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Abstract: We present a novel dynamic model of a flash clay calciner. The model consists
of thermophysical properties, reaction kinetics and stoichiometry, transport, mass and energy
balances, and algebraic constraints. This gives rise to a system of partial differential-algebraic
equations (PDAE). Spatial discretization is performed to convert the PDAEs into a system of
differential-algebraic equations (DAE). The model can be used, for example, to perform dynamic
simulations with changing inputs, and process design and optimization. Moreover, it can be used
to develop model-based control, which is relevant for flexible operation of a clay calcination plant
for green cement production.
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1. INTRODUCTION

Cement manufacturing is one of the largest sources of
carbon dioxide emissions, accounting for roughly 6% (Im-
babi et al., 2012). Accordingly, there is high interest in
developing improved production methods that can reduce
emissions. Clinker is the main component of cement, and
it is produced by burning limestone in the rotary kiln.
Around 40% of the emissions are due to the burning of
fossil fuel in the kiln, 50% are related to the chemical
process of calcination of limestone, and the remaining
10% are indirect emissions. Emissions reduction can be
achieved in two ways: 1) by lowering the clinker-to-cement
ratio, 2) by substituting fossil fuel with renewable energy.
In recent years, calcined kaolinite-rich clay as a clinker
substitute has gained a lot of momentum, because of its
abundance in nature and its CO2-free calcination process.
Substitution of up to 50% clinker content in cement blends
is viable, achieving similar mechanical properties and even
improving some aspects of durability (Scrivener et al.,
2018). Calcined clay limestone cements are referred to
as LC3. By electrifying the clay calcination process using
renewable energy, emissions reduction of up to a total of
50% per ton of cement can be achieved. Furthermore, the
use of electricity instead of fuel enables better temperature
control, and thus higher product quality.

The core of the clay calcination process is the calciner.
Because of the intermittent nature of renewable energy
sources, it is relevant to be able to dynamically simulate
and predict the effect of varying power input and other
process conditions (e.g. different clay compositions) in the
reactor. A dynamic model of the process is therefore neces-
sary. Ultimately, such a model can unlock the development
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of model-based control techniques, like model predictive
control (MPC), for flexible and optimized process opera-
tion.

There is very little literature on dynamic modeling of the
clay calcination process. Eskelinen et al. (2015) present a
dynamic model for clay calcination in a multiple hearth
furnace. They assume constant heat capacity for the solid
phase and the model cannot be solved with a standard
solver, but requires a special solution algorithm.

In this paper, we present a novel complete dynamic model
of a flash clay calciner. The model is formulated as a
system of partial differential-algebraic equations (PDAE),
but translated into differential-algebraic equations (DAE)
after spatial discretization. The model is based on first
principles, i.e. mass and energy balances. We use a rigorous
approach that incorporates thermodynamic functions as
algebraic constraints. This allows us to handle complicated
(non-constant) expressions of the heat capacity, and have
the state variables, such as temperature and pressure, as
algebraic variables. This technique makes the model not
only more realistic, but easy to implement as a standard
DAE system. Moreover, our formulation in blocks allows
easy modifications, if needed.

The paper is structured as follows. Section 2 provides a
short overview and a description of the clay calcination
process. Section 3 presents the dynamic model of the
calciner, as a system of PDAEs. Section 4 presents a spatial
discretization of the model, in order to translate it into a
system of DAEs. Section 5 presents some simulation results
of the model. Section 6 concludes the paper.

2. PROCESS DESCRIPTION

Fig. 1 shows a diagram of the clay calcination process that
we consider. We hereby provide a short description.
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The thermal activation of the clay is performed in a
pyro loop. The fresh clay is introduced in the loop after
being crushed. The material stream undergoes pre-heating
through two cyclones, where a part of the clay already
gets calcinated because of the high temperature. The pre-
heated solid is then introduced in the calciner, which is the
part that we model in this paper. The calciner is a long
plug-flow reactor (PFR) where the solid material stream
is mixed with the hot gas stream coming from the electric
hot gas generator. The hot gas transfers heat to the solid
particles, ensuring that all the clay gets calcined. The last
cyclone separates the solid product from the gas before
leaving the process. The gas can be recirculated in the
loop, in order to recover energy. Since the hot gas generator
runs on renewable energy and the clay does not release any
carbon dioxide, the process is CO2 free.

