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Abstract: We address the task of allocating process inventories to maximise production and
bottleneck isolation using a model predictive control (MPC) scheme. This scheme implicitly
defines “set-points” for the inventories based on current operating conditions, and automatically
adjusts these set-points when the operating conditions change. This problem has previously been
identified as a challenge for MPC, and likely to requiring a forecast of disturbances or multi-
scenario approach. In contrast, we address this challenge with an appropriate choice of the MPC
objective and design of a disturbance model. The combined scheme does not require a forecast
of disturbances or involve significant computational expense while allowing for the MPC to
automatically correct for misidentified bottlenecks or unmeasured faults.
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1. INTRODUCTION

Despite large variations in the design and operating con-
siderations of chemical process plants, nearly all plants
share the task of managing inventories. The inventories
typically need to be controlled within given minimum and
maximum bounds, with the set-point of these inventories
as degrees of freedom. These set-points are important to
the process economics because they act as buffers that
prevent disturbances from cascading through a process and
disrupting throughput (Belanger and Luyben, 1997; Zoticǎ
et al., 2022). The task of automatically adjusting these
set-points based on operating concerns is a key challenge
that has been identified in several works, e.g. Skogestad
(2023) and the references therein. This paper considers the
development of a model predictive control (MPC) scheme,
with disturbance model, that implicitly defines set points
for the inventories that are optimal when the process goal
is to maximise throughput.

Inventory control has two competing goals (a) mitigate
changes/fluctuations in inventories and (b) mitigate the
effects of a reduction in the maximum flow allowed through
a section or unit of the plant. These goals directly compete
with each other as addressing goal (b) may necessitate
changing the set-points of the process inventories based
on current information.

If changes in process operations lead to a bottleneck that
persists over a long enough period, then it becomes nec-
essarily to change the inventory set-points to mitigate the
influence of future bottlenecks. Likewise, once the bottle-
neck is relieved, the set-points have to be changed again.
Automatic selection of good set-points of the inventories
are key to mitigating the influence of bottlenecks on the
process throughput, and is the focus of this paper, i.e. goal

(b). There are predominantly two challenges in meeting
goal (b) (Zoticǎ et al., 2022; Skogestad, 2023):

• Challenge 1. Use of intermediate storage for bottle-
neck isolation (containment): How to optimally select
the inventory (level) setpoints to maximize the time
until a new bottleneck makes it is necessary to de-
crease the throughput?

• Challenge 2. Inventory control rearrangement: How
to implement a logic that automatically rearranges the
inventory loops / setpoints to maintain consistent in-
ventory control when encountering a new bottleneck?

These challenges have been addressed in a Zoticǎ et al.
(2022), in which a system consisting of serially connected
inventories is considered, and a decentralised control struc-
ture consisting of simple control elements was proposed
to address these challenges. In particular a bidirectional
inventory control scheme (Shinskey, 1981) is proposed and
shown to be optimal for the class of systems under consid-
eration. This control scheme was extended by Bernardino
and Skogestad (2023) to consider systems with minimum
flow constraints.

The inventory control problem summarised by challenges
1 and 2 was presented as a challenge for MPC as it
was supposed that MPC would require either a distur-
bance measurement or forecast which is unrealistic, or a
multi-scenario approach which would greatly increase the
required computational complexity (Zoticǎ et al., 2022).
Later it was noted that challenges 1 and 2 could be ad-
dressed without minimum flow constraints through the use
of unreachable set-points, assuming no model mismatch or
misidentified bottlenecks (Skogestad, 2023).

In this work we make three contributions: (1) we show
how for serially connected inventories model predictive
control (MPC) can be developed in two ways to meet
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the inventory challenges, (2) we demonstrate how with a
suitable disturbance model the MPC scheme can still meet
the challenges despite inaccurate operating information,
and (3) how the first goal of inventory control may also
be incorporated in the MPC scheme. Importantly, in all
the MPC implementations we do so without relying on
a forecast of disturbances, a scenario tree or any other
significant computational complications to the standard
MPC problem. Instead our approach relies on either the
selection of an unreachable set-point or a selection of
weights for tank levels. The MPC problem is sparse
and convex it can be solved rapidly and reliably by
modern solvers even for large systems. Furthermore, a
dynamic model of the inventory alone is required, i.e. a
full dynamic model of the plant or process economics is
not required. Thus we avoid many of the typical concerns
of the complexity of implementing an MPC solution.

