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Abstract: Chemical plants require reliable systems for pollutant abatement. These processes often operate 

under cyclic abatement and regeneration cycles over extended periods of time. Throughout this period, the 

abatement systems experience a multitude of phenomena that may degrade performance in a fashion that 

is challenging to predict by first-principle models. These complex phenomena offer an opportunity to 

leverage data-driven models. To improve their predictive ability, data driven models can be complemented 

with physics-based information that constrains modeling results. In this contribution, we describe a hybrid 

modeling approach where physics-derived features are developed to enable data-driven models to 

effectively predict the performance of real pollutant abatement systems in the Dow Chemical Company. 

Keywords: hybrid modeling, pollution abatement, predictive modeling, batch analysis, Partial Least 

Squares, Remaining Useful Life. 

1. INTRODUCTION 

Chemical plant operations frequently feature impurity 

abatement or scrubbing unit operations. Chemical 

neutralization, adsorption, catalytic transformation, selective 

oxidation, amongst others (Taoufik et al., 2022). These 

processes are frequently needed to maintain downstream 

performance, meet safety requirements, or ensure regulatory 

compliance. These abatement systems require high reliability 

to avoid unplanned plant shutdowns (P.K. et al., 2021), and 

high performance to remove pollutants that are often in the 

sub-percent range. 

A particular challenge in scrubbing operations is their often-

complex performance degradation over cyclical operation. 

Abatement and regeneration cycles enable long-term use of 

these units, but impart significant stress (e.g, thermal, 

chemical, mechanical) on the process. In turn, degraded 

pollutant removal performance is frequently observed with 

extended scrubber age. The complexity of this degradation 

stems from the various factors that may influence it. For 

example, sorbent pores may contain chemical buildup, or a 

thermal treatment may sinter catalytic metals to large, less 

reactive particles. Thus, degradation may be challenging to 

predict based on physical phenomena (Abbasi et al., 2022; 

Sansana et al., 2023). 

Modeling and predicting such an abatement process could be 

accomplished in many ways. Of course, if we possessed all 

physical properties and approximated all dynamics related to 

abatement and regeneration cycles, the system could be fully 

described from first principles. This has been achieved for 

idealized systems at the lab scale (Haghpanah et al., 2013; 

Jacobs et al., 2021). This approach requires in-depth 

knowledge of the physical process taking place, a quantifiable 

amount of pollutant to remove, and tools to quantify the impact 

of transport phenomena on a process. If successfully 

leveraged, physics-based modeling can provide additional 

information on a process, such as  variables that are not 

directly measured. These could be the rate of saturation of a 

liquid by a pollutant or the coverage of a catalyst particle by 

adsorbates, for example. With these first-principle models, one 

could improve process operations to optimize a given 

performance indicator. This rigor, however, may lead to 

modeling challenges when process conditions change 

unexpectedly, or a process experiences unquantified changes 

(e.g. solids attrition due to temperature cycling.). Thus, this 

modeling approach may pose difficulties for plant operations 

that often operate in environments with limited information or 

with unexpected variations.  

To mitigate these challenges, empirical modeling approaches 

can predict the performance of systems outside of ideal 

environments (Bogojeski et al., 2021; Bradley et al., 2022). 

For example, time-dependent catalytic activity decay can be 

estimated from observed temperature history, pressure drop, 

and change in process performance (Bogojeski et al., 2021). 

Thus, an estimate for  remaining useful life of the catalyst can 

affect maintenance activities. The accuracy of these data-

driven models relies heavily on  data quality. However, not all 

the variables required to build an accurate data-driven model 

are always measured in an industrial plant, e.g. quantity of 

pollutant to remove in this use case. Thus, employing first-

principle models to estimate such variables is needed to seal 

the gap. In this contribution, we explore a hybrid modeling 

approach to exploit the advantages of first-principle and data-

driven models to predict long-term performance and 

remaining useful life of a pollutant abatement process in 
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operation at Dow. Beyond the challenges with degradation 

already described, this plant possesses multiple scrubbing 

units that operate in parallel. Thus, the performance of a single 

unit is correlated with its parallel partner. We use a physics-

based approach to supplement available data features from 

plant data. In turn, this supplemented data set is then explored 

to identify the key process metrics needed to predict the long-

term evolution of scrubber capacity.  

2. PROPOSED MODELING APPROACH 

In the development of a modeling approach to predict the 

abatement capacity of impurities in scrubbing units, there were 

several key factors that had to be addressed: a) the features 

available to quantify capacity; b) the decay in capacity as a 

function of process history and c) the parallel operation of 

scrubbers with potentially different process histories. In this 

section, we describe the series of steps necessary to address 

these factors and their subsequent implementation in a 

quantitative prediction tool. This tool combines a physics-

based feature engineering step followed by empirical analysis, 

as summarized in Figure 1. 

