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Abstract: Surrogate models are important in real-time optimization (RTO) when the first-
principles model is unavailable or computationally challenging for online optimization. Among
different surrogate models, the continuous piecewise linear (CPWL) model enjoys the universal
approximation ability and potential computational benefits. However, the CPWL surrogate
model poses three challenges to current RTO algorithms. First, the solution of a CPWL model
is always located on the boundary of a polytopic subregion, while the plant optimum may
be in the interior of a subregion. Second, the CPWL model is nonsmooth, which cannot be
handled by RTO methods that rely on gradient matching. Third, the resulting nonsmooth
optimization subproblems are hard to solve. This paper addresses the difficulties by adding
a quadratic function to the CPWL surrogate model, extending a classical RTO method to
accommodate nonsmoothness, and exploiting the difference-of-convex structure of the surrogate
model for efficient solution. The advantages of the proposed method are demonstrated through
a benchmark problem in the RTO literature.
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1. INTRODUCTION

With the widespread application of advanced control tech-
nology, real-time optimization (RTO) is regarded as an
important tool that can further reduce operational costs
and enhance competitiveness. Usually, RTO is executed
based on a first-principles model derived from physical
and chemical knowledge. However, there are two situations
where RTO has to use a surrogate model. One is that the
first-principles model is overly complex, and the solution
takes a long time or easily fails, making online calculation
difficult. Compared to the first-principles model, a surro-
gate model established using simulation data often has a
simpler function structure. It also has a lower dimension
because it does not include intermediate variables that do
not explicitly appear in the RTO scheme (Chen et al.,
2011; Biegler et al., 2014). Another situation is the lack of
a ready-made first-principles model due to an insufficient
understanding of the process. Alternatively, a data-driven
model is derived from regression of measured data (Yang
and Kelly, 2019).

Various surrogate models are used in real-time optimiza-
tion or control, such as kriging (Gomes et al., 2008), neural
network (Li et al., 2023), and continuous piecewise linear
(CPWL) model (Gunnerud and Foss, 2010; Yang and
Kelly, 2019). Among them, the CPWL model enjoys the
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universal approximation ability as well as potential compu-
tational benefits. Every continuous nonlinear function can
be approximated on any compact set by a CPWL with an
arbitrary accuracy (Gorokhovik et al., 1994). The CPWL
model is especially beneficial when the plant or objective
function has piecewise characteristics or the optimization
problem already involves integer variables.

The use of surrogate models, inaccuracy of the original
first-principles model, and changes in plant characteristics
can lead to plant-model mismatch. As a result, the optimal
values calculated based on the surrogate model usually
differ from the plant’s optimal values. The RTO literature
has developed different approaches to compensating for
model mismatch (Srinivasan and Bonvin, 2019). One pop-
ular and straightforward way is modifier adaptation (MA)
(Marchetti et al., 2009). The idea is to adapt the model
in each iteration according to the plant’s first-order local
information so that the plant’s KKT conditions match
that of the model upon convergence. However, there are
three challenges when applying the modifier adaptation
technique to CPWL surrogate models:

1) The minimum of a CPWL function is achieved on the
boundary of a polytopic subregion. If the plant optimum is
located in the interior of a subregion, the solutions of the
CPWL surrogate will not converge to the plant optimum,
and most likely, they will oscillate near the plant optimum.

2) A CPWL model is nonsmooth. In each iteration of the
MA algorithm, the model is adapted according to plant
measurements so that its gradient equals the plant’s at the
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current operating point. If the model is not differentiable,
how to adapt it appropriately is unknown.

3) A CPWL model leads to nonsmooth optimization
subproblems, which can be hard to solve, especially for
real-time applications.

In this paper, we overcome the above challenges by adding
a convex quadratic function to the CPWL surrogate (Sec-
tion 2), extending the standard MA to a nonsmooth MA
(Section 3), and exploiting the difference-of-convex struc-
ture of CPWL function in order to locate an optimum ef-
ficiently using the difference-of-convex algorithm (Section
4). We demonstrate the advantages of the proposed surro-
gate model and the solution method through a benchmark
problem in Section 5 and provide concluding remarks in
Section 6.