The paper is structured as follows: Section 2 briefly re-
views the essential background of the paper, including the
inventory control problem, and the MPC model, Section
3 introduces the proposed approaches when considering
units in series, with Section 4 detailing practical concerns
in the implementation of the MPC, including the use of
a disturbance model and tuning of the transient response.
Lastly we end with a discussion and conclusion in Sections
5 and 6.

2. BACKGROUND

2.1 Inventory control

Level control is a common task in process plants and
there is an extensive literature on the topic, see Belanger
and Luyben (1997); Zoticǎ et al. (2022); Skogestad (2023)
and the references therein. Important concepts from the
literature are the throughput manipulator (TPM) and
bottleneck. The TPM is defined as the variable (usually
a flow rate) used to set the (steady state) throughput
rate for the entire process. The production bottleneck is a
constraint that limits further increase in the steady state
throughput of the system. A bottleneck may thus be a wide
range of things, e.g. operating temperature, but can often
be written (sometimes implicitly) as a flow rate constraint.
Note that this definition presupposes that an increase
in the steady state throughput would be economically
preferred. When considering process economics (or equiva-
lently the maximisation of production) a good choice is to
locate the TPM near the production bottleneck (Downs
and Skogestad, 2011). For units in series, to satisfy the
“pair-close” rule from inventory control one should follow
the radiation rule (Price et al., 1994), that is, inventory
control should be be in the direction of flow downstream
of the TPM and it should be opposite the direction of flow
upstream of the TPM. When a new bottleneck emerges,
the TPM should move requiring a rearrangement of the
inventory loops. Automatically performing this task is the
crux of challenge 2.

Bidirectional inventory control (Shinskey, 1981) has re-
cently been shown to resolve these challenges for units
in series (Zoticǎ et al., 2022; Bernardino and Skogestad,
2023; Skogestad, 2023), see section 3. In this work we
show that a simple MPC formulation is able to meet these

challenges, while also allowing for misrepresentation of
process bottlenecks.

2.2 Model predictive control

Model predictive control (MPC) is a popular control
strategy for constrained systems with multiple inputs
and outputs, especially when explicit implementation of
a control policy becomes complex. A key requirement of
a successful MPC scheme is the use an adequate model.
Although finding a model can generally be an arduous
task, for inventory control we are able to only consider
the inventory dynamics and thus can use a simple first
principle model.

We consider a system of NI inventories or vessels, and NF

flows. For simplicity we use a volumetric basis and assume
the inventories are in rectangular tanks. Practically the
inventories can be arbitrary units or process sections, as
the methodology can easily be used with other appropriate
extensive variables. From a volume balance we write the
discrete time model:

ah(tk+1) = ah(tk) +MF (tk) (1a)

Mij =


1 if Fj enters vessel i

−1 if Fj exits vessel i

0 otherwise

(1b)

where h ∈ RNI is a vector of levels, a ∈ RNI is a vector
of cross sectional areas, F ∈ RNF is a vector of flows, and
M ∈ RNI×NF is an incidence matrix that describes the
connectivity of the system.

We assume that flow rate F is our control variable, with
it acting as the set point for a lower-level controller, which
we assume is controlled perfectly. By this assumption we
avoid non-linearities that would otherwise be included in
the formulation. Additionally, in Section 4 we address how
a disturbance model can be used to handle the case where
the lower level controller is unable to meet the desired flow
specification. We thus consider the MPC problem:

min
h,F

J (2a)

h(tk+1) = Ah(tk) +BF (tk) (2b)

hmin ≤ h(tk) ≤ hmax (2c)

0 ≤ F (tk) ≤ Fmax (2d)

where J is an objective function (specified later), hmin ∈
RNI

+ and hmax ∈ RNI
+ are vectors that define the range of

allowable levels, Fmax ∈ RNF
++ defines the range of allowable

flow rates, and Nk is the number of time points considered.
To put the dynamics into standard form we have defined
B ∈ RNI×NF as the component-wise division M/a, and
A ∈ RNI×NI as the identity.

Note that if J is convex, then this is a convex optimisation
problem. Additionally, we have assumed that there is no
lower limit on the flow rate because specifying a lower limit
can lead to an infeasible problem.

In this model a bottleneck occurs due to the entries in
Fmax. As discussed above, a bottleneck may also be a
temperature or similar, and thus only implicitly a flow
rate. In this case the entries of Fmax may be uncertain
and/or incorrect, however this can also be addressed by
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an appropriate disturbance model (Section 4). We note
that in the current MPC formulation, Fmax is assumed
to not vary in time, i.e. we do not have a forecast. If we
had a forecast, this can easily be incorporated into the
framework.

