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Abstract: The implementation of an in-line control strategy for primary drying relies on the
availability of the product temperature and sublimation front position. Such measurements are
often inaccessible or difficult to obtain directly without interfering with the drying trajectory,
thus motivating the design of in-line estimators. This article specifically addresses this issue,
taking advantage of a global mass loss measurement and spatial characterization of vials along
the chamber. The estimator proposed uses a least square algorithm and simplified models to re-
calibrate the heat transfer coefficient related to different vial locations. Results allow comparing
the quality of the estimations with regard to the product temperature and cycle time predictions
under parametric disturbances and plant/model mismatch.
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1. INTRODUCTION

Lyophilization is a drying technique largely used in the
pharmaceutical industry to preserve and stabilize chem-
ically reactive and temperature-sensitive products. The
main stages involved are freezing, primary drying, and
secondary drying. Among them, primary drying is the
longest and represents between 67% to 69% of the overall
electric consumption of pilot and industrial units (Stratta
et al., 2020). Implementing a control strategy for pri-
mary drying relies on the availability of measurements for
key process variables, such as the product temperature,
sublimation flux, and primary drying endpoint. A batch
comprises hundreds or thousands of vials, and determining
the drying trajectories of multiple vials can be challenging
because of the different dynamics exhibited by vials at
specific locations on the equipment. Currently available
instrumentation shows limited sensor precision, and re-
stricted applicability in production-scale equipment. In
particular for key local variables such as the sublimation
front position and product temperature. In-line estimators
have been considered to remedy this issue.

An estimator associates knowledge of the physical system
(model) and available measurements to estimate the un-
known or poorly measured parameters and process vari-
ables. Most of the applications published on the subject
rely on product temperature measurement using thermo-
couples (Velardi et al., 2009, 2010; Bosca et al., 2017;
Fissore et al., 2017). Drawbacks come from the intrusive-
ness, sensor misplacement, and the potential bias impact-

ing the drying dynamics of monitored vials. Furthermore,
thermocouples are often unsuitable for production-scale
applications due to sterility problems and because the
probe insertion is not feasible in equipment with an au-
tomated vial loading/unloading system. Other estimation
approaches using global measurements, such as the pres-
sure rise test (PRT) (Fissore et al., 2010), close the valve
between the drying chamber and condenser for a short
period (typically 30 s), and calculate the average product
temperature from the pressure rise profile. The accuracy
of the estimations depends on processing conditions, high
rate sublimation being particularly challenging (Pisano
et al., 2017). Furthermore, most PRT-based algorithms
used to estimate the product temperature are only reli-
able in the first part of a primary drying cycle (Barresi
et al., 2010). Spectroscopy analyzers, like the tunable diode
laser absorption spectroscopy (TDLAS), give the global
flowrate of water vapor, which, along with a heat transfer
coefficient, can be transformed into an average product
temperature (Sharma et al., 2019). However, approaches
based on PRT and TDLAS provide an average tempera-
ture value that is mostly related to that of center vials but
is not representative of the batch (due to heterogeneity).

A practical approach for estimators should use non-
invasive instrumentation, with applicability to both pilot
and industrial scale equipment, and incorporate drying
heterogeneity in the design. This work introduces an in-
line estimator for the primary drying stage of pharmaceu-
tical lyophilization in multiple vials. It takes advantage
of a global measurement of the sublimed water vapor
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and a phenomenological model. A nominal heat transfer
coefficient, from which different heat contributions can be
derived along the shelf accounts for intra-lot heterogeneity.
The estimator is evaluated in simulation using the case
study of a previously characterized product (Chia et al.,
2022). The performance comparison with an open-loop ob-
server assesses the quality of the predictions with respect
to product temperature and drying time under parametric
and external disturbances. This paper is structured as
follows. Section 2 details a set of fundamental equations
for primary drying. Then, section 3 illustrates the design
of the in-line estimator, which is evaluated through simu-
lation in section 4.