3. FLASH CLAY CALCINER MODEL

The dynamic model consists of several subparts. We
present and discuss them in this section, in the following
order: 1) chemical model (reaction kinetics and stoichiome-
try), 2) thermophysical model (enthalpy and volume func-
tions), 3) transport model, 4) mass balance, 5) energy
balance, 6) algebraic relations. A system of PDAEs arises
from the combination of all the components of the model.
The same modeling technique is used by Rosbo et al.
(2023).

We model the calciner as a PFR of length L and diameter
d. The reactor volume is denoted as Vtot. Furthermore, we
specify all the concentrations with respect to the reactor
volume, i.e.

c =
n

Vtot
. (1)

We use c for concentration and n for number of moles.

3.1 Stoichiometry and kinetics

The type of clay that we consider is composed of kaolinite
and quartz. The main reaction occurring when calcinating
clay is dehydroxylation of kaolinite. The reaction leads to
the formation of metakaolin and water vapor

Al2O2 · 2SiO2 · 2H2O(s) →Al2O2 · 2SiO2(s)

+2H2O(g).
(2)

The temperature range of the reaction is 450-700 ◦C. The
reaction is endothermic. Notice that quartz is not involved
in the chemical reaction. For simplicity in the notation, we
indicate hereafter the species as

AB2 → A+ 2B (3)

We model the reaction kinetics as a third-order reac-
tion, with activation energy EA = 202 kJ/mol and pre-
exponential factor k0 = 2.9×1015 s−1 (Ptáček et al., 2010).
Hence, the reaction rate is

r = r(cAB2
, Ts) = k c3AB2

(4)

where

k = k(Ts) = k0 exp

(
− EA

RTs

)
. (5)

Ts is the temperature of the solid. We use the following
indexes throughout the paper: AB2 = kaolinite (solid), A

= metakaolin (solid), B = water (gas), air = dry air (gas),
Q = quartz (solid). The chemical production rate is

R = ν′r(c) (6)

where ν is the stoichiometric matrix. The concentration
vector and the stochiomatric matrix have the form

c = [cAB2 , cA, cB , cair, cQ]
T , ν = [−1, 1, 2, 0, 0]. (7)

Notice that air and quartz do not participate in the
reaction, but they are involved in the mass transport and
heat exchange. The hot air is used to heat up the solid, in
order for the reaction to occur.

3.2 Thermodynamic functions

Expressing energy balances in terms of internal energy
makes the model depend on temperature T , pressure P ,
and number of moles n. By using a thermodynamic library,
or by constructing one, we can compute the enthalpy H,
volume V , and (therefore) internal energy U , i.e.

V = V (T, P, n), (8a)

H = H(T, P, n), (8b)

U = H − PV. (8c)

Moreover, notice that the enthalpy and volume functions
of a mixture may be computed as

H(T, P, n) =
∑
i

nihi(T, P ), (9a)

V (T, P, n) =
∑
i

nivi(T, P ), (9b)

where the index i indicate the i-th species of the mixture.
h and v indicate molar enthalpy and volume. (9) is only
valid when the molar enthalpies do not depend on the
molar fractions, like in our case. Since these functions are
homogeneous of order 1 with respect to the number of
moles, we can divide by the reactor volume and obtain the
volumetric quantities. We use the ·̂ notation to indicate
them.

v̂ = V (T, P, c), (10a)

ĥ = H(T, P, c), (10b)

û = ĥ− P v̂. (10c)

In the same way, we may compute the energy fluxes
(indicated by ·̃)

H̃ = H(T, P,N), (11a)

Ũ = U(T, P,N). (11b)

N indicates a molar flux.

Solid phase The solid phase is the clay material. We
assume that the clay is composed of kaolinite, metakaolin,
and quartz. The molar enthalpy of each component i may
be evaluated if the expression of the heat capacity cp,i of
the material is available.

hi(T, P ) = hi(T
0, P 0) +

∫ T

T 0

cp,i(s)ds (12a)

We use the enthalpy of formation of the material at
standard conditions for the reference state. That is

hi(T
0 = 298.15 K, P 0 = 1 bar) = ∆H0

form,i. (13)

Table 1 reports the values for metakaolin and kaolinite.
We use the notation

Hs = Hs(Ts, P, ns), (14a)

Vs = Vs(Ts, P, ns), (14b)
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Fig. 1. Clay pyro-activation loop. The process consists of a pre-heating zone with 2 cyclones, a calciner, an electric hot
gas generator, a separation cyclone, and a gas recirculation loop. The right part shows a zoom of the calciner.

Table 1. Coefficients for the solid heat ca-
pacity and standard enthalpy of formation of

metakaolin and kaolinite.