3. INVENTORY ALLOCATION OF UNITS IN SERIES

Consider a plant consisting of units in series, a simple ex-
ample of which is shown in Figure 1. To isolate bottlenecks,
while aiming to maximise throughput, one can follow the
following rule (Zoticǎ et al., 2022), which is motivated by
the following example.

Rule for challenge 1. To isolate the effect of a bottle-
neck, the inventory set-points before the bottleneck should
be set high, and those after should be set low.

Example 1. Consider a single tank, with a valve before
and after the tank (i.e. the system of F0, F1 and unit 1 in
Figure 1) Consider that the process has been operating at
a steady state of F0 = Fmax

0 = Fmax
1 = F1, i.e. there is no

bottleneck as both valves are fully open. Now consider that
a reduction in Fmax

0 occurs i.e. F0 is now the bottleneck,
without any forecast on how long the bottleneck will last.

To minimise the effect of the bottleneck of F0 on F1 one
should keep the flow rate of F1 the same, which can be done
as long as the tank level is sufficiently above it’s minimum
heights. If the bottleneck persists until the tank depletes,
then the system should be operated with the level set point
of hmin, and F1 = F0. If F0 becomes further reduced then
as there is no buffer inventory available F1 is similarly
reduced (set point remains hmin). Now consider that the
reduction is lifted, with the new Fmax

0 ≥ Fmax
1 , i.e. F1 is

the bottleneck. To isolate the effect of the F1 bottleneck,
and to maximise the isolation time of a future bottleneck,
one should operate with F0 = Fmax

0 , i.e. the set point
becomes hmax. The above argument can be extended for an
arbitrary sequence of tanks in series, leading to the rule.

The bidirectional control structure, shown in Figure 1,
implicitly follows this rule, while also resulting in auto-
matic control rearrangement (challenge 2) (Shinskey, 1981;
Zoticǎ et al., 2022). The core of the control structure is
that each flow is linked through a min selector to (1) their
upper limit, (2) the high-level control of the downstream
vessel, and (3) the low-level control of the upstream vessel.
As such unless a stream is the bottleneck (controlled by its
upper limit) it will be controlled by the higher level limit
of the downstream tank if it is before the bottleneck and
the lower level limit of the upstream tank if it is after the
bottleneck. Although this scheme explicitly assigns flow
rates, it implicitly allocates set points for the inventories
in accordance to the proposed rule. Later this scheme
was extended to include minimum flow rate constraints
(Bernardino and Skogestad, 2023).

3.1 An MPC solution

We now present two simple MPC solutions that are based
on the same logic as the rule 1. The key challenge is
that one cannot specify set-points for the tank levels,
as these set points should be implicitly defined by the
controller and automatically adjusted based on the current

operation (challenge 2). Note that the dynamics of these
schemes (and the previous) depend on their tuning and
thus may not be the same. However, if the schemes yield
the same steady state then they are consistent. As such,
for simplicity of presentation for now we neglect terms that
can be included to shape the MPC transients and focus on
an objective that will implicitly select the same set-points
as the bidirectional inventory scheme.

Unreachable set-points Instead of specifying a set point
for the tank levels, we instead consider implementing a
standard MPC with an unreachable set point for the
flow rates of the system. In addition we require that the
objective at future time steps is subject to a discount
factor, e.g. for a system of NI serially connected tank:

J =

Nk∑
k=0

γk∥F (tk)− Fsp∥22 (3)

where 0 < γ < 1 is the discount factor. The discount factor
must be used as otherwise there is “time symmetry” and
the solution of the MPC problem is non-unique. Using
this objective, the MPC will maximise the throughput of
the system subject to the system constraints. If one works
through Example 1 then it is clear that this MPC scheme
is consistent with rule 1 and the control structure proposed
by Zoticǎ et al. (2022).

Use of a “Economic” objective The previous MPC
scheme meets challenges 1 and 2 for the case of serial
tanks, however it immediately suggests that an economic
objective based on the throughput may also suffice. The
idea is to maximise the sum of the time discounted flow
rate out of the system, e.g. γkF3 in Figure 1, and the
weighted heights of the vessels, αihi. For the system in
Figure 1 this gives an objective of:

J = −
Nk∑
k=0

γk

(
FN (tk) +

NI∑
i=1

αihi(tk)

)
(4)

where 0 < γ < 1 is the discount factor and 0 < α1 < · · · <
αN < 1 are the weights of the tank heights. Although
we call this an economic objective we note that it is not
the true economic objective of the integrated profit over
infinite time. Instead (4) is designed to yield solutions
equivalent to this more complicated objective.