2. PIECEWISE LINEAR PLUS QUADRATIC
SURROGATE

2.1 Continuous Piecewise linear function

Definition 1, CPWL function (Gorokhovik et al., 1994)
Let D ⊆ Rn be a compact set. A function f : D → R is a
CPWL function if and only if there exists {wi}ki=1 ⊆ Rn,
{vi}ki=1 ⊆ R, and a polyhedral partition {Pi}ki=1 of D such
that:

fCPWL(x) = xTwi + vi, ∀x ∈ Pi, i = 1, · · · , k. (1)

CPWL function has many nice properties, and an impor-
tant one is the universal approximation ability. (Gorokhovik
et al., 1994). In other words, the space of CPWL functions
is dense in the space of continuous functions.

According to Theorem 3.1 in (Gorokhovik et al., 1994),
every CPWL function f on a compact set D ⊆ Rn can be
written as the difference of two convex CPWL functions as
in Eq. (2). In other words, it is a difference-of-convex (DC)
function. The superscripts + and − indicate the positive
and negative components of the DC function, respectively.
p+ and p− are the numbers of linear pieces in the two
convex components. The order of a DC CPWL function is
(p+, p−).

fCPWL(x) = max
i∈{1,··· ,p+}

{xTw+
i + v+i }−

max
i∈{1,··· ,p−}

{xTw−
i + v−i }.

(2)

The DC representation of the CPWL function can be ex-
ploited for efficient optimization (see Section 4 for details).

2.2 Adding a Quadratic Function

By adding a quadratic function to a CPWL function, we
get a continuous piecewise linear plus quadratic (CPWL-
Q) function as follows:

fCPWL−Q(x) = fCPWL(x) + fQ(x), (3)

fQ(x) = xTAx+ bTx+ c, (4)

where fCPWL(x) is the CPWL part of the CPWL-Q
function and fQ(x) is the quadratic part of the CPWL-
Q function. The CPWL-Q surrogate also has the universal
approximation property. We require that fQ(x) be strictly
convex such that no additional nonconvexity is added

into the model. In addition, this implies that the CPWL-
Q function has positive-definite second-order derivatives
almost everywhere, which is beneficial for the convergence
property of RTO algorithms such as the MA (Marchetti
et al., 2009). The optimum of a CPWL function is always
located on the boundary of a polytopic subregion, and this
restriction prevents the CPWL optimum from reaching the
plant optimum when the latter is located in the interior of
a subregion. After adding fQ(x) to the CPWL function,
this restriction is not present, and the solutions of the
CPWL-Q surrogate are less likely to oscillate near the
plant optimum.

2.3 Fitting CPWL-Q surrogate

We follow the following three steps to construct the
CPWL-Q surrogate.

(1) Generate a dataset from simulation data of the first-
principles model or historical measurement data.
Specify the surrogate model’s error tolerance ϵs.

(2) Approximate a convex quadratic model by the
method in (Rosen and Marcia, 2004). This step de-
termines fQ in Eq. (3).

(3) Calculate the residue errors between the data and the
convex quadratic model. Fit a CPWL function to the
residue data by the method in (Kazda and Li, 2023)
with error tolerance ϵs. This step determines fCPWL

in Eq. (3).

In the CPWL fitting step, problem (5) is solved iteratively,
where s+l and s−l are slack variables indicating violation
of error bounds. The objective function will equal zero if
the approximation error is within the tolerance. The ap-
proximation algorithm starts from a low-order DC CPWL
function with (p+, p−) = (1, 1) and gradually increases
the order of the DC CPWL function until the desired
approximation error ϵs is achieved.

min
∑

l∈{1,...,nq}

(s+l + s−l )

s.t. fTRUE(xl) ≤ f(xl) + ϵs + s−l , ∀l ∈ {1, ..., nq},
fTRUE(xl) ≥ f(xl)− ϵs − s+l , ∀l ∈ {1, ..., nq},
s+l , s

−
l ≥ 0, ∀l ∈ {1, ..., nq},

f ∈ DC CPWL of order (p+, p−).
(5)

Fig. 1 illustrates the progressive fitting method by a bivari-
ate function. With the order of DC CPWL increasing, the
polytopic partition is adjusted and refined, and the maxi-
mum gap between the true function and its approximator
decreases. The process continues until the maximum error
is below the tolerance.

