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Abstract: The development of human-centric platforms that are able to combine computational
resources and advanced analytics with human judgment and qualitative processing ability is a
key driver of the Industry 5.0 movement. In this setting, humans are not only active in the loop
but also play a key role in the decision-making process. In this work, we propose the use of
Preferential Bayesian Optimization (PBO) for human-in-the-loop controller tuning. PBO relies
on pairwise comparisons and preference feedback (A is better than B) to search for the optimal
trade-off between different performance criteria from the user’s perspective. The advantages
of PBO are demonstrated in a simulated Proportional Integral (PI) controller tuning example
with real user feedback under a reduced number of experiments. The results show that PBO
leads to a greater emphasis on closed-loop responses closer to the user’s desired behavior when
compared with multi-objective alternatives, while being straightforward to implement from the
user’s perspective.
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1. INTRODUCTION

The design of high performance controllers for industrial
process control applications requires tuning of their pa-
rameters. This task is often carried out manually by an op-
erator or plant engineer, which uses system identification
and trial-and-error tuning to select suitable controller pa-
rameters. The efficiency of this approach largely depends
on the user knowledge and may lead to high economic
or engineering costs, especially for more complex control
structures.

Controller calibration can be automated by using data-
driven optimization methods that iteratively optimize the
controller parameters based on only closed-loop data. One
such method is Bayesian Optimization (BO) (Shahriari
et al., 2016; Frazier, 2018), which has been receiving in-
creased interest from the process engineering community
for automatic tuning of arbitrary control structures (Piga
et al., 2019; Neumann-Brosig et al., 2020; Khosravi et al.,
2022a,b; Makrygiorgos et al., 2022; Paulson et al., 2022;
Coutinho et al., 2023). BO has several desirable charac-
teristics including experimental efficiency, possibility to
account for noisy observations, the flexibility to incorpo-
rate constraints, possibility of experiment parallelization
and integration of multiple information sources (Paulson
et al., 2023). BO relies on the specification of a quantitative
objective function calculated based on experimental data,
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which is assumed to reflect the desired performance. In
cases where there are multiple conflicting criteria, Multi-
Objective BO (MOBO) methods (Daulton et al., 2020) can
be used to approximate the Pareto front that determines
the trade-off between objectives. However, in some cases
it can be hard to specify different quantitative perfor-
mance criteria or decide between the importance of each
objective, especially when these are qualitative in nature.
On the other hand, it is usually rather straightforward
for a user to choose the preferred option from different
closed-loop responses. This preference feedback can be
used to learn the underlying utility function which dictates
human preferences, in what is known in machine learning
literature as preference learning (Chu and Ghahramani,
2005). In the scope of controller design, such preference-
based optimization methods have been recently proposed
for calibration of Model Predictive Controllers (MPC)
(Zhu et al., 2021, 2022) and human-collaborative robots
(Roveda et al., 2023).

Preferential BO (PBO) methods expand the BO frame-
work to account for user preferences (Brochu et al., 2010;
González et al., 2017; Nguyen et al., 2021; Lin et al.,
2022; Astudillo et al., 2023). In PBO, a Bayesian surrogate
model is used to approximate the Decision Maker (DM)
utility function based on his responses from a series of
queries, each one consisting of two or more different config-
urations. An auxiliary acquisition function uses the poste-
rior distribution of the utility surrogate model to propose
new queries which are expected to be informative with
respect to the global optimum by combining exploration
and exploitation.
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In this work, we adopted PBO to develop a human-in-the-
loop alternative approach to automatic controller calibra-
tion methods, which entirely bypass human intervention
during the closed-loop optimization. The advantages of the
proposed methodology are demonstrated in a simulated
Proportional Integral (PI) controller tuning example with
conflicting performance specifications. We consider that
PBO offers great potential to join human-centered deci-
sion making with automated machine learning methods,
a key direction in the pursuit of Artificial Intelligence for
operation of chemical processes and Industry 5.0 (Chiang
et al., 2022).