Importantly (4) is a linear objective and thus at any
time step there is a priority in the maximisation, namely:
the flow rates are to be allocated to maximise F3, if
F3 is constrained then h3 should be maximised, if it
is constrained then so on. This ordering is achieved by
the constraint on α. Note that if the αs were the same
this would lead to multiple optima. Similarly to the
previous case γ breaks time symmetry. By inspection of
the objective it is clear that this allocates inventories
consistently with the bidirectional scheme, as levels after
the bottleneck will be set low (FN,k is preferred) while
levels before the bottleneck will be set high (as it can be
done without reducing FN,k).

An additional motivation of (4) over (3) is that if there
are some units that preferentially should not have high
inventory (e.g. they become less efficient) then this can
be easily incorporated by changing the ordering of the
constraint on the αs.
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Fig. 1. Three tanks in series, with bidirectional inventory control structure proposed by Zoticǎ et al. (2022) in grey.
The grey dashed lines represent control signals, LC represent a level controller, and the min blocks represent min
selectors. H and L represent high and low limits, of their corresponding LC or min selector. We neglect a subscript
to show their relationship as this is clear from context. The level setpoints vary between the high and low limits
automatically to isolate the effects of the current, and future, bottlenecks.

3.2 Simulation of proposed scheme

We consider the closed loop performance of the proposed
MPC scheme using (3) on Example 2.

Example 2. Consider a system of three tanks, as in Fig-
ure 1, with a = [1.0 1.5 2.0] m2 , htanks = [2.3 2.8 3.2] m,
hmin = 0.1htanks, and hmax = 0.9htanks, with all levels
at their upper limit at t = 0 and a time discretisation
of 1 minute. We vary the maximum flow rate as follows:
Fmax = [1.667 1.428 1.125 1.0] m3/min for 10 minutes,
Fmax = [0.833 1.428 1.125 1.0] m3/min for 50 minutes,
and Fmax = [1.667 1.428 1.125 1.0] m3/min for the last 20
minutes. This means that the bottleneck is originally at F4,
then F1 and then F4 again. Furthermore, after 30 minutes,
we introduce an uncontrolled depletion of 0.05 m3/min
from tank 3 if the level is above the minimum, e.g. due
to a leak. In the simulation we add normally distributed
noise (mean zero, standard deviation 0.1) to the height
measurements.

We consider using MPC with the unreachable set-point ob-
jective (3) for inventory control of Example 2. The closed
loop simulation of the proposed proposed MPC scheme is
shown in Figure 2. Figure 2b shows that production rate
of the system is only reduced when all tanks are empty,
thus meeting challenge 1 (bottleneck containment). This is
done through implicit set-points of the levels, e.g. at time
0-40 minutes the level of tank 3 is implicitly set to be high
resulting in the flow rates being adjusted once the leakage
begins occuring at t = 30 min, without use of a scenario
tree, forecast of the bottlenecks, etc. We note that due to
the measurement noise there is minor violation of the level
constraints, however without an additional back-off term
this is unavoidable.

This scheme has two significant disadvantages (1) it re-
quires the bottlenecks and operating information to be
accurately identified and (2) the changes in flow rates is
very aggressive leading to rapid changes in tank level and
hence going against goal (a) of inventory control. These
points are addressed in the following section.

(a) Tank levels of the MPC scheme with measured change in
bottleneck. Red areas of the graph correspond to violation of
the upper and lower level limits.

(b) Flow rates of the MPC scheme with measured change in
bottleneck

Fig. 2. Performance of the MPC scheme using objective
(3) for Example 2.

4. PRACTICAL CONCERNS

Two important concerns for the inventory control scheme
are (1) robustness to misidentified bottlenecks and (2)
tuning of the controller. The control schemes of Skogestad
(2023); Zoticǎ et al. (2022); Bernardino and Skogestad
(2023) use PID controllers, and hence due to feedback
and the integral term these control schemes can inherantly
correct (1). In contrast the proposed MPC scheme needs
to be augmented by an integrating state, or the model
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parameters have to be adapted online to have similar
properties. In this section we show how (1) can be achieved
by appropriate disturbance modelling, and (2) can be
performed effectively by an additional constraint.