We chose the method in (Kazda and Li, 2023) to generate
the CPWL part because of its several advantages. (1)
It handles multivariate models and yields CPWL with
relatively few pieces compared to other methods that
are based on hyperrectangle and triangulation. (2) It
can approximate the nonlinear function to any predefined
precision. (3) It directly generates CPWL functions in
the DC form in Eq. (2), which favors efficient online
calculation.
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Fig. 1. DC CPWL approximation with increasing orders

3. NONSMOOTH MODIFIER ADAPTATION

This paper discusses the RTO algorithm that aims to
find the most profitable steady state of a process. We
consider the plant optimization problem in the form of Eq.
(6), where u is the decision variable. ϕp is the objective
function, and gp is the inequality constraint function.
Considering notational simplicity, we assume there is only
one inequality constraint. The situation with multiple
inequality constraints is similar.

min
u

ϕp(u) s.t. gp(u) ≤ 0. (6)

Since we do not know the exact information of the plant,
the optimization problem that is actually solved in RTO
is the following model optimization problem:

min
u

ϕm(u) s.t. gm(u) ≤ 0, (7)

where ϕm and gm come from the surrogate model of
the system. Assume that the nonlinearity of the problem
comes solely from the nonlinear process and the CPWL-Q
surrogate model is used to approximate the process, then
ϕm and gm can be expressed in the following DC form:

ϕm(u) = ϕ+
m(u)− ϕ−

m(u) + uTAϕu+ bTϕu+ cϕ,

gm(u) = g+m(u)− g−m(u) + uTAgu+ bTg u+ cg,
(8)

where ϕ+
m, ϕ−

m, g+m, g−m are convex CPWL functions.

Due to model mismatch caused by model approximation
and/or process uncertainty, the optimum of problem (7) is
often not optimal for the plant. Therefore, the model ϕm,k

and gm,k are adapted in each iteration k to match the
plant at the current input uk. Hopefully, the optimum of
problem (9) coincides with the plant’s at the convergence
of the algorithm.

min
u

ϕm,k(u) s.t. gm,k(u) ≤ 0. (9)

3.1 Modifier adaptation algorithm

There are many ways to update the model ϕm,k and
gm,k. Among them, MA is one of the simplest in han-
dling structural plant-model mismatches and has success-
ful applications in the industry. The model is adapted at
each iteration to be a good first-order approximation of
the plant. Given a continuously differentiable model, the
modifier adaptation algorithm is described as follows.

Algorithm 1: Modifier adaptation algorithm (Marchetti
et al., 2009)

Step 0: Initialization. Choose an starting point u0 and
filter coefficient 0 < K < 1. k ← 0.

Step 1: Get plant measurements. Implement uk to the
plant and obtain ϕp(uk), ∇ϕp(uk), gp(uk), ∇gp(uk).

Step 2: Gradient modifier calculation. Calculate the
output modifiers ϵ· gradient modifiers λ· by Eq. (10).

ϵϕk = ϕp(uk)− ϕm(uk),

ϵgk = gp(uk)− gm(uk),

λϕ
k = ∇ϕp(uk)−∇ϕm(uk),

λg
k = ∇gp(uk)−∇gm(uk).

(10)

Step 3: Model adaptation. Adapt the model according
to Eq. (11).

ϕm,k(u) = ϕm(u) + ϵϕk + (u− uk)
Tλϕ

k ,

gm,k(u) = gm(u) + ϵgk + (u− uk)
Tλg

k.
(11)

Step 4: Step calculation. Solve the model optimization
problem (9) and denote the solution as u∗

k.

Step 5: Input filtering. Filter the input by Eq. (12).

uk+1 = uk +K(u∗
k − uk). (12)

k ← k + 1. Go back to Step 1.