The remainder of this paper is structured as follows.
Section 2 presents the problem description. In Section 3,
we introduce the use of PBO for preference-based tuning.
Section 4 presents the results considering a simulated
example and a real user. Finally, Section 5 summarizes
the conclusions of this work and indicates opportunities
for future work.

2. PROBLEM DESCRIPTION

Lets us consider the following dynamical system 1

yk = g(yk−1, uk−1), k = 1, 2, ...,K, (1)

where y is the state variable, u is the control input and
g is the, possibly non-linear, state transition function. For
the sake of simplicity, we do not consider at this point
external disturbances or noise. At each sampling time, k,
the control input is given by a Proportional Integral (PI)
controller in the velocity form:

uk = uk−1 +Kc

[
ek − ek−1 +

∆t

τI
ek

]
, (2)

where ∆t is the sampling time and e = y − ysp is the
error, which quantifies the deviation from the setpoint,
ysp. In optimization-based tuning, the goal is to find
the controller parameters x = [Kc, τI ], that maximize
an objective function related to closed-loop performance.
Controller tuning generally involves balancing conflicting
criteria such as setpoint tracking and disturbance rejection
or a fast closed-loop response and smooth control action.
Thus, we may have a n-dimensional vector, J(x), of
individual performance objectives, Ji:

max
x∈X

J(x) = [J1(x), J2(x), ..., Jn(x)], (3)

where X ∈ RD is a bounded design space with dimension-
ality D. We assume that each performance objective, Ji,
can generally be seen as a black-box, with unknown struc-
tural form or mathematical relationship with the controller
parameters. Moreover, when considering a physical exper-
iment or complex simulation, each evaluation is expensive
or time-consuming, motivating the need for data-efficient
optimization methods such as BO.

A common approach to solve optimization problem (3) is
to use standard BO and solve a single objective optimiza-
tion problem by considering a weighted sum of the indi-
vidual objectives, properly scaled, assigning higher weights
to those that are considered more important. However, it
is not trivial to specify weights that lead to the desired

1 We note that the proposed methodology is applicable for arbitrary
types of processes and controllers.

performance beforehand. This can lead to further rounds
of experiments if the results are not satisfactory.

Alternatively, one could use methods that aim to discover
the set of Pareto optimal parameters, i.e. Pareto front,
using multi-objective BO (MOBO) (Daulton et al., 2020).
The user then selects the parameters from the observed
or approximated Pareto set that best represents the de-
sired trade-off between the different performance criteria.
However, since each user is usually only interested in a
specific region of the Pareto front, a portion of experiments
may lead to undesirable results from the user’s perspective.
Moreover, it can be hard to choose a specific option from
this set, especially when there are more than 3 objectives,
making the Pareto front difficult to visualize.

In most situations, users ultimately rely on visual inspec-
tion of the closed-loop dynamic behavior to select the
optimal controllers parameters. While it can be hard to
make this decision solely based on quantitative perfor-
mance metrics, the user can very easily decide if controller
A leads to a better dynamic response than controller B.
Such an example is presented in Fig. 1. In the next section,
we explain how such comparisons can be used to optimize
controller parameters through PBO.

Fig. 1. Example of a query in preference-based tuning.
In this comparison, a user concerned with controller
smoothness, prefers option A (on the left) over B
(on the right) due to lower controller action with
similar deviation from the setpoint. Two metrics,
IAE and TV, which are later introduced, are also
shown, but not required, to illustrate the differences
in quantitative performance.

3. CONTROLLER TUNING USING PREFERENTIAL
BAYESIAN OPTIMIZATION

In preference-based tuning the goal is to maximize a utility
function, f(x), that reflects the DM’s desired performance
as a function of controller parameters, x:
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max
x∈X

f(x). (4)

It is assumed that the DM possess sufficient domain
expertise to decide on the best closed-loop responses.
However, since human feedback is not always consistent
with their underlying preferences, we consider noise in the
DM’s responses by assuming f(x) is corrupted by zero
mean Gaussian noise, ε ∼ N (0, σ2

n). Following the work
of Chu and Ghahramani (2005), we consider a Gaussian
Process (GP) prior (Rasmussen and Williams, 2006), with
mean µ(x) and covariance function K(x, x′), on the utility
function,

f(x) ∼ GP(µ(x),K(x, x′)). (5)
Here, we consider a constant mean and a squared ex-
ponential covariance function with Automatic Relevance
Determination (ARD):

K(x, x′) = exp

(
−1

2
(x− x′)TL(x− x′)

)
, (6)

where L = diag(l−2) is a diagonal matrix with separate
lengthscales, l1, .., lD, for each input dimension.

