
Systematic Selection of Constraints for a
Novel Dynamic Flux Balance Model of

Mammalian Cell Cultures

A. Ghodba, ∗ A. Richelle, ∗∗ P. Agarwal, ∗∗∗ C. McCready, ∗∗∗

L. Ricardez-Sandoval, ∗ H. Budman, ∗

∗ Chemical Engineering Department, University of Waterloo,
Waterloo, Canada (Email: hbudman@uwaterloo.ca)
∗∗ Sartorius Corporate Research, Brussels, Belgium
∗∗∗ Sartorius Corporate Research, Toronto, Canada

Abstract: The dynamic flux balance model (DFBA) is a constrained-based optimization
modeling approach that has gained popularity for describing microbial cultures but has not
been thoroughly investigated for mammalian cell cultures due to their relative complexity. This
research aims to identify a DFBA model with minimal constraints and associated parameters
to predict data for the fed-batch operation of a mammalian CHO cell culture. The Bayesian
Information Criterion (BIC) is used to find a minimal set of kinetic constraints. The resulting
DFBA model is used to predict 24 metabolites, biomass, and titer with 85 parameters that has
a lower BIC and higher R2 as compared to previously reported kinetic models.
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1. INTRODUCTION

Monoclonal antibodies (mAb) are recombinant proteins
used to treat different diseases ranging from autoimmune
diseases to different types of cancer. The global market for
antibodies is expected to surpass 300 billion US dollars by
2025, which is up to 50% of the market’s size of biothera-
peutics in 2020 (Lu et al., 2020). Chinese Hamster Ovary
(CHO) cells are the most popular microorganism for the
generation of monoclonal antibodies. CHO cells are uti-
lized extensively because they can adapt to various growth
mediums, produce larger titers than other mammalian cell
lines, and are biosafe host cells that are less vulnerable
to viral infection (Fox et al. (2004)). The abrupt increase
in demand for mAbs, partly due to an increasingly aging
population, has motivated the industry to further improve
the manufacturing processes of mAbs. Mathematical mod-
els are crucial for achieving this goal since they provide
a quantitative representation of the underlying processes,
allowing for a systematic and rigorous analysis of the
system without the need for costly and time-consuming
experimentation. This can lead to significant cost savings
in terms of materials, time, and resources. Different types
of models can be considered for describing bio-processes
including CHO cell cultures. Dynamic flux balance model
(DFBA) is increasingly becoming the method of choice for
modeling cell cultures because it constrains the metabolic
network of a given microorganism based on an a priori
known metabolic network of reactions. Hence, it may re-
quire fewer parameters compared to other less structured
modeling approaches that do not impose such constraints,
e.g., kinetic and data-driven models.

The DFBA model assumes that the cell acts as an op-
timizing agent that distributes resources among different

biochemical pathways to accomplish a particular biological
objective, e.g., maximization of growth and ATP, or mini-
mization of metabolic burden. This optimization is subject
to constraints such as stoichiometric relations, positivity
concentration of metabolites, and reaction rate constraints
(Carvalho et al. (2019)). As the DFBA model involves the
solution of constrained optimization problems, the choice
and calibration of the objective function and the metabolic
constraints are crucial for fitting the data while avoiding
the over-fitting of noisy data. In principle, for DFBA (Eq.
1) there is no need to calibrate the kinetic parameters for
each possible reaction involved in the metabolic network,
but only for a subset of them. Thus, only parameters
related to metabolites involved in limiting constraints need
to be estimated whereas the time evolution of non-limiting
metabolites is expected to follow stoichiometric relations
among metabolites. Hence, the key challenge is the iden-
tification of the minimum set of limiting constraints that
best describe the data, thus avoiding over-parametrization
and over-fitting.

