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Abstract: Convex relaxations are a crucial tool in methods for global optimization, but
are challenging to construct for dynamic processes. In this article, we investigate combining
two recent approaches for convex relaxation generation in new nontrivial ways, to aid global
optimization of dynamic chemical process models. Specifically, we combine recent approaches
for automatically generating convex relaxations for solutions of parametric ordinary differential
equations with a recent sampling-based approach for tractably generating lower bounds of a
convex relaxation.
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1. INTRODUCTION

Dynamic global optimization problems arise in applica-
tions such as safety verification, where we seek to ver-
ify that safety constraints are met for all realizations of
uncertain parameters in a chemical process model. Typi-
cal deterministic branch-and-bound-based approaches for
global minimization proceed by generating upper and
lower bounds on the globally optimal value, and then
refining these bounds. In this case, upper bounds are typ-
ically furnished by local minimization, while lower bounds
are furnished by first generating a convex relaxation of
the original problem, and then minimizing this relaxation
(Tawarmalani and Sahinidis, 2002). Methods for global
optimization thus benefit from having access to correct
convex relaxations that are cheap to construct and evalu-
ate, while staying close enough to the original system to
provide useful bounding information.

However, dynamic global optimization remains difficult.
While global optimization of a nonlinear program is
already NP-hard, dynamic global optimization has the
added complication that the system states are not avail-
able in closed-form, but may only be accessed by simu-
lating a process model. Recent advances in convex relax-
ation generation (Scott and Barton, 2013; Song and Khan,
2022) apply to solutions of ordinary differential equations
(ODEs), and ultimately construct useful convex relax-
ations that are themselves solutions of auxiliary ODEs.
Hence, generating lower bounds for global optimization
using these relaxation approaches nominally requires solv-
ing many of these auxiliary ODEs during the progress of a
local minimization method. Outside the context of global
optimization, convex relaxations for ODEs are also useful
in reachability analysis.

Recent work by Song et al. (2021) shows that useful lower
bounds may be generated for a convex function of n
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variables by sampling the function (2n + 1) times, and
arranging the results in a new tractable finite-difference
formula. We expect that this approach could be deployed
in dynamic global optimization, to reduce the number of
ODE solves required for each lower bound computation.
This article investigates how this deployment would pro-
ceed in practice, since there are nontrivial decisions to be
made when combining the approaches of Song et al. (2021)
and Scott and Barton (2013).

2. PROBLEM FORMULATION

Throughout this document, inequalities involving vectors
are to be understood to apply to each component si-
multaneously. Let P ⊂ Rnp be an interval of the form
P = {p ∈ Rnp : pL ≤ p ≤ pU}. We consider the dynamic
optimization problem:

min
p∈P

J(p), (1)

where the objective function J is defined in terms of a
known cost function g : Rnp × Rnx → R:

J(p) := g(p,x(tf ,p)),

where x denotes the solution on I : [0, tf ] → Rnx of
the following parametric system of ordinary differential
equations:

ẋ(t,p) = f(t,p,x(t,p)), x(0,p) = x0(p). (2)

We suppose that the functions g, f : R × Rnp × Rnx →
Rnx , and x0 : Rnp → Rnx are available in closed-
form, as continuously-differentiable finite compositions of
the smooth operations available on a scientific calculator.
This type of assumption is standard in interval analysis
(Moore et al., 2009), automatic differentiation (Griewank
and Walther, 2008), and global optimization (Tawarmalani
and Sahinidis, 2002). The objective function J is thus
continuously differentiable as well, but is not assumed to
be convex.

We suppose that we seek to solve the problem (1) to
global optimality by a branch-and-bound-based approach.
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Thus, as a critical subproblem in this approach, we seek
to evaluate a useful lower bound JL for which

JL ≤ J(p)

for each p ∈ P . If this can be accomplished for each
choice of interval subdomain P , then branch and bound
can proceed.

Since a convex function may be minimized with a local
nonlinear programming (NLP) solver, one way to con-
struct JL is by minimizing a convex relaxation of J on
P ; that is, a convex function Jcv for which

Jcv(p) ≤ J(p)

for each p ∈ P . Hence, we also seek useful new convex
relaxations Jcv of J .

Nontrivial constraints may also be added to the optimiza-
tion problem (1), and are compatible with the approaches
considered here, but we neglect these for simplicity.

3. BACKGROUND

This article essentially combines two recent numerical
methods concerning convex relaxations for process models.
These methods are summarized here for convenience.