In equation 5, f(x) is a latent unobservable function, which
means that we do not have access to direct evaluations.
Instead, we can learn the utility function by proposing
different configurations and querying the DM to give his
feedback in terms of the preferred option. Although this
framework can be extended to multiple options per query
(Nguyen et al., 2021; Astudillo et al., 2023), we limit the
discussion to pairwise comparisons.

Consider that we have previously carried out a set of
n experiments Xn = {xi : 1, 2, ..., n} and m pairwise
comparisons, such as:

Dm = {rk(xk
1 , x

k
2) : k = 1, ...,m}, (7)

where x1 and x2 are two distinct elements of Xn and
r(x1, x2) is as a binary variable that takes the value of
1 when x1 is preferred over x2 and 0 otherwise. This can
be interpreted as f(x1) ≥ f(x2), or in other terms, the
DM considers the utility of x1 to be larger than x2. This
preference response can be captured in the form of a probit
likelihood function (Chu and Ghahramani, 2005):

P(r(x1, x2) = 1 | f(x1), f(x2)) = Φ

(
f(x1)− f(x2)√

2σn

)
,

(8)
where Φ is the Gaussian CDF. Because the likelihood
is non-Gaussian, the posterior distribution is analytically
intractable. Therefore, we use Laplace approximation to
approximate the posterior distribution as a Gaussian.
Under this approximation, the marginal log likelihood has
a closed form and can be maximized to find the GP model
hyper-parameters, i.e., the mean, kernel lengthscales and
the noise level (Chu and Ghahramani, 2005).

Several acquisition functions have been proposed for
preference learning using Bayesian Optimization (Brochu
et al., 2010; González et al., 2017; Nguyen et al., 2021). In
this work we consider the recently proposed acquisition
function Expected Utility of the Best Option (EUBO)
(Lin et al., 2022; Astudillo et al., 2023), due to its com-
putational simplicity and superior empirical performance.
EUBO considers the expected maximum utility of a query,
under the predicted posterior distribution, with the cur-
rent data, Dm:

α(x1, x2;Dm) = Em[max{f(x1), f(x2)}]. (9)

For pairwise comparisons, EUBO can be computed ana-
lytically (Lin et al., 2022) as:

α(x1, x2;D) =∆(x1, x2)Φ

(
∆(x1, x2)

σ(x1, x2)

)
+

σ(x1, x2)ϕ

(
∆(x1, x2)

σ(x1, x2)

)
+ µm(x2), (10)

where ϕ is the Gaussian PDF. Considering the GP mean
and covariance functions with the current data as µm

and Km, respectively, the mean, ∆(x1, x2), and variance,
σ2(x1, x2), of f(x1)− f(x2), are given by:

∆(x1, x2) = E[f(x1)− f(x2)] = µm(x1)− µm(x2) (11)

σ(x1, x2) = V[f(x1)− f(x2)]

= Km(x1, x1) +Km(x2, x2)− 2Km(x1, x2)
(12)

Algorithm 1 Preferential Bayesian Optimization algo-
rithm

Require: Domain X , initial experiments X0 = {xi}N0
i=1

and comparisons D0 = {rk(xk
1 , x

k
2)}

m0

k=1
for n = 1, ...,mmax do

Use current dataset Dn−1 to estimate the GP model
hyper-parameters

Find the parameters that maximize the acquisition
function: (xn

1 , x
n
2 ) = arg max

x1,x2∈X
α(x1, x2;Dn−1)

Perform an experiment at xn
1 and xn

2 and query the
user to obtain preference feedback, rn(x

n
1 , x

n
2 )

Augment the dataset: Dn = {Dn−1, ((x
n
1 , x

n
2 ), rn)}

end for

Return: Optimal parameters x∗, selected by the user or
based on the utility model posterior distribution.