While DFBA has been successfully applied to describe dy-
namic microbial populations, e.g. Ecoli, B. Pertussis (Bud-
man et al. (2013)), its application to CHO cells in a fed-
batch operation has not been studied in literature due to
the relatively high complexity of biochemical phenomena
involving mammalian cultures, e.g. programmed cell death
and a significantly more complex media composition. This
work presents a DFBA model for a fed-batch culture of
CHO cells with a small number of calibration parameters
to fit the data while avoiding over-fitting. Finding a small
number of constraints and associated tuning parameters
is crucial to capitalize on the potential ability of DFBA
to generate more compact models as compared to other
modeling approaches. Note that an insufficient number of
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parameters can lead to a lack of fitting. Thus, a trade-off
between the number of parameters and model accuracy
must be made. This balance is evaluated in this study
using the Bayesian Information Criterion (BIC) (Burnham
and Anderson (2004)). This criterion combines a goodness-
of-fit term and a penalty term to prevent over-fitting.
Hence, it provides a balance between having enough pa-
rameters to accurately describe the data (sensitivity) while
avoiding over-fitting of data or inferring relationships that
do not exist (specificity). Avoiding over-fitting is crucial
if the model is to be used for optimization that will po-
tentially require predictions for operating conditions that
were not considered during model training.

Although the DFBA model has been recently applied to
CHO cells by our research group (Nikdel et al. (2018)),
that study required the solution of a challenging opti-
mization problem that involved the gradual addition of
constraints until fitting was satisfactory, which resulted in
a large number of model parameters. In contrast, in this
work, a minimum set of constraints is identified from an
initial large number of assumed constraints based on the
minimization of the BIC. The resulting model results in
good training and prediction accuracy with a better BIC as
compared to the initial model with all possible constraints.

Following the above, the goals of this paper are two-fold:
i- a methodology to reduce the number of constraints of
the model and associated parameters so as to avoid over-
fitting, and ii- the development of a novel DFBA model for
mammalian cultures based on the identified constraints.

2. MATHEMATICAL FRAMEWORK

In this section, the approach for selecting a minimum
set of constraints is presented. The approach involves the
following 3 elements: i- development of a DFBA model, ii-
DFBA parameter estimation based on data using a bi-level
optimization, and iii- Selection of a small set of constraints
based on the Bayesian Information Criterion. Each one of
these elements is discussed below.

2.1 Dynamic Flux Balance Analysis

The DFBA problem is formulated as a sequence of discrete
linear optimization (LP) problems as described in Eq.(1).

max
vk

cTvk (1a)

s.t. S.v = 0 (1b)

(1− e)f(ψk−1,Θ) ≤ vexchange ≤
(1 + e)f(ψk−1,Θ) (1c)

vmin ≤ v ≤ vmax (1d)

ψk = ψk−1 +Xv,k−1vexchange,k−1∆t+ Fk∆t

+∆V ψk−1 ≥ 0 (1e)

where k indicates the number of sampling time interval; S
is the stoichiometric matrix; nr is the number of reactions
in the metabolic network; c ∈ Rnr is a biological objective
coefficient vector; vk ∈ Rnr is the flux vector at time inter-
val k and subscript exchange refers to exchange reactions
in the metabolic network; ψk ∈ Rnm×nk is metabolite
concentration vector at the time interval k; Xv,k is vi-
able cell density at time interval k. The concentrations’

dependent functions f(.) represent kinetic constraints, ca-
pacity constraints, and other biological constraints; e, to
be referred to as the coefficient of variation, is used to
account for the uncertainty of measurements. This coeffi-
cient can be adjusted such that the LP admits a feasible
solution at each measurement time tk, i.e. to ensure that
the constraints can be fulfilled at each time instant. Since
fed-batch operation is being considered, F ∈ Rnm×nk

describes a bolus addition of each metabolite at time
k. Also, the volume of the reactor decreases over time
because samples are regularly taken out from the reactor
for measurement. Thus, ∆V is introduced to account for
these volume changes. ∆t denotes the length of each time
interval.