2. PROCESS MODEL

Pikal (1985) describes primary drying for a single vial
using a set of algebraic-differential equations with two
inputs, the chamber pressure P and shelf temperature Ts,
and three outputs, the temperature of the product at the
bottom of the vial TB , sublimation flux of water vapor
Nw, and rate of change of the sublimation front ḣ. The
model has been experimentally validated and widely used
in literature for process optimization (Chia et al., 2023).
It distinguishes two regions: a frozen matrix of the sample
solution and a dry layer that begins to form as sublimation
occurs. A moving interface, called the sublimation front
position h, separates these two regions. The model assumes
that heat is supplied only at the bottom of the vial
and is used solely for sublimation (neglecting the effect
of heat accumulation). Also, the sublimation interface is
considered to be planar and parallel to the vial bottom,
and only water vapor constitutes the gas phase within the
dried layer.

The mass balance in the frozen layer yields the evolution
of the sublimation front through

ḣ = − 1

ρf − ρd
Nw (1)

where ρf and ρd are the density of the frozen and dried
layer, respectively. Nw is the sublimation flux calculated
as

Nw =
1

Rp
[Pw − P ] (2)

where Rp is the resistance of the dried layer to vapor flow,
and Pw the water vapor saturation pressure related to the
temperature of the interface through

Pw = 133.3224

(
2.69E10 exp

(
−6144.96

Ti

))
(3)

The temperature of the product at the sublimation front
is expressed as

Ti = Ts −
∆Hs

Rp
[Pw − P ]

(
1

Kv
+

h

λf

)
(4)

where Kv is the heat transfer coefficient, ∆Hs is the heat
of sublimation of ice, and λf is the thermal conductivity
of the frozen cake. The resolution of (1 – 4) yields the
position and temperature of the sublimation front. Lastly,

TB = Ts −
1

Kv

(
1

Kv
+

h

λf

)−1

[Ts − Ti] (5)

provides the temperature of the product at the bottom of
the vial.

Two parameters require experimental calibration: the heat
transfer coefficient Kv, and dried layer resistance Rp.
The former captures the various heat contributions not
considered in the model assumptions, namely, convective
heat between the shelf and vial bottom, and radiative heat
from shelves, surrounding vials, and chamber walls.Kv is a
function of the vial geometry and position in the chamber,
as well as the chamber pressure P . The relation between
Kv and P is expressed through the following equation
(Pikal et al., 1984)

Kv = k1 +
k2P

1 + k3P
(6)

where k1, k2 and k3 are empirical parameters. k2 and
k3 express the dependency of Kv with P and the vial
geometry, while k1 accounts for the vial position on the
shelf. If the pressure remains constant during the cycle,
Kv becomes a constant. However, due to the different
heat contributions, the same value would not be used for
every vial on the shelf. The resistance of the dried layer
to mass flux is affected by the sample formulation and
thickness, stopper, vial geometry, and freezing protocol. It
is proportional to the dried layer thickness (L − h), thus
increasing as sublimation occurs. The following empirical
equation (Pikal et al., 1984)

Rp = k4 +
k5(L− h)

1 + k6(L− h)
(7)

where k4, k5 and k6 are empirical parameters, relates Rp

to (L− h).

In practice, vials within the same batch exhibit various
drying trajectories (caused by the different heat contri-
butions) depending on their location. While conduction
from the shelf is the primary source of heat to the vial,
radiation and convection can have a large impact on the
non-uniformity of the drying evolution (Pikal, 2000). Radi-
ant heat comprises the contributions of the chamber door,
walls, and the shelves above the vials. Those at the center
of the shelf (surrounded by other vials) exhibit a minimum
radiation effect, while those at the edges exhibit faster
drying rates and higher product temperatures.

This study models the intra-lot heterogeneity using a nom-
inal heat transfer coefficient, from which individual heat
contributions can be derived relatively, hence creating a
spatial distribution of Kv along the shelf. The value of Kv

for a given position remains constant during a primary
drying cycle. Previous studies have used a heterogeneity
ratio to relate the heat contributions between center and
edge vials (Rajniak et al., 2022). Furthermore, Pikal et al.
(2016) claims that the calibration for edge vials extrapo-
lates well from laboratory to industrial scale equipment in
normal operating conditions.

