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Abstract: Gas-lift is a strategy to enhance oil production from oil wells by reducing the
hydrostatic pressure of the fluid. Efficient modeling of this process is a key point for the
oil and gas industry to maximize oil output while minimizing gas consumption. This study
introduces a novel hybrid model for the gas-lift process, using the Universal Differential Equation
(UDE) approach. Neural networks replace algebraic equations, trained based on physical laws.
The UDE method eliminates dependence on unmeasured variables, enhancing accuracy. Tested
with simulated data, the hybrid model outperforms traditional models, demonstrating effective
prediction of state variables and efficient handling of algebraic variables. This approach holds
promise for gas-lift process modeling, control, and optimization.
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1. INTRODUCTION

During oil production, the energy from the reservoir can
not be enough to transfer the fluid to the surface. One
strategy commonly used to overcome this issue is the gas
lift, which is the injection of compressed natural gas into
the production tubing of an oil well (Namdar, 2019). This
action allows an increase in the pressure gradient between
the reservoir and well fluid that pushes the fluid to the
surface (Misener et al., 2009).

Many studies proposed optimization strategies for the gas-
lift process to maximize oil production and minimize gas
consumption. Some examples of this application are the
studies developed by Peixoto et al. (2015), Krishnamoor-
thy et al. (2016), Carvalho et al. (2016), Krishnamoor-
thy et al. (2018), and Carpio et al. (2021). There are
also applications of the nonlinear model predictive control
(NMPC) approach for the gas-lift process (Soares et al.,
2022; Miyoshi et al., 2018).

An efficient model is essential to developing the optimiza-
tion and NMPC proposals. However, the gas-lift models
usually rely on unmeasured parameters, needing a tool to
predict these values (Krishnamoorthy et al., 2016). State
estimator is one of these tools, which were used by Krish-
namoorthy et al. (2016) and Krishnamoorthy et al. (2018)
to estimate the gas-oil ratio (GOR). Moreover, Delou et al.
(2023) used an Extended Kalman Filter (EKF) to estimate
the reservoir valve flow coefficients and the top valve flow
coefficient in a gas-lift process.

Artificial neural networks are another tool used in the gas-
lift process to predict uncertain parameters. Teixeira et al.

(2014) developed a soft sensor for measuring the downhole
pressure in a gas-lift oil well. Shokir et al. (2017) trained
neural networks to predict the bottom pressure and fluid
flowrate from synthetic data in gas-lift oil wells, and used
this data-driven model to obtain the optimum gas injection
and oil production rate.

Khan et al. (2020) developed neural network models that
were able to predict oil flowrates in a gas-lift well. Soares
et al. (2022) developed a neural network to predict the
mass of gas in the annulus and in the tubing, and the
mass of oil in the tubing. They compared the neural
network’s performance to an EKF, considering a gas-
lift process controlled by an NMPC, demonstrating an
efficient performance of the machine learning strategy.
Furthermore, Dias et al. (2019) efficiently used Echo State
Networks for modeling gas-lift oil wells, being able to
predict the process behavior even for large prediction
horizons.

Hybrid models consist of models that combine machine-
learning approaches with phenomenological laws. Franklin
et al. (2022) used this strategy to develop a virtual sensor
for application in an oil well system. They combined the
phenomenological model with recurrent neural networks,
and could efficiently predict the flow rates and pressures of
the system. In the Universal Differential Equation (UDE)
hybrid modeling strategy, one or more terms in a differ-
ential equation are replaced by universal approximators,
which can be neural networks. During this neural net-
work training, the predictions of the differential equations
from the phenomenological model are considered in the
loss function (Rackauckas et al., 2020). Even with the
successful application of this approach for modeling some
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chemical processes (Nogueira et al., 2022; Bangi et al.,
2022; Lima et al., 2023), this approach has no application
in the oil and gas field.