3.1 Convex Relaxations of Parametric ODE Solutions

Scott and Barton (2013) proposed an approach for gener-
ating convex and concave relaxations of each state variable
xi of the ODE (2) with respect to p; we briefly summarize
it here.

This method requires access to state bounds of x; namely
functions xL,xU : I → Rnx for which

xL(t) ≤ x(t,p) ≤ xU(t)

for each t ∈ I and p ∈ P . It also requires convex and
concave relaxations xcv

0 ,x
cc
0 : P → Rnx of the initial-

value function x0. Then, Scott and Barton construct the
auxiliary coupled ODE:

ẋcv(t,p) = fSB,cv(t,p,xcv(t,p),xcc(t,p);xL(t),xU(t)),

ẋcc(t,p) = fSB,cc(t,p,xcv(t,p),xcc(t,p);xL(t),xU(t)),

xcv(0,p) = xcv
0 (p), xcc(0,p) = xcc

0 (p),

where fSB,cv and fSB,cc are automatically constructed as
flattened generalized McCormick relaxations (Scott et al.,
2011) of f . This coupled ODE has a unique solution
(xcv,xcc), for which, at each fixed t ∈ I, xcv(t, ·) is
a convex relaxation of x(t, ·) on P , and xcv(t, ·) is an
analogous concave relaxation. Scott and Barton refer to
such functions xcv and xcc as state relaxations of x.

A more recent approach by Song and Khan (2022) gener-
ates alternative state relaxations by instead constructing
the functions fSB,cv and fSB,cc above as optimal-value
functions involving convex/concave relaxations of the orig-
inal ODE right-hand side function f .

In either of these approaches, evaluating a state relaxation
at one value of p requires solving an ODE system with
twice as many state variables as (2). With state relaxations
available, a convex relaxation Jcv of J in (1) may be
constructed as a McCormick composition:

Jcv(p) := gGM,cv((p,p,pL,pU), (3)

(xcv(tf ,p),xcc(tf ,p),xL(tf ),xU(tf ))),

where gGM,cv is a generalized McCormick relaxation of the
cost function g. Hence, each evaluation of Jcv requires a
separate evaluation of the state relaxations at time tf .

3.2 Sampling-Based Convex Relaxations

In global optimization, obtaining a lower bound from a
nonlinear convex relaxation traditionally involves either
minimizing that relaxation with a local NLP solver, or
evaluating a subgradient of this relaxation and minimizing
the corresponding “subtangent”. Theoretical convergence
results by Khan (2018) show that the latter approach is
viable and effective whenever subgradients are available
and the original problem is sufficiently smooth.

On the other hand, Song et al. (2021) proceeded without
access to subgradient information, and showed that, given
a convex function hcv on an interval P := [pL,pU] ⊂ Rnp ,
an affine underestimator haff of hcv may be tractably
generated by sampling hcv (2np + 1) times, and then
tractably assembling the sampled information as follows.
For notational simplicity, suppose that P has nonempty
interior, so that pL < pU.

The sampling approach of Song et al. (2021) may be
summarized as follows. For each i ∈ {1, . . . , np}, let e(i)

denote the ith unit coordinate vector in Rnp , and choose
some αi ∈ (0, 1]. Define:

• the midpoint p(0) := 1
2 (pL + pU) of P ,

• perturbations p(±i) := p(0)± αi

2 (pU
i −pL

i ) e(i), for each
i ∈ {1, . . . , np},

• associated sampled function values y0 := hcv(p(0))
and y±i := hcv(p(±i)), for each i,

• a vector b ∈ Rnp for which, for each i,

bi :=
y+i − y−i
αi(pU

i − pL
i )
,

• and a scalar:

c := y0 −
1

2

np∑
i=1

(
y+i + y−i − 2y0

αi

)
.

Then, for each p ∈ P ,

hcv(p) ≥ c+ bT(p− p(0)) =: haff(p).

If a constant lower bound of hcv is desired, then the affine
underestimator haff is trivially minimized on P , and Song
et al. (2021) obtain a closed-form expression for the lower
bound thus obtained. With

hL := y0 −
np∑
i=1

(
max(y+i, y−i)− y0

αi

)
,

we have hcv(p) ≥ hL for each p ∈ P .

In the case where hcv is itself a convex relaxation of
some function h, then Song et al. (2021) showed that
haff preserves certain tightness properties of the original
relaxation hcv.

If a function f is concave, then the mapping x 7→ −f(x)
is convex. Hence, the above approaches may also be used
to obtain affine overestimators or constant upper bounds
of concave functions on box domains.
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4. SYNTHESIZING RECENT APPROACHES

A lower bound on the optimal value of the NLP (1) may
be computed as the optimal value of the convex NLP:

min
p∈P

Jcv(p), (4)

with Jcv given by (3).