4.1 Handling of disturbances

For the inventory problem unmeasured disturbances can
cause the bottleneck of the process to shift and if not
corrected can result in assignments of flowrates that lead to
infeasible operation. These disturbances can have a wide
range of causes, e.g. a leak in a tank, or change in the
maximum flow rate across a valve, or (temporary) error
in the estimation of the maximum production achievable
by the lower level controller. Although it is likely that the
model can be adjusted if the error disturbance persists, it
is important for the MPC to handle such errors without
unsafe operation or significant reduction in throughput. In
this section we briefly review disturbance models for MPC,
and hence initially move away from the inventory control
problem. After an introduction to the essential theory we
demonstrate that the “standard simple” tunings result in
very poor performance for the inventory control problem
and showcase the use of a marginally more complex, simple
tuning. For further information and theory see the tutorial
paper Pannocchia (2015) and the references therein.

A brief introduction to disturbance models To handle
disturbances MPC algorithms normally rely on some dis-
turbance model and observer, with a range of different
formulations in the literature. In this text we use an
augmented model in which the nominal system model
is augmented with disturbances, d, which are integrating
states estimated from output measurements, y (Muske and
Badgwell, 2002; Pannocchia and Rawlings, 2003). Usage
of this formulation is not restrictive, as it has been shown
that several other formulations are special cases of this
formulation (Pannocchia, 2015). The augmented model is:

xk+1 = Axk +Buk +Bddk (5a)

dk+1 = dk (5b)

yk = Cxk + Cddk (5c)

x0 = x̂0|0, d0 = d̂0|0 (5d)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control
input, dk ∈ Rnd is the disturbance, yk is a measurement
at time k, C ∈ Rny×nx is relates measurements to states
in the measurement equation (5c), and Cd ∈ Rny×nd and
Bd ∈ Rnx×nd are matrices describing how the disturbances
effect the augmented system. For the inventory control
system xk = h(tk), uk = F (tk).

At each iteration the initial value of the state and distur-
bance are set to their estimated value at t0 (5d). These
estimates are evolved by the observer:

ek = yk − Cx̂k|k−1 − Cdd̂k|k−1 (6a)

x̂k|k = x̂k|k−1 +Kxek (6b)

d̂k|k = d̂k|k−1 +Kdek (6c)

where ek is the error estimate, and the notation x̂k|k−1

refers to the prediction of x̂k from x̂k−1 (using the aug-
mented model).

For the augmented system to be detectable we require that
the original system (C,A) is detectable and

rank

[
A− I Bd

C Cd

]
= nx + nd (7)

Bd and Cd can be chosen to satisfy this condition if and
only if nd ≤ ny. Typically one chooses nd = ny to ensure
integration for all measurements. Lastly, the observer gains
should be chosen such that the augmented observer is
stable, i.e.:

max |λ(Aa −KaCaAa)| ≤ 1 (8a)

Aa =

[
A Bd

0 I

]
, Ca = [C Cd] , Ka = [Kx Kd] (8b)

where maxλ(·) is the largest absolute eigenvalue. Dis-
turbance modelling thus requires the appropriate choice
of: Bd, Cd, Kx, Kd to meet these requirements. Unfor-
tunately the choice of these matrices is non-trivial with
good MPC performance typically requiring a well chosen
disturbance model. The detectability condition offers some

guidance – as (A,C) is detectable the submatrix

[
A− I
C

]
has rank nx, and thus any nd ≤ ny columns that are

independent of

[
A− I
C

]
can be chosen for

[
Bd

C

]
to meet

the rank condition for detectability.

We now consider three simple tuning strategies for the dis-
turbance model applied to the inventory control problem.
We assume that the level of each tank is measured and
select NI disturbances i.e. nd = nx = ny = NI , C = I.

Deadbeat output disturbance model The “standard” in-
dustry practice is to use a dead output disturbance model
in which any error is assumed to be due to a step (constant)
disturbance in the output. This corresponds to a choice of:

Bd = 0, Cd = I, Kx = 0, Kd = I, (9)

and is equivalent to designing a deadbeat Kalman filter for
the augmented system. However, this cannot be applied
to the inventory system as the levels are integrators,
and thus h cannot be distinguished from the integrating
disturbances (the rank condition is not met).