The optimization problem (1) includes different types of
constraints including i- mass balances of intra-cellular
metabolites, which are assumed to follow a quasi-steady
state response (1b), ii- concentration-independent lower
and upper bound of each flux (1d), and iii- positivity
of concentration of metabolites (1e) and iv- concentra-
tion dependent kinetic constraints that are imposed on
exchange fluxes to further regulate the dynamic behavior
(1c). Constraints (1b) and (1d) cannot be tuned since
the former solely depends on stoichiometry while the lat-
ter is determined by the maximal and minimal specific
consumption/production rates observed in the data for
the entire set of experimental conditions. Hence, the only
parameters that are available for tuning are those involved
in concentration-dependent constraints (1c) which are gen-
erally expressed by standard kinetic forms such as Monod
or Hill functions. The kinetic constraints assumed in the
current study are presented in Appendix A.

2.2 Parameter Estimation

A parameter estimation procedure is performed to identify
the kinetic parameter values in Eq.(1c), which results in
the best fit of model predictions to the experimental data.
This task is accomplished by minimizing the normalized
sum of squared errors (SSE) between the model prediction
and experiment measurements (Eq.(2)) with respect to
parameters’ values subject to the satisfaction of the LP
problem in Eq.(1). Normalizations of the terms included
in the SSE are used since metabolite measurements are
not within the same range of values. This parameter
estimation problem is formulated as a bi-level optimization
(Eq.(2)) whose outer layer calculates the SSE whereas the
inner layer satisfies the DFBA problem in Eq.(1). The
decision variables are the tuning parameters for the outer
problem and the fluxes for the inner layer where the latter
is solved with the parameters proposed by the outer layer
for each iteration during the optimization search.

Θ = arg min
Θ

1

n

nk∑
k=1

wk

∥∥yp(tk)− y(Θ, tk)
∥∥2 (2a)

s.t. Problem (1) (2b)

As shown in Eq.(2), Θ ∈ RnΘ are parameters in the
kinetic constraints of the model (1c), n is the number
of measurements, and nk represents the number of time
intervals. Also, yp ∈ Rnk×ny denotes the plant measure-

ments, whereas y ∈ Rnk×ny represents the DFBA model
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predictions. wk ∈ Rny are the weights used to normalize
the errors in different metabolites.

2.3 Reduction of the model parameters based on the
Bayesian Information Criterion

Once the parameters in the metabolic constraints are
identified, the minimum set of metabolic constraints for
predicting the cell culture behavior must be determined.
One approach to determining minimum constraints is find-
ing active constraints in the model by solving Lagrangian
multipliers. However, because of the multiplicity in the
model, this approach is not effective. Also, the Lagrange
multipliers’ approach does not explicitly consider the num-
ber of parameters used in constraints that can serve as an
indicator of potential over-fitting. Therefore, in this work,
the minimum number of parameters is determined based
on the minimization of BIC which balances the accuracy of
prediction for all metabolites with the number of param-
eters. BIC was selected since it is recommended for small
data sets and larger models. If the prediction accuracy of a
particular metabolite is poor, e.g. due to multiplicity of the
LP solution, it will introduce a kinetic constraint for that
metabolite. Also, by explicitly considering the number of
parameters the BIC penalizes over-parameterization. The
BIC is defined as follows:

BIC = ln (n) p+ nln
(
σ̂2
e

)
(3)

where

σ̂2
e =

1

n

nk∑
k=1

(yp(tk)− y(tk))
2

(4)

where p is the number of parameters used in the model.

To find the minimal number of constraints among all the
constraints considered in the earlier parameter estimation
problem (2), an additional bi-level optimization is formu-
lated. In this bi-level optimization, the outer level involves
the minimization of the BIC with respect to different sets
of kinetic constraints (1c), whereas the inner layer is the
LP defining the DFBA. The outer layer of the proposed bi-
level optimization, shown in Eq.(5), results in a MIP prob-
lem with respect to different sets of constraints. The BIC
minimization is performed to achieve a trade-off between
the number of constraints and associated parameters and
the fit to data.

min
xi

ln (n) p+ nln
(
σ̂2
e

)
(5a)

s.t. for t = 1, ..., nk (5b)

max
vk

cTvk (5c)

s.t. Eq.(1b− 1e)

p =
∑
i∈I

wixi (5d)

xi ∈ {0, 1} ∀i ∈ I (5e)

where I denotes a set of constraints, each one penalized
by a weight wi that is directly proportional to the total
number of parameters involved in the corresponding set of
kinetic constraints, and a set of decision binary variables
xi that is equal to 1 if ith constraint is selected, or 0 if it
is not.