During this bound evaluation process, our sampling-based
affine relaxations may in principle be combined with the
Scott-Barton ODE relaxations in several ways; we develop
some of these here. Dynamic systems were not directly
considered by Song et al. (2021).

Firstly, by evaluating the Scott-Barton ODE relaxations
(2np+1) times, we may automatically construct sampling-
based affine underestimators xaff,cv of xcv(tf ,p) with re-
spect to p on P , simultaneously with affine overestimators
xaff,cc of xcc(tf ,p) with respect to p. This approach has
the advantage that it only requires these (2np + 1) ODE
solves, whereas applying an NLP solver to minimize Jcv

given by (3) would require many more ODE solves. Once
these (2np + 1) ODE solves are complete, then with the
sampled information, the xcv and xcc terms in (3) may be
replaced with their affine counterparts xaff,cv(tf ,p) and
xaff,cc(tf ,p), at which point the bounding convex NLP (4)
no longer has any embedded ODEs, and is now simply a
straightforward convex NLP. In particular, if the cost func-
tion g were convex quadratic, then this approach would
effectively replace (4) with a convex quadratic program
that is efficiently solved to yield a valid lower bound on
(1).

Secondly, and independently of the previous consideration,
the convex relaxation Jcv may itself be sampled (2np + 1)
times, to compute a lower bound of J on P according
to the sampling-based procedure of Song et al. (2021).
This circumvents the need for local optimization when
evaluating a lower bound.

An analogous optimization-free lower bound could be gen-
erated by applying interval analysis to g, to propagate
lower/upper bounds of x(tf ,p) on p ∈ P through to
lower/upper bounds of J on P . This approach, however,
would lead to lower bounds that converge relatively slowly
as P shrinks (Wechsung et al., 2014), which are undesirable
in global optimization. We nevertheless consider this ap-
proach as well in our numerical examples, for comparison.

Whenever the sampling-based methods are deployed
above, they bring the downside that they are typically less
tight than the original relaxations that were sampled in
their construction. Essentially, they trade relaxation tight-
ness for savings in computational cost, by either vastly
reducing the number of ODE solves required, or replacing
ODE-constrained NLPs with simpler convex NLPs that
are efficiently solved by off-the-shelf solvers. Depending on
the original problem’s structure and the way in which we
deploy sampling-based methods, we may even obtain con-
vex quadratic programs (QPs) or linear programs (LPs),
which are efficiently solved virtually regardless of problem
size. Moreover, it is argued by Song et al. (2021) via
a rigorous convergence analysis that the sampling-based
relaxations are still tight enough to be useful in global
optimization.

Other combinations of these approaches are possible as
well, and are currently under investigation.

5. IMPLEMENTATION AND EXAMPLES

5.1 Implementation in Julia

The approaches described in the previous section were
implemented directly in the programming language Julia
v1.9. In this implementation, our own package ConvexSam-
pling.jl was used to automatically construct sampling-
based affine relaxations of convex functions, McCormick.jl
(Wilhelm and Stuber, 2020) was used to build general-
ized McCormick relaxations of composite functions, and
DifferentialEquations.jl (Rackauckas and Nie, 2017) was
used to solve ODEs. Interval bounds were constructed
with IntervalArithmetic.jl (Sanders and Benet, 2014), and
state bounds (xL,xU) were constructed by implementing
an approach by Harrison et al. (1977), as was previously
considered by Scott and Barton (2013).

Whenever lower bounds were computed by minimizing
nonlinear convex relaxations, this was accomplished using
the optimization solver IPOPT (Wächter and Biegler,
2006) in JuMP (Lubin et al., 2023).

5.2 Example 1

Consider intervals P := [5, 12] ⊂ R and I := [0, 0.1] ⊂ R,
and the dynamic optimization instance:

min
p∈P

0.8(x1(0.1, p))2 + 0.8(x2(0.1, p) + 0.1)2

+ p(x1(0.1, p) + x2(0.1, p)),

where x ≡ (x1, x2) solves the following parametric ODE
system:

ẋ1 = 0.01p(x1 + x2),

ẋ2 = (p− 25)x1 − 0.25x2,

x1(0, p) = 2.8 + p
3 ,

x2(0, p) = 3.2 + p
3 .

