmot(t)[Nm] are the torque of generator,
engine and motor. Tdriver(t)[Nm] is the driver’s torque
demand and F (t)[N] is the interaction force with the
planetary gear.

Here, since the rotational dynamics are much faster than
the battery dynamics and the effect of inertia on the bat-
tery dynamics is limited, the inertia losses of generator, en-

gine and motor Igenẇgen(t), Iengẇeng(t), and Imot
ẇmot(t)

β

can be ignored. Thus, the following two equations hold
from (9) (Borhan et al., 2012) by ignoring the inertia losses
of the generator, engine and motor.

Tgen(t) = − Rs

Rs +Rr
Teng(t) (10)

Tmot(t) = −α

β

Rr

Rs +Rr
Teng(t) +

1

βGf
Tdriver(t) (11)

2.2 Battery

The battery State of Charge (SOC) is an important
state variable in the control of HEVs and its dynamics
is expressed by the following equation (Sciarretta and
Guzzella, 2007b).

˙soc(t)=−
Uoc(soc)−

√
U2
oc(soc)− 4R(soc)Pbat(t)

2QmaxR(soc)

× 100 (12)

where soc(t)[%] is the battery state of charge, Qmax[Ah]
is the battery capacity, Pbat(t)[W] is the battery power,
Uoc(soc)[V] is the open circuit voltage and R(soc)[Ω] is
the internal resistance. Uoc(soc) and R(soc) depend on
soc(t). Furthermore, the following equation holds between
the battery power Pbat(t), the engine power Peng(t), and
the driver power demand Pdriver(t) from (7) (8) (10) (11)
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Fig. 3. ˙soc and Pbat

(Nozaki et al., 2024). However, for simplicity, the power
loss during charging and discharging is not considered in
this relation.

Pbat(t) = Tgen(t)wgen(t) + Tmot(t)wmot(t)

=

(
− Rs

Rs +Rr
Teng(t)

)(
Rs +Rr

Rs
weng(t)−

RrαGf

RsRw
V (t)

)
+

(
− α

β

Rr

Rs +Rr
Teng(t) +

1

βGf
Tdriver

)(
βGf

Rw
V (t)

)
= −Teng(t)weng(t) +

V (t)

Rw
Tdriver(t)

= −Peng(t) + Pdriver(t) (13)

In the HEV model treated in this paper, the relation
between ˙soc(t) and Pbat(t) calculated from (12) is generally
linear in the region where the SOC operating point is
50 ≦ soc(t) ≦ 70 and −5 × 104 ≦ Pbat(t) ≦ 5 × 104

(the region used in numerical simulations in Chapter 5),
as shown in Fig. 3. Therefore, if the slope is given by
−So(< 0), the relation between the rate of change of SOC
and battery power can be expressed as follows:

˙soc(t) = −SoPbat(t) (14)

Furthermore, considering the relation given in (13), the
following model between the rate of change of SOC and
engine power can be obtained.

˙soc(t) = So(Peng(t)− Pdriver(t)) (15)

2.3 Engine

We consider only the part related to fuel consumption,
and detailed dynamics are not considered. In the HEV
model used in this paper, instantaneous fuel consumption
ṁf (t)[g/s] is expressed as a function of engine torque
Teng(t) and engine speed weng(t), and is represented by
MAP. Using this MAP data, one can obtain the relation
between instantaneous fuel consumption ṁf (t) and engine
power Peng(t) as shown in Fig. 4, and a linear relation can
be found between these two parameters. If the slope of the
relation is given by η, the following relation is obtained.

ṁf (t) = ηPeng(t) (16)

Note that the value of η is assumed to be unknown in
the controller design. We only assume that the relation
between instantaneous fuel consumption ṁf (t) and engine
power Peng(t) is linear.