2.4 Metabolic network and stoichiometric matrix

The accuracy and reliability of DFBA predictions depend
on the quality and completeness of the metabolic network
used for the analysis as well as the constraints imposed on
it. The network must be validated prior to model training
to ensure that the reactions and pathways are biologi-
cally relevant and consistent with experimental data. The
metabolic network used for this study is the genome-scale
metabolic network of CHO Cell metabolism performed by
Hefzi et al. (2016) which consists of 4456 metabolites and
6663 reactions.

In order to assess the ability of this metabolic network to
predict the experimental observations, the feasible solution
flux space is explored with the Flux Variability Analysis
(FVA) method, which is a method used to determine the
range of fluxes’ values that satisfy, within some tolerance,
the original FBA problem. Also, FVA can be used to find a
suitable variation coefficient for Eq.(1c). The FVA method
can be formulated as a series of LP problems, i.e.,

max
v
/min

v
vi (6a)

s.t. S.v = 0 (6b)

cTv ≥ µZ0 (6c)

(1− e)vexp,exchange ≤ vexchange ≤
(1 + e)vexp,exchange (6d)

vmin ≤ v ≤ vmax (6e)

where Z0 is the biological objective function that is de-
termined from the experimental measurements. vexchange

are exchange fluxes and vexp,exchange are experimental
fluxes of exchange reactions. As shown in Eq.(6), the
FVA method involves the solution of 2nr LPs subject
to a constraint that either considers suboptimal solutions
(µ < 1) or it enforces the exact optimality of the FBA
problem (µ = 1). To examine the metabolite network,
Algorithm 1 is used in combination with experimental
data. This algorithm calculates the feasible solution range
of each exchange flux which can then be compared with
the fluxes calculated from data. Calculations are started
with µ = 1, and e = 0.001 as the best possible scenario.
However, if some or all of the experimental fluxes’ values
are not within the calculated bounds, these initial param-
eters are changed so that the feasible solution will include
the experimental values. Then, based on the values of µ
and e that are required to bound all the measured fluxes,
the ability of the metabolic network to explain the data is
evaluated.

2.5 Solver

The solver “cplexlp” (Dual-simplex algorithm), from IBM
ILOG CPLEX was used to solve the linear problem of the
DFBA model, and the KNITRO solver from Artelys was
used to solve the non-linear problems. The processor of
the system is 12th Gen Intel(R) Core(TM) i7-12700 and is
equipped with 16GB of RAM.

3. CELL CULTURE PROCESS

The experimental data used to train and validate the
DFBA model were measured for 24 metabolites, biomass,
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Algorithm 1 Proposed approach to evaluate the feasibil-
ity of the CHO metabolic network

Require: Experimental measurements for all metabolites
and Z0

1: initialize with µ = 1, and e = 0.001
2: calculate fluxes at all time intervals for all metabolites

based on the experimental measurements
3: for i = 1, ..., nm do
4: set sufficiently large bounds for the exchange reac-

tion of metabolite i in Eq.(6d)
5: impose experimental fluxes ± e% for exchange reac-

tions of other metabolites in Eq.(6d)
6: find the minimum and maximum feasible bounds for

exchange flux i using Eq.(6)
7: if experimental exchange flux i is in feasible bounds

then
8: go to step 12
9: else

10: increase e or decrease µ and repeat from step 3
11: end if
12: compare the experimental flux with the feasible

range of flux values for exchange flux i at all times
13: end for

and titer in four fed-batch CHO cell cultures. All cultures
were performed by CHO-DG44 cell line, producing IgG,
at 36.8 C, pH=7.1, in AMBR 250 bioreactor. The bolus
was added to all cultures on days 3, 4, 5, 6, 7, 8, 9, 10,
and 11. All experiments are carried out in the same way
but glucose feeding varies between the cultures. In all
batches, the same proprietary media from Sartorius was
used. The initial cell density for all fed-batches was about
4 × 1e5 cell/mL and experiments were run for 12 days.
The BioProfile FLEX analyzer was used to quantify total
and viable cell density, glucose, glutamine, glutamate,
ammonia, and lactate concentrations, whereas the NMR
method was used to measure amino acid concentrations.
Samples were taken three times per day and data were
used to calibrate and validate the DFBA model.