The optimization begins at the initial point u0. In Step 1,
the local plant information at uk is obtained. Steps 2 and
3 calculate the adapted model, which is the original model
plus a linear function. λ·

k is called a gradient modifier
because it modifies the model’s gradient. The updated
model is a first-order local approximation of the plant.
Step 4 calculates the optimal input. Step 5 filters the input
to enhance convergence. Theorem 1 in (Marchetti et al.,
2009) proves that MA can reach a KKT point of the plant
if the algorithm converges despite structural plant-model
mismatch under assumptions A1 and A2.

Assumption A1. ϕp and gp are continuously differen-
tiable.

Assumption A2. ϕm and gm are continuously differen-
tiable.

However, assumption A2 excludes the CPWL or CPWL-Q
surrogate. This paper relaxes this assumption and extends
Algorithm 1 for nonsmooth surrogate models.
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3.2 Extension using the Clarke generalized gradient

Like in MA, our basic idea is that in each iteration, the
zeroth- and the first-order information of model objective
and constraint functions match that of the plant. One
major difference is that ∇ϕm and ∇gm are replaced by
the Clarke generalized gradient.

Clarke generalized gradient (Clarke, 1981) Let f : Rn →
R be a locally Lipschitz continuous function. The Clarke
generalized gradient of f at a point x ∈ Rn is denoted as
∂f(x) and is defined by Eq. (13):

∂f(x) =
{
ξ ∈ Rn | ξT v ≤ f◦(x, v), ∀v ∈ Rn

}
(13)

, where f◦(x, v) is defined by Eq. (14).

f◦(x, v) = lim supy→x,h↓0
f(y + hv)− f(y)

h
(14)

For convex functions, a Clarke generalized gradient is
a subdifferential. For differentiable functions, it reduces
to a gradient. With the definition of Clarke generalized
gradient, Algorithm 1 can be extended to the nonsmooth
models that satisfy the following Assumption A3.

Assumption A3. ϕm and gm are continuous, and their
Clarke generalized gradient exists.

Algorithm 2: Nonsmooth modifier adaptation

Step 0: Initialization. Choose an starting point u0 and
filter coefficient 0 < K < 1. k ← 0.

Step 1: Get plant measurements. Implement uk to the
plant and obtain ϕp(uk), ∇ϕp(uk), gp(uk), ∇gp(uk).

Step 2: Step calculation. Minimize problem (15) and
denote the solution as u∗

k.

min
u,λϕ,λg

ϕm,k(u) = ϕm(u) + ϵϕk + (u− uk)
Tλϕ

s.t. gm,k(u) = gm(u) + ϵgk + (u− uk)
Tλg ≤ 0

λϕ ∈ ∇ϕp(uk)− ∂ϕm(uk)

λg ∈ ∇gp(uk)− ∂gm(uk)

(15)

Step 3: Input filtering. Filter the input by Eq. (12).
k ← k + 1. Go back to Step 1.

Steps 0 and 1 in the nonsmooth MA are the same as those
in Algorithm 1. Step 2 is a combination of Steps 2-4 in
Algorithm 1. Since the Clarke generalized gradient is a
set, it needs to be determined which element is chosen
to represent the first-order information of the model. By
incorporating gradient modifier calculation into the opti-
mization program, the ”best” one is selected to calculate
the first-order modifier that leads to the maximum opti-
mization improvement. Step 3 filters the input to reduce
the step size and improves global convergence.

It can be shown that under A1 and A3, Algorithm 2 pre-
serves the upon-convergence-optimality property of MA.
The proof is provided in another paper that is under prepa-
ration. If the model satisfies assumption A2, Algorithm
2 reduces to Algorithm 1 because problem (15) has only
one feasible λ that can be trivially computed by Eq. (10).

Therefore, Algorithm 2 is a generalization of the classic
modifier adaptation algorithm.

For a CPWL function, fundamental result 8 by Clarke
(1981) guarantees that the Clarke generalized gradient
at a point can be represented by the convex hull of the
gradients of the active pieces at that point. So the Clarke
generalized gradient of f in Eq. (1) can be written as

∂f(x) = co{wi : i ∈ If (x)}, (16)

where co denotes the convex hull, and If (x) is the index
set for active pieces of f at x. With this result, the last two
constraints in problem (15) can be replaced by constraints
(17), which include new variables γ.