Coefficients Metakaolin Kaolinite

k1 2.294924 ×102 J
mol·K 1.4303 ×103 J

mol·K
k2 3.68192 ×10−2 -7.886 ×10−1

k3 0 3.034 ×10−4

k4 0 0
k5 -1.456032 ×106 8.334 ×106

k6 0 -1.862 ×104

Tmin 298 K 298 K
Tmax 1800 K 700 K

∆H0
form -3.211 ×106 J

mol
-4.11959 ×106 J

mol

to indicate the enthalpy and the volume of the solid
material. The number of moles in the solid phase is ns =
[nAB2

, nA, nQ]
T .

The heat capacity of the solid components may given by
the following empirical expression

cP (T ) = k1 + k2T + k3T
2 +

k4
T

+
k5
T 2

+
k6√
T
, (15)

with {ki}i=1,...,6 being coefficients. This is only valid
within the temperature interval Tmin ≤ T ≤ Tmax. Table 1
reports the coefficients for metakaolin and kaolinite (Gariz,
2023; Bale et al., 2016). The temperature T must be given
in K and the heat capacity cP is in J

mol·K . The molar
volume is given by

v(T ) = v1 + v2T. (16)

Table 2 reports the coefficients for metakaolin and kaolinite
(Gariz, 2023; Bale et al., 2016). Linstrom and Mallard
(2023) provide the enthalpy and the volume expressions
for quartz.

Table 2. Coefficients for the molar volume.

Coefficients Metakaolin Kaolinite

v1 41.4736 m3

mol
30 m3

mol

v2 3.39116 ×10−3 m3

mol·K 0 m3

mol·K

Gas phase The gas phase in the clay calcination process
consists of dry air and water vapor. We treat air as an ideal
gas mixture made of 78% nitrogen (N2), 21% oxygen (O2),
and 1% argon (Ar). The molar enthalpy of each component
is computed as for the solid (12). We indicate the enthalpy
and the volume of the gas mixture with

Hg = Hg(Tg, P, ng), (17a)

Vg = Vg(Tg, P, ng). (17b)

Tg indicates the temperature of the gas phase. The number
of moles in the gas phase is ng = [nair, nB ]

T . Linstrom
and Mallard (2023) provide the enthalpy expressions for
nitrogen, oxygen, argon, and water vapor.

The molar volume of a single gas may be computed using
the ideal gas law

vg,i =
RTg

P
. (18)

3.3 Transport model

Mass and energy balances in the calciner directly depend
on the spatial material flux. We consider advection and
diffusion for the flux. The flux depends directly on the
flow velocity.

Velocity The velocity along the reactor, v, may be
modeled as a function of the pressure drop, ∆P , along
the length, ∆z, using the Darcy-Weisbach equation for
turbulent flows (Svensen et al., 2024).
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v = v
(∆P

∆z

)
=
( 2

0.316
4

√
d5

µρ3
|∆P |
∆z

) 4
7

sgn
(∆P

∆z

)
. (19)

ρ is the density of the mixture, and µ is the viscosity of
the mixture. The equation is only valid for Mach number
< 0.2. The density of the mixture may be computed as

ρ =
∑
j

Mjcj . (20)

Mj and cj are the molar mass and the concentration of
the j-th component.

Viscosity The viscosity of a suspended gas mixture
may be computed by the extended Einstein equation of
viscosity (Toda and Furuse, 2006; Svensen et al., 2024).

µ = µg
1 + v̂s/2

1− 2v̂s
. (21)

µg is the viscosity of the gas phase. The viscosity of a
mixed gas may be given as

µg =
∑
i

xiµg,i∑
j xjϕij

, (22a)

ϕij =

(
1 +

√
µg,i

µg,j

4

√
Mj

Mi

)2(
2
√
2

√
1 +

Mi

Mj

)−1

, (22b)

where µg,i is the viscosity of a single gas (Wilke, 2004). Its
temperature dependence may be expressed as in (Suther-
land, 1893)

µg,i = µ0

( T

T0

) 3
2 T0 + Sµ

T + Sµ
, (23)

where Sµ can be calibrated given two measures of viscosity.

Advection and diffusion The molar flux of the mixture,
N , is modeled as the sum of advection, Na, and Fick’s
diffusion, Nd.

N = Na +Nd, (24)

where

Na = v · c, (25a)

Nd = −D ⊙ ∂zc. (25b)

D are the diffusion coefficients, and ⊙ is the element-wise
product. The flux vector has the form

N = [NAB2
, NA, NB , Nair, NQ]

T . (26)

3.4 Mass balance

The mass balance in the calciner reads (PFR model in
Nielsen (2023))

∂tc = −∂zN +R. (27)

The PDE (27) describes the dynamics of the concentra-
tions c(t, z) in time and space. The variable z is the calciner
length direction. N(t, z) are the fluxes and R(c) is the
chemical production rate.