4. RESULTS

As a first step, the feasibility of the metabolic network
was evaluated by the FVA method (Algorithm 1). The
analysis shows that for e = 0.05 and µ = 1 a feasi-
ble solution resulted for all exchange fluxes, i.e. all the
measured fluxes were within the bounds calculated from
FVA analysis. These results indicated that the iCHOv1
metabolic network is an acceptable metabolic network to
predict the experimental data of this study since only a
5 percent error is needed to bound the measured fluxes
e = 0.05 which matches the expected value of error in
these measurements.

The next step involves finding the kinetic parameters of
metabolic constraints according to the procedure in (2).
Two fed-batch cultures were used for calibration in this
step. While for most DFBAmodels for bacteria, the DFBA
is formulated in terms of maximization of growth rate,
such an objective did not provide good results for the
current study with CHO cells since the metabolic network
allocates all resources to growth thus resulting in zero
mAb productivity. A possible explanation for this result is
that the cells under study are engineered by pool selection

Table 1. Comparison of BIC in DFBA model
for training and validation data sets

DFBA with
Training Validation

Fed-batch 1/2 Fed batch 3/4

25 kinetic constraints -2312/-1794 -1924/-1778

15 kinetic constraints -2397/-1901 -1964/-1874

to produce a maximal amount of protein (mAb) but
not necessarily for maximization of growth. Accordingly,
the maximization of mAb production was chosen as the
biological objective function for the DFBA model.

The DFBA model was trained by using runs 1 and 2 and
validated by runs 3 and 4. As illustrated in Fig.1, the
model fits well with experimental data, and it effectively
predicts the consumption and production of metabolites
and mAb over time. Also, the growth and death phases
of biomass have been accurately calculated. The SSE
for training and validation data sets are 0.03 and 0.04,
respectively. The resulting similar SSE for calibration and
validation indicates the suitability of the model.

This initially calibrated model imposes 25 kinetic con-
straints on all metabolites of interest and biomass and
has a large number of parameters (116). Our goal is to
use models that require fewer parameters to avoid over-
fitting. To reduce the number of constraints and associated
parameters, the bi-level optimization presented in section
2.3 was implemented, and the results are given in Table
(1). The results in Table (1) indicate that the DFBA model
with the selected subset of constraints has a lower BIC for
both the training and validation data sets, which shows the
reduced model is a superior model. As explained above,
these BIC values are affected by the number of model
parameters and the error in the prediction. The number
of parameters in this reduced model decreased from 116
for the original model to 85. On the other hand, the BIC
provides a trade-off between the number of parameters
and the prediction for the metabolites related to the con-
straints that were pruned from the original model as shown
in Fig.2. Although the error of prediction for the selected
model with 85 parameters is 23% higher as compared to
the model with 116 parameters, the BIC clearly favors the
model with fewer parameters.

Due to the results of the optimization problem 5, the
metabolites that are/are not involved in the dynamic
constraints are as follows:

• constricted metabolites: Ala, Amm, Asn, Asp,
Glc, Gln, Glu, Lac, Gly, Phe, Leu, Ser, Thr, Tyr,
Biomass

• non constricted metabolites: Arg, For, His, Ile,
Lys, Met, Pro, Succ, Trp, Val, mAb

Among the restricted metabolites, three metabolites, i.e.
lactate, glucose, and biomass, were forced to be con-
stricted. In fact, it is evident from the data that there
is a metabolic shift from a state of high glycolysis flux
and high lactate production in the earlier stages of the
experimental runs to a state of low glycolysis flux and
lactate consumption at later stages (see lactate plot in Fig.
2). The DFBA model could not capture these shifts unless
kinetic constraints were added for glucose and lactate.
Also, DFBA cannot inherently predict cell death since the
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Fig. 1. Calibration and validation results of the DFBA model for fed-batch systems with normalized units