λϕ =
∑

j∈Iϕm (uk)

γϕ,jwϕ,j

λg =
∑

j∈Igm (uk)

γg,jwg,j

0 ≤ γϕ,j ≤ 1, j ∈ Iϕm
(uk)

0 ≤ γg,j ≤ 1, j ∈ Igm(uk)

(17)

4. SOLVING THE MODEL OPTIMIZATION
PROBLEM

Traditionally, the optimization problem with the CPWL
function is formulated as a mixed-integer program (Yang
and Kelly, 2019). With the integer variable representing
the activity of pieces, problem (15) becomes a mixed-
integer nonlinear program. This approach has two disad-
vantages. First, solving mixed-integer nonlinear programs
can be too slow for RTO. Second, it takes work to deter-
mine an appropriate value for the big-M parameters in the
mixed-integer nonlinear program to ensure unbiasedness.

The difference-of-convex algorithm (DCA) proposed by
Le Thi and Pham Dinh (2018) is another approach to
solving problem (15), taking advantage of the difference-of-
convex decomposition of surrogate models. Standard DCA
solves the inequality-constrained problem where the objec-
tive and constraint functions are both DC functions. Such
functions are vast in engineering (Le Thi and Pham Dinh,
2018), including the CPWL and CPWL-Q surrogates.
Compared to the mixed-integer approach, DCA only finds
a local minimum. However, it is usually enough for RTO
applications, and the multi-start technique can enhance
the solution quality. The procedure of solving problem (15)
by DCA is described in Algorithm 3. Due to the page limit,
we skip the derivation details and only provide the final
algorithm here.

Algorithm 3: DCA algorithm for problem (15)

Step 0: Initialization. Choose convergence tolerance
ϵdca > 0. l ← 0. Find a feasible starting point uk,l

for problem (15).

Step 1: Solving DCA subproblem. Compute αϕ ∈
∂ϕ−

m(uk,l). Compute αg ∈ ∂g−m(uk,l). Solve DCA
subproblem (18). Denote the solution as uk,l+1.
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min
u,λϕ,λg,β+

ϕ
,β+

g

β+
ϕ − β−

ϕ (u) + βq
ϕ(u) + ϵϕk + (u− uk)

Tλϕ

s.t. β+
g − β−

g (u) + βq
g(u),+ϵgk + (u− uk)

Tλg ≤ 0

β+
ϕ ≥ uTw+

ϕ,j + v+ϕ,j , j = 1, · · · , p+ϕ ,
β+
g ≥ uTw+

g,j + v+g,j , j = 1, · · · , p+g ,
constraints (17),

(18)
where

β−
ϕ (u) := αT

ϕ (u− uk,l) + ϕ−
m(uk,l),

βq
ϕ(u) := uTAϕu+ bTϕu+ cϕ,

β−
g (u) := αT

g (u− uk,l) + g−m(uk,l),

βq
g(u) := uTAgu+ bTg u+ cg.

(19)

Step 2: Convergence check. If ∥uk,l+1 − uk,l∥ <
ϵdca, optimum found and return uk = uk,l+1. Other-
wise, l← l + 1 and go back to Step 1.

In the initialization step, a feasible initial point and the
error tolerance are specified. In Step 1, the algorithm solves
a convex upper-bounding problem (18). The problem is
constructed according to the DC structure of ϕm and
gm; specifically, some subgradients of the negative convex
components of ϕm and gm (i.e., αϕ, αg in (19)) are used to
bound the negative convex components from above. Step 1
is repeated until the desired solution precision is achieved.

Problem (18) can be written as a second-order cone pro-
gram (SOCP) (Lobo et al., 1998), which can be solved
reliably by specialized solvers. The DCA approach has
several significant advantages over the mixed-integer ap-
proach. First and foremost, it is much faster. Second, it
does need to specify the big-M value, which could be hard
to determine for complex models. Third, it reduces the
requirements for the solver, only needing a SOCP solver,
which is attractive for RTO implementation.