3. PROBLEM SETUP

3.1 Objective

The objective of energy management in this paper is to
minimize fuel consumption while maintaining SOC. The
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Fig. 4. Fuel consumption
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Fig. 5. Overview of the controller

problem is also simplified by making the controller hi-
erarchical, as shown in Fig. 5 in this paper. The Power
Optimization controller calculates the optimal value of
engine power Peng(t) based on the driver power demand
Pdriver(t) calculated upstream. Then, the torque of the
engine, motor, and generator is calculated by the Torque
Optimization controller based on the obtained optimal
value of engine power Peng(t). In this paper, we propose
a robust and simple OPC that is used as a Power Opti-
mization Controller, and a sample controller (rule-based
control) given in the JAMBE HEV model (No. 20008) is
used in the Torque Optimization controller.

3.2 Assumptions on Controlled System

Here, we consider the engine power Peng(t) as input, the
driver power demands Pdriver(t) as disturbance, and the
battery state of charge soc(t) as output, and consider
designing a control system using the battery dynamics
equation (15). The control system is designed provided
that the following assumptions are satisfied for the SOC
system (15).

Assumption 1. For the system (15), there exists a stable
parallel feedforward compensator (PFC) Hest(s) shown in
Fig.6, which has a state space representation of

ẋfp(t) = Afpxfp(t) + bfpū(t)

yfp(t) = cTfpxfp(t) ,
(17)

such that the resulting augmented system shown in Fig.6:

ẋap(t) = Aapxap(t) + bapū(t)

yap(t) = cTapxap(t)
(18)

with

xap(t) =

[
soc(t)
xfp(t)

]
, Aap =

[
0 0T

0 Afp

]
bap =

[
So

bfp

]
, cap =

[
1
cfp

]
ū(t) = Peng(t)− Pdriver(t)

is ASPR, i.e. it has a relative degree of 1 and is minimum-
phase.

Assumption 2. The disturbance Pdriver(t) (the current
driver demand power) is measurable and available.
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Fig. 6. Augmented system

Remark: Although the modeled battery system itself is
ASPR, we are considering introducing a PFC that satisfies
Assumption 1 for the purpose of ensuring the ASPR-ness
of the practical system including uncertainty.

4. CONTROLLER DESIGN

4.1 Augmented Output Estimator

We first consider designing an output estimator for the
given ASPR augmented system (18) under Assumption 1.

Since the augmented system (18) has a relative degree of
1 and minimum-phase, there exists a nonsingular trans-

formation
[
yap(t) ηT (t)

]T
= Φxap(t) such that (18) is

transformed into the following canonical form (Isidori,
1995):

ẏap(t) = a∗ayap(t) + b∗aū(t) + cTη η(t)

η̇(t) = Aηη(t) + bηyap(t)
(19)

where a∗a and b∗a are unknown parameters but their nom-
inal values aa and ba are assumed to be known, and the
zero dynamics: η̇(t) = Aηη(t) is stable from the minimum-
phase property of the augmented system.

Rewrite the system(19) using the nominal value aa and ba
of a∗a and b∗a as

ẏap(t) =aayap(t) + baū(t) + f(t) (20)

f(t) =∆aayap(t) + ∆baū(t) + cTη η(t) (21)

with ∆aa = a∗a − aa, ∆ba = b∗a − ba.

Based on this representation of the augmented system
(20), we design an output estimator for the augmented
system as follows(Mizumoto et al., 2018):

ż1(t) = aaz1(t) + baū(t) + z2(t)

+ k1(yap(t)− z1(t)) (22)

ż2(t) = k2(yap(t)− z1(t)) , (23)

where z1(t) is the estimated value of yap(t) and z2(t) is the
estimated value of f(t). k1 and k2 are design parameters
and they are set such that

Ao =

[
aa − k1 1
−k2 0

]
(24)

is a stable matrix.