In order to fit model predictions with experimental data,
the global flowrate of water vapour ṁH2O is the sum of
the individual sublimation flux value of every vial in the
chamber
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ṁH2O =

n∑
i=1

Nw,iAp (8)

where n is the number of vials, Ap is the cross-sectional
area of a vial, and Nw,i are the calibrated model predic-
tions of the sublimation flux of each vial.

3. IN-LINE ESTIMATION

This study uses the global sublimation flow rate of water
vapor as an indicator of batch dynamics. The design of an
in-line estimator requires a measurement acquired using
sensors commonly found in pilot and industrial equipment,
or that can be installed without major modifications and
avoiding intrusiveness. As a solution to the instrumenta-
tion issues mentioned in Section 1, Pisano et al. (2014)
introduced the pressure decrease test as an alternative
measurement technique. It consists of closing the leakage
valve that provides the inert gas to the drying chamber
and analyse the response to provide an estimation of the
global flow rate of water vapor. In this case, the procedure
momentarily decreases the chamber pressure and product
temperature. A non-invasive option to the PDT that uses a
similar principle is the valveless monitoring system (VMS)
(Fissore et al., 2015; Pisano et al., 2016). It relates the pres-
sure difference between the chamber and condenser to the
global sublimation flow rate of water vapor. This method
requires a prior calibration of the equipment to relate the
flow rate and pressure drop, a flowmeter for the inert
gas injection, and two capacitance sensors to measure the
differential pressure between the chamber and condenser.
Among the above-mentioned techniques, the non-invasive
VMS approach provides an indirect measurement of ṁH2O

using sensors typically available in pilot and production
units.

Providing that it is possible to obtain a measurement of the
sublimation flow rate using non-invasive instrumentation,
the next step is the design of an estimator based on this
measurement. The objective is to predict the product tem-
perature of different vials and the drying time of the batch,
using only the measurements of the shelf temperature,
chamber pressure, and global flow rate of water vapor.
Figure 1 provides the structure of the estimator. First,
an optimization problem is solved using a nonlinear least
square algorithm (NLS) and the available measurements
are used to re-calibrate the nominal heat transfer coef-
ficient. Then, the obtained values are inputted into the
phenomenological models to predict the targeted process
variables for individual vials. At every discrete time k, the

Fig. 1. Schematic of the in-line estimator.

workflow consists of solving

K̂v = argmin J (9)

where

Table 1. Glycine properties and vial geometry.

Name Value Units

Ap 1.13 E− 4 m2

Av 1.77 E− 4 m2

∆Hs 2.69 E6 J/kg
λf 2.56 W/m K
ρf 918 kg / m3

ρd 250 kg / m3

L 9 E− 3 m
V 1 E− 6 m3

Tc 269 K

J =
1

N

N−1∑
i=0

(ṁH2O(k − i)− ˆ̇mH2O(k − i))2+

Λ

(
1

N

N−1∑
i=0

(Kv(k − i)− K̂v(k − i))2

) (10)

where N is the estimation window, Kv is the nominal
value from prior calibration, and Λ is a weight to penalize
the deviation between nominal and estimated Kv. If Λ is
set to zero, the criteria will freely adjust Kv based only
on the readings of ṁH2O. This could be problematic in
the case of strongly biased measurements. ṁH2O comes

from the experimental data and ˆ̇mH2O is predicted from
the process model in (8). The process model applies the
phenomenological equations (1 - 5) inputted with the

measured P and Ts, the nominal Rp, and K̂v. Note that
these equations are only valid for vials where sublimation
is ongoing, that is when the sublimation front is 0 < h ≤ L.

At the beginning of the simulation, the window size equals
the number of samples, and after the first N samples, the
window starts moving with a truncated size of N . After
the optimization problem provides the optimal Kv that
minimizes J in (9), this nominal value is used to derive the
heat contributions in different vial positions and therefore
predict the individual values ofNw and TB using equations
(1 - 5).

4. RESULTS AND DISCUSSION

4.1 Case study

The case study selected to illustrate the in-line estimator
is the lyophilization of a 5% w/w solution of glycine from
Bio Basic Inc and distilled water (Chia et al., 2022). A
total of 20 vials with 3.7 ml capacity were filled with 1
ml of the formulation, Table 1 summarizes the product
properties and vial geometry.