Corresponding convex relaxations and lower bounds for
the objective function of this instance are illustrated in
Figure 1. The entries in these plots’ legends are as follows,
and reflect the various relaxation combinations explained
previously:

• J : the objective function of the dynamic optimization
instance (as in (1)), presented for comparison.

• Jcv: a convex relaxation of J on P , generated by
composing Scott-Barton state relaxations of x with
generalized McCormick relaxations of the cost func-
tion g (as in (3)), presented for comparison.

• Jcv
affine: a new convex relaxation of J on P , similar to
Jcv, except that the Scott-Barton state relaxations
have been sampled and replaced with sampling-based
relaxations.

• JL: a lower bound of J , constructed using interval
arithmetic during one evaluation of Jcv, presented for
comparison.

• JL
min: a lower bound of J , constructed by using

the NLP solver IPOPT to minimize Jcv from (3),
presented for comparison.
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Fig. 1. Various convex relaxations and lower bounds for
the dynamic optimization problem in Section 5.2. The
various relaxation types are explained in the body
text.

• JL
sampl, cv: a new lower bound on J , constructed by

tractably sampling Jcv and constructing a sampling-
based lower bound, without using an NLP solver at
any point.
• JL

sampl,affine: a new lower bound on J , constructed
by tractably sampling Jcv

affine and constructing a
sampling-based lower bound, without using an NLP
solver at any point.

In this case, computing JL
min via IPOPT took 20 solver

iterations, each requiring ODE solves; the other methods
do not require NLP solvers. The value of JL was −36.2,
well below the other relaxations and bounds computed.
These results indicate that for this particular dynamic
optimization instance, applying the sampling-based relax-
ations only makes the resulting relaxations of J a little
less tight, while significantly reducing the number of ODE
solves required. Since there is only one parameter, each
application of the sampling-based approach requires three
samples of the underlying convex function.

5.3 Example 2

Consider intervals P := [5, 12] ⊂ R and I := [0, 0.1] ⊂ R,
and the dynamic optimization instance:

min
p∈P

0.5p(−2x1(0.1, p)− x2(0.1, p) + (x1(0.1, p))2),

where x ≡ (x1, x2) solves the following parametric ODE
system:

ẋ1 = 0.01p(x1 + x2),

ẋ2 = (p− 25)x1 − 0.25x2,

x1(0, p) = 2.8 + p
3 ,

x2(0, p) = 3.2 + p
3 .

Observe that the embedded ODE here is retained from
the previous example, but the optimization problem’s cost
function is different.

Corresponding convex relaxations and lower bounds for
this instance are illustrated in Figure 2, with the same
notation as the previous example. Here, IPOPT took 20
iterations to compute JL

min.

Fig. 2. Various convex relaxations and lower bounds for
the dynamic optimization problem in Section 5.3. The
various relaxation types are explained in the body
text.

5.4 Example 3

Consider a variant of a setup previously considered
by Scott et al. (2011), with intervals P := [0.01, 0.5] ⊂ R
and I := [0, 0.1] ⊂ R, and the dynamic optimization
instance:

min
p∈P

5x1(0.1, p) + 0.2((x2(0.1, p))2 + 2.5(x1(0.1, p))3)

+ 0.3px2(0.1, p),

where x ≡ (x1, x2) solves the following parametric ODE
system:

ẋ1 = (p− p3

3 )x1x2,

ẋ2 = x3
1 − p,

x1(0, p) = 1.0,

x2(0, p) = 0.0.

Corresponding convex relaxations and lower bounds for
this instance are illustrated in Figure 3, with the same
notation as the previous example. In this case, when we
attempted to use IPOPT to compute JL

min, the solver
terminated with an error without producing a solution. As
in (Song and Khan, 2022), we suspect that having ODE
initial conditions independent of p might have contributed
to this IPOPT error, since the Scott-Barton ODE relax-
ations depend almost negligibly on p for t ≈ 0 in this
case. We note that our new bounding approaches were
unaffected by this issue, since they do not require solving
any NLPs.

6. CONCLUSION AND OUTLOOK

Though the considered optimization instances are small,
these numerical results illustrate the potential applicabil-
ity of sampling-based affine relaxations within a procedure
for generating convex relaxations of dynamic process mod-
els. These two approaches have been combined here for the
first time, with the impact of significantly reducing the
number of ODE solves required when computing useful
lower bounds.

Future work will involve applying these approaches to
larger instances, and considering other potentially effective
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Fig. 3. Various convex relaxations and lower bounds for
the dynamic optimization problem in Section 5.4. The
various relaxation types are explained in the body
text.

configurations of recent relaxation approaches for dynamic
process models.
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