5. CASE STUDY

The performance of the RTO algorithm using CPWL-
Q surrogate is illustrated by a benchmark William-Otto
reactor (Forbes and Marlin, 1996). The CPWL approxi-
mation problems and problem (15) were solved by CPLEX
Optimization Studio 22.1 (IBM, 2023). The other nonlin-
ear programs or equations were solved by IPOPT 3.14.3
(Wächter and Biegler, 2006). The simulation was per-
formed on a Windows 10 system with a 2.80 GHz 11th
Gen Intel CPU and 24 GB RAM.

The process consists of a stirred tank reactor. Three
reactions occur that involve six components: A, B, C, E,
G, and P. A and B are fed into the reactor with flowrates
FA and FB , respectively. The output stream is denoted by
R, and its flowrate is FR. E and P are the two valuable
products in the mixture.

A+B
k1−→ C k1= 1.660×106exp(−666.4/TR)

B + C
k2−→ P + E k2= 7.212×108exp(−8333.3/TR)

P + C
k3−→ G k3= 2.675×1012exp(−11111/TR)

The process model neglects intermediate product C and
has only two reactions:

Fig. 2. Relations between the plant, the first-principles
model, and the surrogate model

A+ 2B
k
′
1−→ P + E k

′

1=2.19× 108exp(−8.08× 103/TR)

A+B + P
k
′
2−→ G k

′

2=4.31× 1010exp(−1.24× 104/TR)

The optimization problem is Eq. (20), which minimizes the
plant cost by determining flow rate FB and temperature
TR.

min
FB ,TR

−1143.38xPFR−25.92xEFR+76.23FA+114.34FB

s.t. (FR, xp, xE) = h(FB , TR),

FB ∈ [3, 6], TR ∈ [70, 100].
(20)

Flow rate FA is fixed. The input-output mapping h relates
the two decision variables and the outlet flow rate FR and
mass fractions xp, xE . Due to the omission of the inter-
mediate product and associated reaction, the actual plant
and the nonlinear first-principles model have different h.

For convenience of RTO implementation, Problem (20) is
written into the following forms so that only the decision
variables are involved explicitly in the formulation:

min
(FB ,TR)∈[3,6]×[70,100]

ϕp(FB , TR) (21)

min
(FB ,TR)∈[3,6]×[70,100]

ϕNL
m (FB , TR) (22)

Problem (21) includes the actual plant with three reac-
tions. Problem (22) includes the mismatched nonlinear
first-principles model that assumes two reactions. The cal-
culation of ϕNL

m includes intermediate variables that come
from the first-principles. We can eliminate the need for
intermediate variables by generating a surrogate for ϕNL

m .
By 10000 random points generated in the domain of the
decision variables using Latin hypercube sampling (McKay
et al., 2000), we approximate ϕNL

m by a CPWL surrogate
ϕCPWL
m using the method in Kazda and Li (2023) and a

CPWL-Q surrogate ϕCPWL−Q
m using the method shown in

Section 2.2. The error tolerance ϵ = 1.

The relations between the plant, the first-principles model,
and the surrogate model are shown in Fig. 2. The first-
principles model and the two surrogate models have struc-
tural mismatches. Each surrogate model involves two
sources of mismatch: inaccurate reaction modeling and
model reduction. The RTO algorithms are expected to
converge to the plant optimum using any of the three
mismatched models.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

562



Fig. 3. Illustration of ϕCPWL−Q
m for the reactor example

First, we compare the model fitting results of the two sur-
rogate models in Table 1. The generated CPWL functions
are in the DC form, so the column ”number of pieces”
shows the number of pieces in the positive convex CPWL
component plus the number of pieces in the negative
convex CPWL component. We can see that both surro-
gate models reach the target precision, while the CPWL-
Q model has fewer pieces and requires a much shorter
generation time. The reason is that the quadratic part of
CPWL-Q has already accounted for some nonlinearity, so
the CPWL part of the CPWL-Q surrogate is less complex
than the CPWL surrogate.

Table 1. Model fitting results of the William-
Otto reactor example

model maximum error number of pieces CPU time/s

CPWL 0.994 47+1 995.05
CPWL-Q 0.993 7+7 51.80

Fig. 3 illustrates the CPWL-Q surrogate. Subplot (a) is
the convex quadratic part. Subplots (b) and (c) are the
positive and negative components of the CPWL part. We
can see that the shapes of CPWL subregions are not
limited to rectangles or simplices, which would otherwise
lead to more pieces for the given tolerance. Combining the
three parts yields subplot (d), which shows that the fitted
surrogate model has good continuity.