Vial distribution in Figure 2 illustrate the heat contribu-
tions of different vials within the batch. There are three
zones, and the heat transfer in each one of them correspond
to: Kv for zone I, 1.5 Kv for zone II and 2.2 Kv for zone
III. The nominal Kv was experimentally calibrated and
is computed using (6) with the coefficients presented in
Table 2.

To display the difference in the evolution of the drying
dynamics for the vial zones in this case study, Figure
3 shows the prediction of a drying cycle using the phe-
nomenological models and considering standard operating
conditions.
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Fig. 2. Spatial variation of the heat contributions in the
shelf.

Table 2. Heat transfer coefficients for nominal
Kv.

Name Value Units

k1 12.34 J/m2s K
k2 1.62 J/m2s K Pa
k3 0.33 1/Pa

0 1 2 3 4 5

240

260

280

12

14

16

18

0 1 2 3 4 5

240

250

0 1 2 3 4 5

0

0.5

1

Fig. 3. Performance of the vial zones considering standard
profiles for Ts and P . Shelf temperature ( ) and
chamber pressure ( ), along with model predictions
of TB and h/L for vials of zone I (··), zone II ( ),
and zone III ( ·).

In this cycle, the chamber pressure is set constant at 15 Pa,
and the shelf temperature increases from 233 K to 280 K at
a rate of 1 K/min. The vials in zone III, with a higher heat
transfer coefficient, exhibit a higher product temperature
and sublimation flux. Which in turn leads to a faster
drying time of around 3.4 h when compared to the 5.3 h for
vials of zone I. Note that in multi-vial primary drying, the
cycle time of the batch corresponds to the drying duration
of the vials with the slowest dynamics. In this case, the
duration is determined by the cycle time of vials in zone
I.

4.2 Estimation results

Numerical validation is carried out using the phenomeno-
logical model to simulate the primary drying of the
batch of 20 vials, characterized by the different values of
heat transfer coefficient. An open-loop estimator provides
the baseline performance comparison in each simulation

0 1 2 3 4 5
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270

275

5
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15

0 1 2 3 4 5

1.5

2

10
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0 1 2 3 4 5

16

18

0 1 2 3 4 5

240

245

0 1 2 3 4 5

242

244

246

248

0 1 2 3 4 5

245

250

Fig. 4. Estimation results scenario 1 (parametric distur-
bances). Simulated process ( ), results from pro-
posed estimator ( ) and open-loop observer ( ·).

scenario. It comprises the process representation (phe-
nomenological model) inputted with Ts and P , and the
nominal values of the heat transfer coefficient, providing
the output predictions without measurement feedback.
The difference between the estimated and process values
results in the estimation error. The performance bench-
marks are based on the root mean square error (RMSE)
of the estimation.

Figure 4 presents the results of the first simulation sce-
nario. In this cycle, parametric disturbances are included
in the nominal Kv of the plant, indicating errors in the
apriori calibration of the coefficients that relate Kv to the
chamber pressure and the vial geometry. For that purpose,
k2 and k3 in (6) are purposely biased by a multiplying
factor to create a mismatch of 30% between model and
process starting at 0.7 h and thereafter.

Due to the mismatch after 0.7 h, the open-loop results
underestimate the predicted product temperature by up
to 0.6 K, and the resulting global flow rate of water
vapor ˆ̇mH2O. In the proposed estimator, the discrepancy in
product temperature is reduced to 0.1 K. Note that Λ is set
to 0.4, to penalize the difference between nominal Kv and
their estimate, and after the disturbance is introduced, K̂v

varies to approach the estimated ṁH2O to the measured
value, but it does not overlap it. Λ acts as a tuning weight
and expresses the confidence level on the prior calibration
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Fig. 5. Estimation results scenario 2 (parametric dis-
turbances, measurement noise, and biased readings).
Simulated process ( ), results from proposed estima-
tor ( ) and open-loop observer ( ·).

of the heat transfer coefficient. The estimation window in
(10) is N = 20 samples, considering the sampling time of
∆t = 30 s. The longer the estimation window, the slower
the convergence will be in the face of disturbances.