This work aims to use the UDE approach for modeling
gas-lift oil wells. We used the model from Krishnamoorthy
et al. (2018) for gas-lift oil wells and replaced the equations
to calculate the reservoir oil and gas flowrates by neural
networks. The proposed model requires less parameter
tuning for accurate predictions, which can be further
improved by incorporating experimental production data
obtained from the plant.

2. METHODOLOGY

2.1 Process Description

Artificial gas-lift injection increases oil well productivity
by reducing bottom hole hydrostatic pressure through gas-
lift injection into the well annulus. This process, illustrated
for two wells in Fig. 1, facilitates the upward flow of oil to
topside facilities.

Fig. 1. A gas-lifted well network with two wells.

Our study utilizes the dynamic model from Krishnamoor-
thy et al. (2018) to simulate well-production tests and
generate data for hybrid modeling. For the sake of brevity,
we present only the differential equation model and al-
gebraic equations concerning gas and oil flow rates from
the reservoir to the production tubing, as their dynam-
ics remain unknown for hybrid model training. We refer
to Krishnamoorthy et al. (2018) for additional algebraic
equations and parameters.

The specific differential equation model for Nw wells is
detailed in (1).

·
mgai

= wgli − wivi
(1a)

·
mgti = wivi

− wpgi + wrgi (1b)
·
moti = wroi − wpoi (1c)
·
mgr =

∑
i

wpgi − wtg (1d)

·
mor =

∑
i

wpoi − wto, i ∈ Nw (1e)

where
·
mgai represents the gas-lift holdup rate in the

annulus,
·
mgti and

·
moti denote the gas and oil mass holdup

rate in the production tubing, and
·
mgr and

·
mor denotes

the gas and oil mass holdup rate in the riser/manifold.
The gas-lift injection flow rate is denoted by wgl, and wiv

represents the gas-lift flow rate through the injection valve
into the production tubing. wpg and wpo stand for the gas
and oil flow rates into the production tubing. wrg and wro

represent the gas and oil flow rates from the reservoir to
the production tubing. Finally, wto and wtg represent the
oil and gas flow rate to the separator.

The algebraic equations for Nw wells are given in (2).

wroi = PIi(pr − pbhi
) (2a)

wrgi = GORi wroi , i ∈ Nw (2b)

where uncertain parameters include the reservoir produc-
tivity index (PIi) and gas-oil ratio (GORi). Reservoir
pressure (pr) is a fixed parameter for each well, while
bottom hole pressure (pbhi

) is an algebraic state.

2.2 UDAE model

This study addresses the modeling and estimation of alge-
braic states in the artificial gas-lift injection process. We
employ a hybrid modeling approach, illustrated in Fig. 2,
where neural networks (NNs) approximate reservoir gas
and oil flow rates, replacing two algebraic equations, i.e.,
from (2), in the system of differential-algebraic equations
(DAEs). This substitution aims to enhance the modeling
of algebraic states dependent on uncertain parameters like
GOR and PI.

We extend the concept of UDE to DAEs (we refer to
universal differential-algebraic equation - UDAE), optimiz-
ing neural networks based on the availability of training
data. Production data simulation involves the model from
Section 2.1, introducing uncertainty in GOR and PI values
and measurement noise to mimic real-world conditions.
Plant measurements, represented by ym1 and ym2 (where
the subscripts 1 and 2 refer to the measured differential
states, i.e., ṁgt and ṁot), guide the optimization process
aiming to minimize mean squared error (MSE), as shown
in (3), while aligning with the DAE model.

MSE(θ) =
1

N

N∑
k=1

||yp1(wrg(θ, k), wro(θ, k))− ym1 (k)||2+

||yp2(wrg(θ, k), wro(θ, k))− ym2 (k)||2
(3)
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Fig. 2. UDE model structure.