Fig. 2. Calibration and validation results of the DFBA
model selection based on BIC for fed-batch systems
with normalized units for non-constricted metabolites

mechanisms of death are not implemented in the metabolic
network. To model death, a dynamic balance equation for
biomass was developed (see biomass equation in Appendix
A) that was based on growth-promoting compounds such
as glucose and glutamine, toxic compounds such as lactate
and ammonia, and cell death by autophagy that results
from glucose deprivation.

Fig.3 illustrates the effect of removing/adding more con-
straints from/to the optimal point. Initially, two metabo-
lites are randomly selected between constricted metabo-
lites to investigate. When Leucine kinetic constraint is
removed from the DFBA model, it results in a 20 unit
decrease in the penalty term associated with the number
of model parameters. However, it simultaneously leads to
a notable 60 unit increase in the penalty term of the
likelihood function. Similarly, the removal of Glycine is
aimed at reducing the number of kinetic constraints to 13.
Nonetheless, this results in a substantial increase in the
penalty term for the likelihood function. This is because
inaccuracies in Glycine predictions have the potential to
affect the kinetic constraints associated with Ammonia
and Serine due to high interaction among these metabo-
lites. Conversely, the introduction of additional kinetic
constraints from non-constricted metabolites, such as Me-
thionine, Proline, and Tryptophan, does not significantly
reduce the penalty term for the likelihood function. This
is primarily due to their already robust predictive ca-

Fig. 3. Variations of the BIC around the optimal point

pabilities. However, the penalty term for the number of
parameters increases.

To assess the ability of the proposed model with 85
parameters to generate reliable predictions, this selected
DFBA model is compared with a previously reported
kinetic model for CHO cells Hille (2018). Hille’s model
was developed using a traditional approach of formulating
a system of dynamic mass balances for each measured
metabolite by assuming a priori knowledge of main re-
actions among metabolites and where each reaction is
modeled by a Michaelis-Menten expression. This kinetic
model involves 71 parameters and it is used to predict
23 metabolites, biomass density, and mAb. For the given
data the BIC of Hille’s kinetic model was equal to -170
which is significantly higher than the DFBA model in this
work. Hence, this work demonstrates for the first time that
a DFBA model that is developed based on a systematic
selection of constraints provides a good trade-off between
the number of parameters and accuracy as compared to
models that were developed with traditional approaches
that are not based on constrained optimizations. Further-
more, this result indicates that the explicit enforcement of
detailed stoichiometry relations and positivity constraints
of fluxes and concentrations are instrumental in avoiding
model over-parameterization.

5. CONCLUSION

While DFBA models have been extensively studied for
bacteria and algae, it has not been thoroughly applied to
mammalian cell cultures due to the inherent complexity
of mammalian cells as compared to other microorganisms.
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To avoid overfitting of data it is crucial to identify which
kinetic constraints must be included within DFBA to re-
sult in reasonable fitting of data while avoiding excessive
over-parameterization. This work proposes a systematic
approach to find these constraints based on the BIC mea-
sure that explicitly trades off fitting accuracy versus the
number of model parameters. The identified constraints
are used to develop a comprehensive model of a mam-
malian cell culture operated initially in batch and then
in fed-batch operation. Since the BIC only assesses the
model’s quality in relation to other models, other metrics
were also calculated to ensure the model’s quality. For
example, the residual error for the validation data set of
the DFBA model is 86%, which indicates that the selected
reduced model has good accuracy.