4.2 Output Predictor Design

An output predictor for the augmented output is designed
according to the designed output estimator (22) as follows:

∂ ˆ̄yap(t, τ)

∂τ
= aa ˆ̄yap(t, τ) + baū(t, τ) + z2(t, 0)

= aa ˆ̄yap(t, τ) + baPeng(t, τ)

− baPdriver(t, τ) + z2(t, 0) (25)

ˆ̄yap(t, 0) = z1(t, 0)

where τ(0 ≤ τ ≤ tf ) in (t, τ) denotes the predicted
time from the current time t, and tf is a terminal time.
Peng(t, τ) is a predictive input to be determined later in
the following section 4.3, and Pdriver(t, τ) is a future driver
power demand predicted by a power demand predictor
given in section 4.4.

The output predictor designed above is the one for the
augmented system given in (18). Based on this output
predictor, the practical predicted output can be obtained
by

ˆ̄soc(t, τ) = ˆ̄yap(t, τ)− yfp(t, τ)

= ˆ̄yap(t, τ)− cTfpxfp(t, τ)

= c̄Tapx̄ap(t, τ) (26)

c̄Tap =
[
1 , −cTfp

]
, x̄ap(t, τ) =

[
ˆ̄yap(t, τ)
xfp(t, τ)

]
Moreover, concerning x̄ap(t, τ), x̄ap-system can be repre-
sented from (17) and (25) by

∂x̄ap(t, τ)

∂τ
= Āapx̄ap(t, τ) + B̄apūap(t, τ) (27)

Āap =

[
aa 0T

0 Afp

]
, B̄ap =

[
ba −ba 1
bfp −bfp 0

]
ūap(t, τ) =

[
Peng(t, τ)

Pdriver(t, τ)
z2(t, 0)

]

4.3 Cost Function Design

This section outlines the design guidelines for the predic-
tive input Peng(t, τ). The cost function that satisfies the
energy management objective (minimizing fuel consump-
tion while maintaining SOC) is given by (Nozaki et al.,
2024)

J(t) =
1

2
x̄T
ap(t, tf )Pf x̄ap(t, tf )

+

∫ tf

0

1

2

{
qˆ̄e(t, τ)2 + rPeng(t, τ)

2
}
dτ (28)

ˆ̄e(t, τ) = ˆ̄soc(t, τ)− socm(t+ τ)

under the terminal constraint:
ˆ̄e(t, tf ) = ˆ̄soc(t, tf )− socm(t+ tf ) = 0 (29)

where socm is the target value to track the SOC, Pf is a
positive definite symmetric weight matrix, q, r are weights,
and tf is the prediction time. For the specific derivation of
Peng(t, τ), refer to the result obtained in Mizumoto et al.
(2018). The control input to the actual control target is
given as follows

Peng(t) = Peng(t, 0) (30)

4.4 Power Demand Predictor

As the situation changes from moment to moment, it is
difficult to accurately predict future power demand. There-
fore, to obtain an intuitive understanding of the relation
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between predicted future demand power and total fuel
consumption, exponentially varying velocity demand pred-
itor has been considered in (Sun et al., 2015). However,
since this method was just for intuitively understanding
the relationship between future driver demand prediction
and fuel consumption, there was no basis for prediction.
Therefore, we propose a new prediction strategy based on a
last moving average of the gradient of driver demand power
that utilizes the average gradient of past driver demand
powers. Thus, in each receding horizon, the gradient of
driver demand power is predicted as follows:

Ṗdriver(t, τ) = a(t)× εbτ (31)

where a(t) is the moving average of the gradient (in
this research, we set the moving average over 2 seconds),
0 < ε < 1 is the exponential coefficient, and b > 1 is a
weighted index coefficient. Different ε are considered to
examine the sensitivity of fuel economy to the predicted
future power demand. We call this predictor “gradient-
exponential-varying demand predictor”. Since the future
gradient would be unknown, we assumed that the future
gradient gradually decreases.

5. NUMERICAL VALIDATION

The proposed output predictive control method with pre-
dicted driver power demand is validated through numerical
simulations. We use a power-split HEV model (No. 20008)
provided by the Japan Automotive Model-Based Engineer-
ing Center (JAMBE). As described in the previous section
(see Fig. 5), the controllers in the power-split HEV are
hierarchical, with the power optimization controller and
the torque optimization controller. We design the power
optimization controller by applying the proposed method
and the torque optimization controller is constructed using
a sample controller given in the HEV model (No. 20008).