The PBO algorithm is presented in Algorithm 1. Initially,
a set of N0 experiments are performed based on a Sobol
space-filling design. From this set, m0 pairwise compar-
isons, randomly selected from all possible combinations,
are presented to the DM to obtain preference feedback.
Afterwards, in each iteration of the PBO loop, the GP
hyper-parameters are estimated using the current dataset
and based on the available posterior, the acquisition func-
tion is maximized to find a pair of controller parameters
to evaluate for the next query. A comparison of the two
closed-loop responses is presented to the DM, which then
decides on the best response. The results of the experi-
ments and comparison are added to the current dataset
and the procedure continues until the allowed budget of
comparisons, mmax, is exhausted. In the preference learn-
ing setting, the best controller parameters are the ones
that maximize the DM’s expected utility based on all the
collected data. These can be either selected manually by
having the DM choose his preferred option from a subset
of all the observed closed-loop responses, or by relying on
the predictions of the final GP model.

4. RESULTS

Consider the following first order process:

yk = 0.99yk−1 + 0.00995uk−1 (13)

where a delay of 1 sampling time, taken as 1 s, is added
to the process output. The controller bounds are selected
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as Kc ∈ [1, 20] and τI ∈ [10, 300]. If a process model is
available, a more informed design space can be defined
using controller tuning relations (Coutinho et al., 2023).

We compare PBO with two other approaches: i) random
query selection by drawing two samples from a Sobol de-
sign and ii) Expected Hyper Volume Improvement (EHVI)
(Daulton et al., 2020), a MOBO algorithm. The BO algo-
rithms were implemented using BoTorch (Balandat et al.,
2020). For EHVI, we select the simultaneous minimization
of two objectives: Integrated Absolute Error (IAE) and To-
tal Variation (TV), which quantify controller performance
and smoothness of the controller output, respectively:

IAE =

K∑
k=0

| ysp,k − yk | ∆t, TV =

K−1∑
k=0

| uk+1 − uk | .

(14)

Validation of the proposed method is carried out consid-
ering an external subject matter expert as the DM, which
provided the following statement about his desired closed-
loop response: ”A fast and stable response, with minimal
overshoot and moderate controller action”. Due to possibly
noisy responses in terms of preference feedback, 5 separate
trials were performed, each one using a different initial
set of experiments. Due to space limitations, we will only
present the detailed results for one trial.

Initially, each trial began with 30 comparisons, randomly
selected from all possible combinations from a set of
10 initial experiments. After this stage, 10 iterations of
the PBO algorithm were carried out, leading to a total
of 40 comparisons and 30 experiments. To focus the
methodology comparison on the selection of queries, the
initial set of experiments is kept the same for all three
methods in each trial. For both PBO and Sobol, the final
optimal controller parameters are selected as the ones that
maximize the predicted posterior mean of the final GP
model based on all the observed data. For EHVI, three
different points from the observed Pareto front at the final
iteration, selected as displayed in Fig. 2, are presented to
the DM.

Fig. 2. Observed Pareto front for the two objectives. The
squares represent the parameters used for the closed-
loop experiments that are shown to the DM.

To perform a quantitative comparison of the three meth-
ods, the observed values of the two quantitative objectives
considered for multi-objective optimization are presented
in Fig. 3.

Fig. 3. Observed values of the two objectives, IAE and TV,
during the experiments.

It can be observed that while MOBO leads to values that
are spread across the entire range of the objective space,
the majority of PBO experiments lead to values clustered
in a relatively narrow region. This is expected, as the
goal in standard MOBO is to discover the entire Pareto
front. On the other hand, PBO concentrates experiments
in regions that are of high expected utility to the DM. For
instance, the region of high IAE is avoided, because it rep-
resents responses with large deviations from the setpoint,
which is obviously undesired from the DM’s perspective.
This can be further visualized in the parameter space,
shown in Fig. 4, where the algorithm avoids sampling in
the region of large integral time and low controller gain.