3.5 Energy balance

Because two different phases (solid and gas) are interacting
and exchanging energy in the calciner, we need to keep
track of the temperature of both of them. We hereby derive
an energy balance for the solid and the gas phases.

Let us consider a control volume ∆V = A∆z. Let us
assume that the solid particles are well mixed with the

gas, and that they have identical shape and size. We
assume that each solid particle is a perfect ball of radius rb.
The accumulated energy in the solid phase in the control
volume, during the time interval ∆t, is

∆Us =ANs(t, z)hs(Ts, P )∆t−ANs(t, z +∆z)·
hs(Ts, P )∆t+ Jsg∆t−Qamb∆t.

(28)

Jsg is the heat transfer rate between solid and gas phases,
Qamb is the heat loss to the ambient. We can express the
heat transfer between the phases as

Jsg = ksgAsg(Tg − Ts). (29)

ksg and Asg are the solid-to-gas heat transfer coefficient
and the transfer area, respectively. Because of the assump-
tion on the solid particles, we can compute the transfer
area between the solid and the gas as

Asg = nballAball =
Vs

Vball
Aball =

3Vs

rb
. (30)

nball is the number of balls in the volume, Vball is the
volume of a ball and Aball is the area of a ball.

Now inserting (29) in (28), and dividing by ∆V and ∆t,
we get

∆Us

∆t∆V
=− Ns(t, z +∆z)hs(Ts, P )−Ns(t, z)hs(Ts, P )

∆z

+ ksg
3Vs

rb∆V
(Tg − Ts)−

Qamb,s

∆V
(31)

Using volumetric quantities and letting ∆t → 0 and
∆z → 0, the following PDE arises

∂ûs

∂t
= −∂H̃s

∂z
+ ksg

3v̂s
rb

(Tg − Ts)− Q̂amb,s. (32)

The same derivation can be repeated for the gas phase. In
compact notation, the following set of PDE describes the
(volumetric) energy balance of the solid and gas phases in
the calciner

∂tûs = −∂zH̃s + Ĵsg + Q̂amb,s, (33a)

∂tûg = −∂zH̃g − Ĵsg + Q̂amb,g. (33b)

The volumetric heat transfer between solid and gas is

Ĵsg = ksg
3v̂s
rb

(Tg − Ts). (34)

3.6 Algebraic relations

Some extra algebraic equations are needed to solve the
system. The volume of solid and gas phases should sum to
the reactor volume, i.e.

v̂g + v̂s − 1 = 0. (35)

Moreover, the differential variables ûs and ûg should match
the quantities computed via the thermodynamic functions,
that is

U(Ts, P, cs)− ûs = 0, (36a)

U(Tg, P, cg)− ûg = 0. (36b)

cs = [cA, cAB2
, cQ]

T are the concentrations in the solid
phase, and cg = [cair, cB ]

T are the concentrations in the
gas phase.

3.7 Summary

The PDAE model consists of the conservation equations
(27) and (33), and the algebraic relations (35) and (36).
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Fig. 2. Finite volume discretization of the calciner.

4. PDE SPATIAL DISCRETIZATION

The mass and energy balances for the calciner resulted in a
set of partial differential equations in space and time, (27)
and (33). In order to be solved and simulated, we perform
spatial discretization by dividing the calciner into finite
volumes along the length z. We apply central difference
approximation to evaluate the derivatives at the center of
each cell. Let us consider Nz finite volumes (see Figure 2).
The fluxes at the cell interfaces are

Ni+1/2(t) = vi+1/2(t)ci(t)−D ⊙ ci+1(t)− ci(t)

∆z
, (37)

where the velocities are such that

vi+1/2 = v
(Pi+1(t)− Pi(t)

∆z

)
, (38)

for i ∈ {1, 2, . . . , Nz − 1}. At the first and the last cell
interface we have

N1/2(t) = v1/2(t)cin, (39a)

NNz+1/2(t) = vNz+1/2(t)cNz
(t). (39b)

cin are the inlet concentrations. The velocities at the inlet
and outlet of the calciner, namely v1/2(t) and vNz+1/2(t),
depend on the pressures before the inlet and after the
outlet, Pin and Pout, respectively.

v1/2(t) = v
(P1(t)− Pin

∆z

)
, (40a)

vNz+1/2(t) = v
(Pout − PNz (t)

∆z

)
. (40b)

Pin and Pout are specified as parameters.