The power optimization controller with the proposed out-
put predictive control is designed under the following con-
ditions:

We first assume that the nominal SOC model Gnom(s)
which is required for designing PFC is given as follows.

Gnom(s) =
3.6682× 10−5

s
(32)

based on the data shown in Fig. 3.

Furthermore, an augmented system Gest(s) that satisfies
Assumption 1 is given as follows.

Gest(s) =
s+ 3.6682× 10−8

s2 + 10−3s
(33)

From the augmented system given above, the PFC Hest(s)
is obtained using the model-based design method as fol-
lows.

Hest(s) = Gest(s)−Gnom(s) (34)

The design parameters of the control system are set as

k1 = 1× 101 , k2 = 1× 101

Pf = I , q = 1× 10−10 , r = 1× 107

sampling time = 2.5× 10−3[s] , tf = 20[s]

Moreover, aa, ba are obtained as follows by seeking the
canonical form realization of Gest(s) given in (33) (Isidori,
1995).

aa = −9.9996× 10−4 , ba = 1
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Fig. 7. Target vehicle speed (WLTC Class3b)

Table 1. Fuel consumption and Percent change

WLTC Class3b

Rule Base 30.04 [km/L]

Exponential Coefficient Robust MPC

ε = 0 32.34 [km/L] 7.66 [%]

ε = 0.1 32.45 [km/L] 8.02 [%]

ε = 0.3 32.72 [km/L] 8.92 [%]

ε = 0.5 32.82 [km/L] 9.25 [%]

ε = 0.7 32.99 [km/L] 9.82 [%]

ε = 0.8 32.56 [km/L] 8.39 [%]

In the driver demand power predictor given in (31), we set
b = 4 for the given exponential coefficients ε.

Numerical simulations were performed with the above
settings.

Note that fuel consumption is calculated under the Charge
Sustainable condition (where the initial and final SOC
values are matched so that energy can be discussed only
in terms of fuel consumption without considering SOC).

The driving cycle used in this study (WLTC Class3b) is
shown in Fig. 7.

It is worth noting that the optimal solution of (28)
with terminal condition (29) can be solved analytically
(Mizumoto 2018). That is, we don’t have to worry about
calculation time for on-board calculation.

Table 1 shows that the fuel consumption and the rate
of change in fuel consumption while running for the
given driving cycle as in Fig. 7 with different exponential
coefficients ε. Here, the rate of change is based on the
fuel consumption with the conventional rule base method.
Note that we have better energy management results
compared with the rule-based method as shown in Table 1
by using the proposed output predictive control method
even though we set ε = 0.

The results shown in Table 1 say that using Pdriver(t, τ)
predicted by the gradient-exponential-varying demand
predictor, the fuel consumption always improves compared
with the case where the driver demand power is set at a
constant (ε = 0) in the prediction horizon. The best result
is obtained when ε = 0.7.

Fig.8 shows the simulation results of the WLTC Class3b
using the proposed method with ε = 0.7 and Fig.9 shows
the simulation results of the WLTC Class3b using rule-
based control. From Fig.8, we can see that the SOC is
maintained at the target value of SOC.
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Fig. 8. Results of Robust MPC [ε = 0.7]
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Fig. 9. Results of Rule Base method

6. CONCLUSION

We proposed an energy management strategy for HEVs
based on robust and simple OPC using a novel real-time
driver power demand predictor. The proposed method can
handle energy management of a power-split HEV with an
objective in which the SOC is kept at the desired value
and the engine power is kept small. The effectiveness of
the proposed method was confirmed through numerical
simulations by a power-split HEV model (No. 20008) pro-
vided by the Japan Automotive Model-Based Engineering
Center (JAMBE), and very good results were obtained
compared with the conventional MAP control and original
output predictive control without driver power demand
predictor.
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