 

2.1 Case Study Description 

Scrubbing operations often have strict requirements on 

downstream impurity content. This may be motivated by 

process reliability or quality specifications or environmental 

concerns. As such, scrubbers may operate individually, in 

series, or in parallel to meet impurity capture needs based on 

processing volumes needed or ultimate impurity targets. In this 

particular case study, a plant utilizing parallel scrubbers was 

selected. To protect Dow’s confidential information and trade 

secrets, all process information, model specifics, and results 

have been masked. 

 

 Figure 2 shows a high-level overview of the process under 

consideration. Three scrubber units filled with pollutant 

capture media are utilized, with two operating in parallel at any 

given point. The third unit is undergoing a regeneration cycle 

(e.g. steam treatment, solvent wash, thermal heating). 

 

 
Figure 1 – Graphical overview of model development steps. 

 
Figure 2 – Overview of case study process. Dashed arrows denote 

scrubber undergoing regeneration. 

The plant operations require that a regenerated scrubber is 

always available to put online upon reaching scrubber capacity 

of one of the two operational units. Thus, if the capacity of a 

scrubber is too low, it may be saturated prior to the completion 

of the regeneration cycle. This plant provides sensor readings 

of the upstream fluid flow rate, temperature, and pressure. 

Downstream of the scrubbers we have pressure, temperature 

and impurity readings. Within each scrubber, we have 

inlet/outlet temperature and inlet pressure readings available. 

The operation-regeneration cycles are controlled by the 

process control system, and thus we also have data available 

on the process state of each unit. Each ‘cycle’ of a scrubber 

was started upon completion of the regeneration phase and was 

ended upon scrubber saturation and pollutant breakthrough.  

Notably, the flow rate to each on-line scrubber is not available, 

with the feed rate determined by the pressure drop across the 

scrubber media. Additionally, no composition analyzer is 

available upstream of the scrubbers, thus impurity levels are 

not quantified. In this type of operation, the macro-scale 

dynamics such as flow rate, pressure drop, and temperature 

evolution may be readily described via first principles. On the 

other hand, the details of the impurity removal process itself, 

as well as the capacity during operation, is a complex process 

that may not be modeled as readily via first principles (Hanif 

et al., 2020; Jacobs et al., 2021; Taoufik et al., 2022).  

2.2 Physics-Informed Feature Development 

To quantify the capacity of the three scrubbers during 

operation, estimation of the impurity feed composition and 

subsequent feed rate into each scrubber in operation is 

necessary. This was done via a physics-based approach. First, 

we will describe the quantization of the impurity. In this 

particular plant, the gaseous feed stream, mgas, is expected to 

be at its saturation point with the impurity, based on upstream 

processes. As such, the impurity composition, xi, is determined 

by vapor-liquid equilibrium and primarily determined by 

temperature, T. Thus, using the Antoine Equation, we can 

estimate the vapor pressure of the impurity (Pi) in the process 

stream using known Antoine parameters, A, B, C (1-2). Next, 

the vapor pressure is normalized by the inlet pressure (Pgas) 

into the scrubbers to estimate the molar fraction of impurity in 

the feed stream. Subsequent unit conversions coupled with the 

known process feed rate provide the total impurity feed rate 

into the scrubbers (5). Until scrubber saturation, all pollutant 

is expected to be scrubbed. Thus, (5) is also equivalent to the 

scrubber abatement rate. In (1-5), m, n, and MW denote mass 

flow, molar flow, and molecular weight, respectively.  
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log10 𝑃𝑖 = 𝐴 −
𝐵

𝑇 + 𝐶
  (1) 

𝑥𝑖 =
𝑃𝑖

𝑃𝑔𝑎𝑠

 (2) 

𝑁𝑔𝑎𝑠 =
𝑚𝑔𝑎𝑠

𝑀𝑊𝑔𝑎𝑠

 (3) 

𝑁𝑖 =
𝑁𝑔𝑎𝑠 ∗ 𝑥𝑖

1 − 𝑥𝑖

 (4) 

𝑚𝑖 =
𝑁𝑖 ∗ 𝑀𝑊𝑖

1000
 (5) 

 