In the second scenario, illustrated in Figure 5, the mis-
match between plant and model is enlarged by including
an additional 30% in k1 of the plant, that is, the cali-
brated parameter that relates Kv with the vial position
in the chamber. In the presence of a larger mismatch,
the difference in the predicted product temperature in the
open-loop goes up to 1.6 K, which results in a drying time
15% longer than the one in the process. In the proposed
estimator, the deviation in product temperature is reduced
to 0.5 K, and the predicted drying time is only 4.9% longer
than the one in the process.

The third scenario, presented in Figure 6, evaluates the
estimator in the presence of parametric disturbances, mea-
surement noise, and biased sensor readings. Apart from
the plant/model mismatch in Kv at 0.7 h, white Gaussian
noise is included in each measured variable, and a step
disturbance is applied to ṁH2O at 2.1 h with an amplitude
of 0.2 E− 3 kg h−1. In practice, the instrumentation used
for the chamber pressure and shelf temperature provides
accurate readings, and only noise in the sensor signal is
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0 1 2 3 4 5 6
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0 1 2 3 4 5 6

240

245

0 1 2 3 4 5 6

245
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245
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Fig. 6. Estimation results scenario 3 (parametric dis-
turbances, measurement noise, and biased readings).
Simulated process with measurement noise and bias
( ), ṁH2O without measurement errors ( ), results
from proposed estimator ( ) and open-loop observer
( ·).

expected. However, the measurement of the global flow
rate of water vapor is typically an indirect reading and
may be subject to noise and bias.

For the open-loop estimator, the bias in ˆ̇mH2O has no
impact. However, the parametric disturbances result in
underestimated predictions of TB by more than 1.7 K.
The input noise is reflected in the predictions of TB of
the proposed estimator. At 2.1 h, the insertion of the step
bias in the measured ṁH2O results in an overestimation
of around 0.3 K in the product temperature of each vial.
The weight that penalizes the deviation from the nominal
Kv, Λ, protects the prediction from drifting too far from
the unbiased value of ṁH2O. This parameter is part of
the experimental design and could be adjusted based
on the confidence level between the calibrated Kv and
the experimental measurement. Table 3 summarizes the
estimator performance regarding the RMSE of Kv, ṁH2O,
and the product temperatures of vials in zone I TB,I .

The proposed estimator exhibits a better performance
overall under parametric disturbances and model mis-
matches. These results validate in simulation the possi-
bility of estimating the product temperature of multiple
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Table 3. RMSE of the estimations of TB,I ,
ṁH2O, and Kv in each simulation case.

Open-loop Estimator
Scenario Kv

[J/m2s K]
ṁH2O

[kg/h]
TB,I

[K]
Kv

[J/m2s K]
ṁH2O

[kg/h]
TB,I

[K]

1 1.46 1E− 4 0.49 1.67 0.3E−4 0.14
2 4.55 3E− 4 1.43 1.28 0.9E−4 0.44
2 4.55 3E− 4 1.46 1.28 0.6E−4 0.32

vials, and total cycle time using the measurement of the
sublimation flow rate of water vapor and calibrated mod-
els.

5. CONCLUSIONS

The objective of this paper was to introduce an estimator
for the multi-vial process of primary drying using a global
measurement of the flow rate of sublimed water vapor.
The benefits of the proposed approach were illustrated
using a case study of a previously characterized product.
Results allow comparing the quality of the estimates with
respect to product temperature under parametric distur-
bances, plant/model mismatch, measurement noise, and
a biased measurement of ṁH2O. An open-loop estimator
containing the phenomenological model calibrated with
nominal parameters provided the baseline for performance
comparison. The results show that the proposed approach
provides better estimates of TB than the open-loop case
when faced with parametric disturbances. The estimated
product temperature bias could also result in an additional
15% of cycle time for this case study. Considering the
careful selection of appropriate instrumentation, this work
opens the possibility of using a non-invasive measurement
of sublimed water vapor to predict the key variables of
multi-vial primary drying.
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