Equation (3) refers to the objective function, with yp1
and yp2 denoting trajectories obtained from integrating
the system of DAEs for each steady-state condition (i.e.,
k = 1, · · · , N) with a dimension of Nw × T ×N . At each
time step (i.e., i = 1, · · · , T ), NNs-approximated algebraic
states are input to the DAE model, with some resulting
algebraic states feeding back into the NNs.

We employ two algorithms sequentially: particle swarm
optimization (PSO) for a solution close to the global opti-
mum and sequential least squares programming algorithm
(SLSQP) for refinement. This dual-method approach aims
to accelerate convergence, mitigating the risk of local
minimum. It is important to note that the optimization
process, illustrated in Fig. 2, proceeds with PSO explor-
ing the solution space for Npso iterations. Then, PSO is
replaced by SLSQP, which is terminated when no further
improvements in the optimization solution are obtained,
assuming the final solution is close to a global optimum.

3. SIMULATION RESULTS

The system of DAEs outlined in Section 2.1 was inte-
grated to obtain experimental data. Seven steady states
with different GOR values and measurement noise were
simulated using the open-source Casadi software (Ander-

sson et al., 2019) and the IDAs integrator with an ab-
solute tolerance of 10−8, assuming an integration time
of T = 7200 s and interval of ∆t = 60 s, with t =
[0 s, 60 s, . . . , 7200 s], is sufficient for reaching steady-state.
The inputs (wgli (kg/s), wpgi (kg/s), wpoi (kg/s)) and out-
puts (mgti (ton) and moti (ton)) of these batches are pro-
vided in Table 1, along with their statistical properties.

Table 1. Statistical analysis of the input and
output data of the seven batches.

Properties wgli wpgi wpoi mgti moti

Minimum 0.2 3.67 31.55 0.77 2.97
Maximum 10.0 13.44 37.45 1.21 6.86

Mean 5.20 8.89 34.32 1.04 4.25
Standard deviation 2.47 2.44 1.01 0.11 0.87

The UDAE model consists of two neural networks with 1
hidden layer, 10 hidden neurons, and the tanh activation
function. The activation function, number of neurons, and
hidden layers were chosen after a sensitivity analysis to
find the proper hyperparameters. The neural networks
replace the equations related to wrg and wro, as depicted
in Fig. 2. The Casadi software with the IDAs integrator in-
tegrates the system of DAEs with the mentioned absolute
tolerance.
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To train the UDAE model, we use the open-source
PySwarms software to execute the PSO algorithm (Mi-
randa, 2018). One hundred particles are generated for
each 100 iterations, using the standard global-best PSO
optimizer with an absolute tolerance of 10−8 and built-
in hyperparameter specifications. The PSO optimization
solution is then refined using the successive quadratic
programming (SLSQP) algorithm from the SciPy library
(Virtanen et al., 2020) with an absolute tolerance of 10−8.

3.1 The UDAE Model Training

The training process of the UDAE model is outlined in
Fig 3. The optimization process involved 24,304 iterations
to reach this solution, with 10,000 iterations performed
by the PSO algorithm and the remaining by the SLSQP
algorithm.

For better visualization of the optimization process, the
evolution of the objective function is shown for PSO dur-
ing 5,000-10,000 iterations and for SLSQP during 20,000-
24,304 iterations. Notably, the PSO algorithm played a
crucial role in the initial exploration of the solution space
for the optimization problem—a common feature in meta-
heuristic-based algorithms—thus avoiding the possibility
of getting stuck in local minima. The SLSQP optimiza-
tion algorithm subsequently refines the initial solution
obtained through PSO. The latter benefits from a good
initial solution, improving convergence and achieving a
final loss function value of 3.25 × 10−4. Since no further
improvements were obtained in the optimization solution,
this value is considered close to a global optimum.

Fig. 3. UDAE model training loss.

3.2 Modeling and Prediction Study

The modeling and prediction study aims to evaluate the
UDAE model’s performance compared to plant data under
simulated conditions that may occur in an actual process.