With the impurity feed rate, mi, known, the next feature to be 

estimated is the effective flow rate to each of the scrubbers 

during parallel operation. As mentioned previously, the flow 

rate to each is not metered or controlled and is determined by 

pressure drop across the pollutant capture media. As each 

scrubber unit has an independent process history, we expect 

their total capacity and pressure drop to be different. At the 

same time, a scrubber’s real-time performance is inherently 

correlated to the specific scrubber operating in parallel, as each 

pair will feature different flow distributions.  In this 

implementation, we aim to relate the pair-wise performance of 

the scrubbers by using a physics-based approach and draw an 

analogy between hydraulic flow (Darcy’s law) and electrical 

circuit resistance, R, (Ohm’s law) frameworks: 

 

𝐼 =
𝑉

𝑅
 ~ ∆𝑃 

𝑘

𝜇𝐿
= 𝑄  

→
∆𝑃

𝑅𝑓𝑙𝑜𝑤

= 𝑄 

 

 

(6) 

 

This relationship is then used in parallel flow networks, such 

as the one involved in the scrubber plant, to relate overall 

pressure drop, ΔP and feed flow rate, Q, to the individual flow 

(Qi) across each scrubber. We note that the pressure drop 

across both scrubbers should be the same in a parallel flow 

network. 

1

𝑅𝑓𝑙𝑜𝑤

=
1

𝑅1

+
1

𝑅2

 (7) 

𝑄𝑖 =
Δ𝑃

𝑅𝑖

 (8) 

 

From (8), we obtain the individual flow across a scrubber, and 

can convert this to mass flow to use in (3-5) to calculate 

impurity mass flow rate. This framework is a first 

approximation, as gas flow features compression that makes 

this analogy incomplete. A more elaborate model would 

require implementation of equations such as the Ergun 

equation. This situation, however, would include a great deal 

of uncertainty on individual variables. These variables require 

information on scrubber material properties, which are likely 

affected by the scrubbing cycle itself due to degradation, 

incomplete scrubber use, and fouling. As such, we will 

continue with the resistance analogy, which reduces the 

number of parameters we would need to estimate in the 

system. 

 

With a known impurity feed rate into the process and a 

framework to split the flow between the two active scrubbers, 

the final aspect to define the system was quantifying the 

relative resistance parameters (R1, R2) used in (7-8). A priori 

determination of these parameters is once again complex and 

may require process knowledge beyond feasibility. As such, 

we propose a simple relationship based on relative scrubber 

media age: 

𝑅𝑜𝑙𝑑𝑒𝑟 =  𝛼 ∗ 𝑅𝑛𝑒𝑤𝑒𝑟  (9) 

𝑤ℎ𝑒𝑟𝑒 𝛼 =  −0.5 ∗
𝐴𝑔𝑒𝑛𝑒𝑤𝑒𝑟

𝐴𝑔𝑒𝑜𝑙𝑑𝑒𝑟

+ 1.5 (10) 

The slope and constant of (10) were selected such that at 

comparable scrubber ages, the flow would be split nearly 

evenly between them. As the ratio approximates zero (i.e. 

maximum age gap between scrubbers), the newer scrubber 

receives 60% of total flow. This 60/40 split is an estimate 

based on process experience and unit manufacturer 

recommendations. Larger flow splits would likely be noted as 

excessive pressure drops in the system. We note that scrubbing 

processes that operate under different conditions such as 

liquid-phase extraction, filters, or condensers may experience 

different pressure drop-flow relationships and will require 

appropriate consideration. Under scenarios where the physical 

phenomena are difficult to reduce to a model, a physics-

inspired approach may not be possible and purely machine 

learning approaches may be necessary. 

 

With the relative resistance and the physics-based impurity 

flow rate estimated, we now have a fully defined system to 

predict the impurity mass flowrate into each scrubber during 

the operation cycle. The cycle time for each scrubber was 

quantified by monitoring the total time a scrubber was online. 

This time was then multiplied by the estimated impurity mass 

flow rate to calculate the total impurity abated by the scrubber, 

assuming the scrubber’s on-line phase ended at breakthrough 

(e.g. when a threshold level of impurity was detected in 

downstream processes). This calculation provided an 

estimated value for the scrubber’s capacity during a particular 

cycle, allowing us to monitor capacity evolution as a function 

of process variables. Thus, our target metric of scrubber 

capacity was obtained leveraging physics-based approaches.  

We emphasize that these physics-based features can only be 

developed from already-completed cycles due to the process 

data required (e.g. cycle time, relative age of scrubbers) and 

thus provides limited direct predictive power. The estimated 

capacity, however, is used to enable the development of a data-

driven forecasting model to predict the evolution of scrubber 

capacity over its lifetime. 