Fig. 4. Controller parameters evaluated during the exper-
iments.

The clustering observed in Figs. 3 and 4 may also indicate
that the PBO algorithm has converged to a good solution
in terms of the DM’s preferences before exhausting the
experimental budget. Determining appropriate metrics for
convergence in PBO remains to be explored in future work.
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The final results of the five trials are presented in Table
1. As a final comparison in each trial, the closed loop
responses corresponding to the optimal parameters for the
three methods, as shown in Fig. 5, were presented to the
DM, which stated his preferred option. Although this will
obviously not be done in a practical scenario, this final
query is used to compare the best results from the different
methods.

Table 1. Optimal controller parameters for
each trial. The DM’s preferred option is shown

in bold.

PBO MOBO Random
Trial Kc τI Kc τI Kc τI
1 6.3 84.1 7.7 100.0 3.3 85.8
2 6.0 58.4 4.8 63.5 3.2 44.5
3 14.7 122.2 6.5 94.8 14.1 68.9
4 5.7 101.6 4.6 68.2 12.0 103.5
5 8.2 91.9 5.2 35.2 9.6 62.9

Fig. 5. Comparison of the closed-loop response correspond-
ing to the optimal parameters of each method. The
DM’s decides which of the three is optimal.

The DM chose the PBO solution in three of five trials,
indicating that good controller performance, according
to specific user preferences and criteria, can be achieved
through pairwise comparisons and PBO, without having
the need to specify quantitative performance metrics.

4.1 Sensitivity Analysis

The obtainable performance of the controllers depends on
the number of initial experiments, comparisons and total
amount of PBO iterations. To determine the impact of
having a reduced dataset, we repeat the analysis using
half the previous experimental budget, with 10 initial
comparisons based on 5 space-filling experiments and using
only 5 PBO iterations, for a total of 15 experiments. Table
2 shows the resulting controller parameters for the three
methods, with the corresponding closed-loop responses in
Fig. 6.

Table 2. Optimal controller parameters for
each trial considering 15 total experiments.
The DM’s preferred option is shown in bold.

PBO MOBO Random
Trial Kc τI Kc τI Kc τI
1 11.1 67.5 6.3 90.9 12.0 20.8
2 9.3 85.1 4.7 68.0 19.0 79.5
3 9.9 74.3 4.4 87.9 6.8 39.9
4 9.6 93.4 3.9 73.3 9.1 22.4
5 9.4 114.0 9.6 62.9 9.6 62.9

Fig. 6. Best closed-loop responses using a reduced number
of experiments across the 5 trials for PBO (left),
random sampling (center) and MOBO (right).

It can be observed that the best closed-loop responses ob-
tained using PBO are more consistent across the different
trials when compared with the other two methods. In this
case, the DM chose the PBO solution as the best one
in all five trials. Overall, this indicates that PBO shows
advantages compared to the other methods even when
using a reduced number of experiments.

5. CONCLUSION

We presented the use of Preferential Bayesian Optimiza-
tion (PBO) for human-in-the-loop controller tuning. In-
stead of optimizing a quantitative objective function, PBO
suggests pairwise comparisons of different closed-responses
and asks a human calibrator which is the preferred option.
As demonstrated in a simulated controller tuning example,
this leads to a larger focus of experiments on the desired
trade-offs between different objectives, when compared
with standard multi-objective BO.

Future work will consider further validation of the ap-
proach by considering multiple users with different prefer-
ences and also incorporate ties when there is no preference
towards either option (Nguyen et al., 2021). This would
enable a more thorough comparison with other active
preference learning approaches (Zhu et al., 2021). It is
also straightforward to apply PBO for other more complex
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controller calibration problems, including MPC tuning,
although this may involve a larger number of decision
variables.
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