In the first simulated condition, the plant model is as-
sumed to be identical to the one used to obtain the
training data. Fig. 4 illustrates the estimated algebraic

states of each neural network (i.e., wrg and wro), showing
its ability to capture the complexity and dynamic nature
of the process. The good fit is evident in the predicted
differential states shown in Fig 5. This shows the viabil-
ity of the proposed methodology for estimating unknown
dynamics, such as the reservoir gas and oil flow rates
for the production tubing, while respecting the system
of DAEs. Therefore, the methodology shows potential for
estimation and modeling purposes, being an alternative
to purely data-driven methods. Additionally, it can be
extended to leverage experimental production data from
the plant, available through the multiphase flowmeter, to
continuously adjust the neural networks and enhance the
modeling of the system of DAEs.

Fig. 4. The estimated reservoir gas and oil flow rates using
the UDAE model.

Fig. 5. The estimated gas and oil production mass
flowrates using the UDAE model.

The following simulated condition assumes a Gaussian
probability distribution for sampling GOR, a parameter
with high uncertainty that could influence the modeling of
artificial gas-lift injection, as shown in (4). In this study,
E0 (GORi) is defined as GOR = (0.10, 0.12), with an
uncertainty σ = (0.005, 0.005).

GORi = E0 (GORi) + σi, ∀i ∈ Nw (4)

While some works use the extended Kalman filter for
dynamic estimation of such a parameter, our methodology
treats it as unknown. It models it directly using the
neural network approximating the reservoir gas and oil
flow rates. Again, the algorithm successfully estimates the
dynamic nature of unknown algebraic states, as shown in
Fig. 6 and confirmed by the predicted differential states
(Fig. 7). This result highlights the generalization ability
of neural networks to new process conditions, enhanced
by integration with a system of DAEs, ensuring robust
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solutions even in extrapolated situations. This represents
an advantage over purely data-driven methods, which
require much training data to achieve a model with good
generalization capability.

Fig. 6. The estimated reservoir gas and oil flow rates using
the UDAE model, considering uncertainty in the value
of GOR for a new process condition.

Fig. 7. The estimated gas and oil production mass
flowrates using the UDAE model, considering uncer-
tainty in the value of GOR for a new process condi-
tion.

Finally, we simulated a condition in which, along with the
uncertainty in the GOR value, measurement noise was
introduced into the measured plant states (i.e., ymi ), as
depicted in (5), where the measurement noise depends
on a random variable (w(t) ∼ N(0, 1)) and the standard
deviation of measurement errors (σv = 0.001ym

i ).

ỹm
i = ym

i + 0.001ym
i (5)

Fig. 8 illustrates that the UDAE model could estimate the
algebraic states adequately. However, there was a slight de-
crease in estimation performance compared to the previous
cases, which was expected given the complexity of the ad-
dressed process dynamics. Nevertheless, the UDAE model
could still reasonably estimate the predicted differential
states (as shown in Fig. 9), highlighting its generalization
capability.

4. CONCLUSION

A hybrid model for the gas-lift process was developed using
UDAE. The approach was trained with offline data and
validated with online data under conditions of model-plant
mismatch. The sequential use of PSO and SLSQP to ob-
tain the neural network weights and biases was adequate to
avoid local minimum and accelerate the convergence. The

Fig. 8. The estimated reservoir gas and oil flow rates using
the UDAE model, considering uncertainty in the value
of GOR and measurement noise for a new process
condition.

Fig. 9. The estimated gas and oil production mass
flowrates using the UDAE model, considering uncer-
tainty in the value of GOR and measurement noise
for a new process condition.

hybrid strategy could efficiently model the dynamic behav-
ior of the reservoir flow rates without needing information
about the GOR and the PI. The hybrid model presented
similar prediction to the model in Krishnamoorthy et al.
(2018) considering the differential states. Furthermore,
the UDAE model efficiently accounted for noise in the
measurements, showing its generalization capability. The
proposed UDAE model showed a potential for being used
in optimization problems in future developments.
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