Furthermore, this work presents a first comparison be-
tween a DFBA of CHO cell culture to another model
previously reported that was developed with traditional
approaches of dynamic mass balances of key metabolites.
The comparison of the BIC for the two models clearly
showed the advantage of DFBA versus the traditional
approach. Benders Decomposition method (Liñán and
Ricardez-Sandoval, 2023) will be further investigated for
solving (Eq.(5)).
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Appendix A. METABOLIC KINETIC CONSTRAINTS

fXv
= K01Xv(

[Glc][Gln]
(K02+[Glc])(K03+[Gln])

1

1+
[Amm]
K04

1

1+
[Glu]
K05

)−K06X
2
v (

[Amm]
K07+[Amm]

Glc
K08+[Glc] )

fAla = (( K10[Glc]
K11+[Glc] +

K12[Gln]
K13+[Gln] +

K14[Ser]
K15+[Ser] )

( [Glu]
K16+[Glu] )−

K17[Ala]
K18+[Ala] )

fAmm = ( K21[Gln]
K22+[Gln] +

K23[Gly]
K24+[Gly] +

K25[Asn]
K26+[Asn] −

K27[Amm][Glu]
(K28+[Amm])(K29+[Glu]) −

K30[Amm]
K31+[Amm] )

fArg = (− K32[Arg]K33

K34+[Arg]K33
)

fAsn = ( K41[Asp][Gln]
(K42+[Asp])(K43+[Gln]) −

K44[Asn]K45

K46+[Asn]K45
)

fAsp = ( K51[Asn]
K52+[Asn] −

K53[Asp]
K54+[Asp] )

fFor = ( K61[Trp]
K62+[Trp] −

K63[For]
K64+[For] )

fGlc = (− K71[Glc]K72

K73+[Glc]K72
)

fGln = ( K81[Amm][Glu]
(K82+[Amm])(K83+[Gln]) −

K84[Gln]
K85+[Gln] )

fGlu = ( K91[Glc]
K92+[Glc] +

K93[Asp][Gln]
(K94+[Asp])(K95+[Gln])

− K96[Amm][Glu]
(K97+[Amm])(K98+[Glu]) −

K99[Glu]
K100+[Glu] )

fGly = ( K101[Ser][Amm]
(K102+[Ser])(K103+[Amm]) −

K104[Gly]K105

K106+[Gly]K105
)

fHis = (− K111[His]K112

K113+[His]K112
)

fIle = (− K121[Ile]
K122

K123+[Ile]K122
)

fLac = (− K131[Lac]
K132+[Lac]+

K133[Gln]
K134+[Gln]+

K135[Glc]
K136+[Glc] (

1
K137+[Lac]140 ))

fLeu = (− K141[Leu]K142

K143+[Leu]K142
)

fLys = (− K151[Lys]K152

K153+[Lys]K152
)

fMet = (− K161[Met]K162

K163+[Met]K162
)

fPhe = (− K171[Phe]K172

K173+[Phe]K172
)

fPro = (− K181[Pro]K182

K183+[Pro]K182
)

fSer = ( K191[Gly]
K192+[Gly] −

K193[Ser]
K194+[Ser] )

fSuc = (− K201[Succ]K202

K203+[Succ]K202
)

fThr = (− K211[Thr]K212

K213+[Thr]K212
)

fTrp = (− K221[Trp]K222

K223+[Trp]K222
)

fTyr = (− K231[Tyr]K232

K233+[Tyr]K232
)

fV al = (− K241[V al]K242

K243+[V al]K242
)

Xv is the viable cell density (1e6 cells/mL), and the con-
centrations of metabolites (mM) are denoted as follows:
[Ala]-alanine, [Amm]-ammonia, [Arg]-arginine, [Asn]- as-
paragine, [Asp]- aspartate, [For]-formate, [Glc]-glucose,
[Gln] -glutamine, [Glu]- glutamate, [Gly]-glycine, [His]-
histidine, [Ile]-isoleucine, [Lac]-lactate, [Leu]-Leucine, [Lys]-
lysine, [Met]-methionine, [Phe]-phenylalanine,[Pro]-proline
, [Ser]-serine, [Succ]-succinate, [Thr]-threonine, [Trp]- tryp-
tophan, [Tyr]-tyrosine, and [Val]-valine. The kinetic pa-
rameters are given by K01 to K244.
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