2.3 Data-driven Model Development  

As the process operating conditions change over time,  we start 

with a predictive batch Partial Least Squares (PLS) (Kourti et 

al., 1995) model using SIMCA (Eriksson et al., 2013) to model 

the dynamics of pollutant removal. With the information that 
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time-varying variables do not impact predictive performance, 

we then developed a simpler Ordinary Least Squares (OLS) 

model using Python’s Stats Models package (Seabold & 

Perktold, 2010) PLS was selected due its capability of 

handling potential variable multicollinearity and retaining a 

level of explainability. OLS was used upon simplification to 

further enhance the explainability of the model, which is 

valuable to aid in model adoption in plant operations. 

 

We used 85% of the available batches (n = 106) for model 

training and 15% (n = 20) was used for validation. The test set 

was taken as a random sample from the entire dataset and not 

used in any step of the training process. Model development 

involved creating batch identifiers for each scrubber and 

reprofiling the batches to cycle times rather than absolute 

process time. This reprofiling enabled the unfolding of process 

features within a batch for potentially improved modeling 

ability (Kourti et al., 1995). Thus, each batch contained time 

independent variables (e.g. scrubber age at start of online 

cycle, batch-average metrics) and unfolded batch-time 

dependent variables (e.g. gas flow rate at batch time t, pressure 

drop, temperature). Care was taken to not include variables 

that would encode information on estimated cycle capacity, 

such as cumulative pollutant uptake, to avoid biasing the 

predictive model. In turn, this would allow for future 

predictions to be carried out with no a priori knowledge of the 

pollutant feed rate into the scrubbers. The combination of 

unfolded batch-time dependent and time independent features 

leads to a large amount of features for each batch, potentially 

thousands of features. As such, analysis of variable of 

importance in projection (VIP) was done to simplify the model 

without compromising predictive ability (Bui et al., 2022; Lu 

et al., 2014). 

 

With a trained predictive model available, the scrubber 

capacity is forecasted by assuming nominal conditions of the 

input variables based on historical data or scrubber age-

dependent estimates (Figure 3). Age-independent data was 

taken as historical averages from the available data. Age-

dependent data was generated by estimating their evolution as 

a function of each scrubber’s age through linear regression. 

The age range to forecast used in the model is a user input 

based on historical scrubber media lifetimes and/or 

manufacturer recommendations. 

 

 
Figure 3 – Graphical representation of feature engineering for 

forecasting model. 

3. CASE STUDY RESULTS 

3.1 Physics-based feature generation – Scrubber capacity 

Within the available dataset, the three scrubbers in the plant 

underwent one capture media changeover. These changeovers 

are staggered to avoid having low-performing scrubbers 

operating simultaneously. As such, the three scrubbers will 

show variation in their batch uptake, depending on their 

sequence and age. 

 

Figure 4 shows representative batch uptakes for the three 

scrubbers. We note that one scrubber (Unit C) is operating near 

the manufacturer nominal capacity (Pollutant uptake = 1), 

which agrees with the fact that this unit had its scrubbing 

media changed closest to the beginning of the available 

dataset. The rated manufacturer capacity is not used anywhere 

in our model development, so its accurate prediction suggests 

that our physics-based features are able to represent realistic 

process features without specifically encoding them into the 

model. 

 

One key finding during model development was variation in 

scrubber cycle finishing criteria. We find that in the first half 

of the dataset, most batch cycles correlated with a rapid rise in 

downstream pollutant concentration. This increase in pollutant 

is evidence of scrubber saturation and pollutant breakthrough. 

In contrast, the second half of the dataset shows few batch 

cycles terminating with a pollutant breakthrough. As such, we 

hypothesize that, during the second half of the dataset, plant 

operations were conservative and based their cycles on time 

rather than pollutant media saturation. This change in 

operation can be seen in Figure 5, where the distribution of 

batch cycle times in the second half of the data set are biased 

towards the same batch time, in contrast to the more evenly 

distributed cycle times in the first half of the dataset. Thus, 

training data was limited to the first half of the dataset to ensure 

that the scrubber capacity estimation was based on scrubber 

saturation rather than time. 

3.2 Data-driven Model Development 

As described in section 2.3, the PLS model to predict scrubber 

capacity during a cycle was first developed with both unfolded 

batch-time-dependent and independent features, amounting to 

5938 variables per batch. 

 

 
Figure 4 - Representative scrubber batch uptake from developed 

feature. Scrubbers are colored as Unit A (black), Unit B (blue), 

Unit C (red). Capacity normalized to manufacturer nominal 

capacity. 
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Figure 5 - Histogram of on-line cycle time in dataset. Time-based 

cycles do not indicate pollutant breakthrough at the end of a 

batch and were not used in training. Cycle time normalized to 

most frequent cycle time in data set. 