The spatial discretization of the mass balance equation
results in Nz ordinary differential equations (ODE)

dci
dt

(t) = −
Ni+1/2(t)−Ni−1/2(t)

∆z
+R (ci(t)) , (41)

for i ∈ {1, 2, . . . , Nz}. Notice that ci(t) is a vector with
the 5 chemical components. Therefore the mass balance
results in 5 ·Nz equations.

In the same way, the energy balances are also discretized
in space

dûs,i

dt
(t) = −

H̃s,i+1/2(t)− H̃s,i−1/2(t)

∆z
+ Ĵsg,i(t) + Q̂amb,s,

(42a)

dûg,i

dt
(t) = −

H̃g,i+1/2(t)− H̃g,i−1/2(t)

∆z
− Ĵsg,i(t) + Q̂amb,g.

(42b)

The enthalpy fluxes of the solid material at the cell
interfaces are

H̃s,1/2(t) = H(Ts,in, Pin, Ns,1/2(t)), (43a)

H̃s,i+1/2(t) = H(Ts,i(t), Pi(t), Ns,i+1/2(t)), (43b)

for i ∈ {1, 2, . . . , Nz}. The enthalpy fluxes of the gas at
the cell interfaces are

H̃g,1/2(t) = H(Tg,in, Pin, Ng,1/2(t)), (44a)

H̃g,i+1/2(t) = H(Tg,i(t), Pi(t), Ng,i+1/2(t)), (44b)

for i ∈ {1, 2, . . . , Nz}. The inlet temperatures of the solid
and gas, Ts,in and Tg,in, are manipulated variables.

The heat transfer term between solid and gas is

Ĵsg,i(t) = ksg
3v̂s,i(t)

rb
(Tg,i(t)− Ts,i(t)). (45)

for i ∈ {0, 1, . . . , Nz}.
Finally, the algebraic equations are

U(Ts,i(t), Pi(t), cs,i(t))− ûs,i(t) = 0, (46a)

U(Tg,i(t), Pi(t), cg,i(t))− ûg,i(t) = 0, (46b)

V (Ts,i(t), Pi(t), cs,i(t)) + V (Tg,i(t), Pi(t), cg,i(t))

− 1 = 0,
(46c)

for i ∈ {0, 1, . . . , Nz}.
The total discretized ODE model consists of (41), (42),
and (46). This results in 10 ·Nz equations. The differential
variables x and the algebraic variables y are

x = [ci; ûs,i; ûg,i], y = [Ts,i;Tg,i;Pi]. (47)

for i ∈ {1, 2, . . . , Nz}. The manipulated variables u and
the disturbances d are

u = [cin;Ts,in;Tg,in], d = [Qamb,s;Qamb,g]. (48)

We remark that the concentrations ci and cin are vectors.

5. SIMULATION RESULTS

The full DAE system may be simulated easily in Matlab
by using ode15s. The differential and algebraic variables
are specified by giving a mass matrix as an input to the
function. We simulate using the following manipulated
variables

cin =
[
0.15; 0.31; 3.74; 5.81; 0.79

]
mol/m3, (49a)

Ts,in = 657.15 K, Tg,in = 1261.15 K. (49b)

We use Nz = 20 and a pressure drop of 600 Pa. We
neglect the heat loss to the ambient (adiabatic reactor).
The diffusion coefficients are all set to 0.1. The initial
concentrations are [0.1; 0.1; 0.1; 19.65; 0.1] mol/m3 in all
the cells. The initial temperature of the solid and the gas
is 600 K.

Fig. 3 displays 3D plots in time and space of the states,
i.e. concentrations, temperature of the solid and the gas,
and pressure. Steady state is reached after few seconds,
because of the fast dynamics. Fig. 4 shows the reaction
rate and the solid and gas temperature profiles along the
calciner at steady state. The reaction and the heat transfer
happen mostly at the beginning of the calciner.

6. CONCLUSION

A dynamic model for a clay calciner is presented and
discussed. The model consists of several building blocks,
which are formulated in a way that allows easy modifica-
tion if necessary. For example, extra side reactions can be
added, and different transport models can be investigated,
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Fig. 3. States in time and space: concentrations, tempera-
ture of the solid and the gas, pressure.

with very little effort in the implementation. The rigorous
thermodynamic functions incorporation allows realistic
evaluation of heat transfer phenomena at changing condi-
tions. The paper also presents simulation results, showing
a dynamic simulation and additional steady state results.
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