Next, the performances of RTO using the first-principles
model and two surrogate models are accessed. To highlight
the impact of using different models, we assume that the
measurements of the plant outputs and gradients are noise-
free. RTO iteration begins from u0 = [4, 75]. FA is fixed
at 1.8275 (kg/s). In each RTO iteration, Algorithm 1 is
used to adapt the first-principles model, and Algorithm 2
is used to adapt the two nonsmooth surrogate models.

Fig. 4 shows the profiles of input variables and the plant
objective function. The plant optimum is the gray dashed
line. The blue dash-dotted line presents the RTO profile

Fig. 4. RTO Iteration profiles of the reactor example

Fig. 5. Input decisions over the RTO iterations based on
the CPWL surrogate and the CPWL-Q surrogate.
The grey lines are boundaries of the CPWL polytopic
partitions. The plant optimum is indicated by u∗

p.

using the first-principles model. The profile using the
CPWL surrogate model is the orange dotted line, and the
green solid line shows the CPWL-Q surrogate model. The
iteration profile of the CPWL-Q model overlaps that of
the nonlinear first-principles model, and in both cases, the
solutions converge to the plant optimum. This indicates
that, although the CPWL-Q surrogate differs slightly from
the first-principles model, it did not deteriorate the RTO
performance. However, RTO using the CPWL surrogate
yielded an oscillation. This is because the CPWL model
restricts the model optimum to the vertices of its polytopic
subregions, which do not coincide with the plant optimum.

Fig. 5 demonstrates the reason why CPWL and CPWL-
Q surrogate models performed differently. The blue points
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u∗
1, u

∗
2 are the optimal inputs calculated by solving problem

(15). They are modified by input filtering (i.e., Step 3
of Algorithm 2) and implemented in the plant. The red
points mark the implemented input values. Here, the filter
coefficient K = 0.5, so uk is the midpoint of the line
segment connecting uk−1 and u∗

k. It is observed that
the blue points in Fig. 5(a) always lie at the vertices of
the polytopic subregions, so it always misses the plant
optimum u∗

p that is in the interior of a polytope. Because of
the convex quadratic part, the CPWL-Q surrogate avoided
this deficiency. In addition, it also has fewer polytopic
subregions than the CPWL surrogate.

Table 2 shows the RTO computational results of the first-
principles model and the CPWL-Q surrogate. The CPU
time for each model includes the time for solving problem
(9) and the time for calculating the model gradient. We
can see that the RTO with the CPWL-Q surrogate is more
than ten times faster than that with the first-principles
model. The short computational time is attributed to the
lower dimension of the surrogate. Moreover, solving the
CPWL-Q model using DCA only requires a SOCP solver,
which has a more solid convergence guarantee and is more
robust than the general nonlinear solver needed for the
first-principles model.

Table 2. RTO computational results of the
William-Otto reactor example

model type number optimization CPU time/s
of variables algorithm

First-principles 10 IPOPT 2.88
CPWL-Q 2 DCA 0.18

6. CONCLUSION

This paper proposes to use the CPWL-Q surrogate model
with the DC structure in RTO. Compared to the CPWL
surrogate, the CPWL-Q surrogate has lower complexity
because the quadratic part already accounts for certain
nonlinearity. The CPWL-Q surrogate also has better con-
vergence properties because its extreme values are not
restricted to the vertices of polyhedral subregions. By
using the CPWL-Q surrogate instead of the first-principles
model, the RTO solution time can be significantly reduced
because many intermediate variables used in the first-
principles model are eliminated. Plant-model mismatches
are handled by the extended modifier adaptation scheme,
where the Clarke generalized gradient is used to address
the nonsmoothness. By using the DCA algorithm, solving
the CPWL-Q model-based RTO problem only requires a
SOCP solver rather than a general nonlinear optimization
solver that is more complex. In future work, we plan to
consider more complicated process systems for which we
believe the advantages of the CPWL-Q surrogate would
be more significant.
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