This model uses 6 principal components  with a Q2 = 0.71 and 

R2 = 0.92. Q2 is an indication of model quality with new data 

not used during training (Eriksson et al., 2013) These metrics 

would be used as reference for model simplification. SIMCA 

provides variable importance metrics via its VIP score, shown 

in Figure 6 for all variables.  

 

We see that all variables feature a sharp rise in importance 

relative to the bulk of its values. These higher importance 

variables corresponded to time-independent versions of each 

variable, such as their initial value and average. Thus, we 

expect that a predictive model without time-dependent 

features would be sufficient for predictions, while remaining 

relatively simple for eventual deployment. Further refinement 

of the PLS model via VIP analysis led to a model with 5 

features and 3 principal components with a R2 = 0.91 and Q2 = 

0.90. Throughout the model development, the scrubber media 

age was found to be the most significant feature to predict 

capacity, in line with expectation from process experience. 

Additional relevant features included average pollutant 

concentration, average pressure drop during a batch, feed mass 

flow rate, and batch temperature. 

 

The relatively small subset of relevant features prompted us to 

assess their direct use in a model, rather than generating 

principal components in a PLS model. As such, an OLS model 

was developed using the direct feature values (11). 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑢𝑝𝑡𝑎𝑘𝑒 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ (𝑌)
= 𝐶1[ 𝑆𝑐𝑟𝑢𝑏𝑏𝑒𝑟 𝐴𝑔𝑒]
+ 𝐶2[𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛] + 𝐶3[𝑇𝑒𝑚𝑝]
+ 𝐶4[∆𝑃/𝐹𝑒𝑒𝑑𝑡𝑜𝑡𝑎𝑙] 

 

 

 

(11) 

We combined two correlated variables: ΔP and Feedtotal by 

taking their ratio and thus use only uncorrelated features in 

model predictions. We note that this new term represents the 

total resistance, Rflow, in our hydraulic resistance model (7). 

Table 1 shows a comparison of the original model and the 

simplified PLS and OLS models.  

 

 
Figure 6 - VIP scores for full feature dataset, including time 

dependent and independent variables. Colors indicate the 

variables for each specific batch in the dataset, including 

unfolded variables and time independent variables. 

Table 1 – Summary of PLS and OLS models evaluated. 

Model Variables R2 Q2 

Batch PLS – With unfolded 

variables 
5938 0.92 0.71 

Batch PLS – No unfolded 

variables 
134 0.92 0.68 

Batch PLS - Simplified 5 0.91 0.90 

OLS – Test Data 5 0.92 N/A 

 

 
Figure 7 - Parity plot comparison of OLS model (red) and 

simplified PLS model (blue). Capacity normalized to 

manufacturer nominal capacity. 

The OLS model was validated with our test set, showing an R2 

= 0.92 and a mean absolute error from the estimated capacity 

values of 5.4%, shown in Figure 8. All data fell within the 

estimated 95% prediction intervals of the OLS model. We 

included batches of the dataset that were time based in the test 

set to assess the model’s performance.  
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Figure 8 - Test set validation of OLS model. Scrubber age 

normalized to maximum age and capacity normalized to 

manufacturer nominal value. 

Figure 8 shows that the performance-based batches show a 

variety of over and under-prediction, in contrast, the time-

based batches show the model consistently overpredict their 

capacity. This overprediction is expected since the process 

cycles are being finished before full use of the scrubber 

capacity. Thus, our predictive model could also be used in 

analysis of process data to evaluate time-based process cycling 

and maximize their use if breakthrough is deemed an excessive 

risk during operations. 

6. CONCLUSIONS 

The combinations of physics-based feature development with 

a data-driven modeling methodology can enable the prediction 

of performance degradation in pollutant abatement processes. 

This is particularly relevant in scenarios where a direct 

measurement of a performance indicator, such as scrubbing 

capacity, is not available and its evolution is influenced by 

both single batch factors such as pollutant feed rate, and long-

term effects such as scrubbing media fouling.  

In the presented case study, the capacity of scrubber units was 

further influenced by the parallel operation of multiple units 

which featured different process history. A data-driven 

predictive model was able to predict the evolution of each 

individual scrubber whilst avoiding the need to estimate or 

measure all physical phenomena influencing unit capacity. 

Future efforts with this approach will involve deployment of 

the developed empirical models into multiple plants with 

different pollutant abatement configurations to understand 

how a general modeling approach may be leveraged across 

different plant configurations and abatement technologies. 
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