Deadbeat input disturbance model This simplest alterna-
tive to the standard deadbeat output model is to simply
move the disturbance to the input instead, corresponding
to a choice of:

Bd = I, Cd = 0, Kx = 0, Kd = I. (10)

In this model any disturbance is assumed to be solely due
to a disturbance at the input. By design this avoids the
rank issue, and often can give better performance than
the output disturbance model. Additionally, if nd = nu

then one could select Bd = B. However, for the inventory
control system we cannot do this (nd ≤ ny < nu) and
we instead assign an independent input disturbance to
each state equation. However, applied to the inventory
control problem this leads to the non-augmented system
matrix (A − KxCA) having eigenvalues at 1, and the
augmented observer having positive eigenvalues with non-
zero imaginary parts. Thus the system will show poor
performance.

Youla-Kucera parameterisation of disturbance model
Lastly we examine the tuning suggested in Pannocchia
(2015, 2023), based on a prior formulation of Tatjewski
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(2014), in which the choice of the four disturbance matrices
is replaced by the choice of a single matrix Q ∈ Rnx×nd .
Q should be selected such that the non-augmented system
characteristic matrix (A − QCA) has desired properties,
e.g. has eigenvalues in interior of the unit circle. Then the
disturbance matrices can be set to:

Bd = Q, Cd = I − CQ, Kx = Q, Kd = I. (11)

For any such choice of Q the augmented system is de-
tectable, and the observer is asymptotically stable.

Note that as Kd = I this tuning places ny poles of the
observer at the origin (and thus may lead to sensitivity
to output noise) and results in the disturbance being set
to the difference between the measurement and predicted
state value, i.e. the innovation yk − Cx̂k|k−1:

d̂k|k = d̂k|k−1 +Kdek = d̂k|k−1 + ek (12a)

= d̂k|k−1 +
(
yk − Cx̂k|k−1 + Cdd̂k|k−1

)
(12b)

= yk − C
(
Ax̂k−1|k−1 +Buk−1

)
(12c)

= yk − Cx̂k|k−1 (12d)

This means that the augmented model output is read-
justed to exactly match the measured output at each
iteration.

4.2 Numerical simulation

Example 3. We consider the same system in example 2,
but the MPC only receives level measurements, i.e. (1) the
change Fmax is not provided to the MPC, i.e. it uses the
Fmax = [1.667 1.428 1.125 1.0] m3/min throughout the
horizon and (2) the draining from tank 3 (0.05 m3/min
when above the lower limit) is not in the MPC model.

To prevent infeasibility of the MPC problem the state con-
straints are replaced with soft constraints. In the simula-
tion, if the controller allocates a flow-rate higher than the
actually achievable flow rate, then the maximum allowable
flow rate is used. Similarly, if the tank level exceeds 100 %
then the level is set to 100 % and it is assumed that excess
is lost.

We consider applying the nominal MPC solution and the
discussed disturbance schemes to the inventory control
problem, with the results summarised in Figure 3. The
nominal MPC solution (Figure 3a), significantly violates
the level constraints of the first two tanks, with both
of the tanks running dry. However, due to the feedback
of the MPC implementation the leakage disturbance is
adequately controlled, although it does result in violation
of the lower level constraint of tank 3 at t = 59 min.

The use of the deadbeat output disturbance model is
shown in Figure 3b. As expected this leads to very poor
performance as the augmented system is not detectable
and hence the state and disturbance estimates are entirely
inaccurate leading to violation of all the tank levels, and
the inventories not shifting once the bottleneck is lifted.

Although the deadbeat input disturbance model, Figure
3c, correctly accounts for the leakage disturbance (see level
3 before t = 40 min) it handles the unobserved reduction
in the maximum flow rate very poorly. Good performance
of the leakage is expected as this can be entirely captured
by an input disturbance. Similarly, the poor performance

is expected due to eigenvalues of the observer inducing
oscillations (the large imaginary components) while not
providing asymptotic stability.

On the contrary, the use of the Youla-Kucera parameteri-
sation with Q = 1.1I, is able to avoid extended infeasible
operation, see Figure 3d, by correctly handling both dis-
turbances. We note that there is some violation of the level
constraints, and that the system is not compensate as ef-
fectively for the leakage of tank 3, however the performance
is very similar to when the MPC has full information (2a)
and so we judge this acceptable. There is a minor back-
off of the level of tank 1 from the constraint, due to the
combined influence of the disturbance and noise, however
there is some room for adjustment of this by tuning of Q.

4.3 Tuning of transients

The use of objective (3) or (4) will lead to a controller
that maximises the time between interruptions in pro-
duction due to bottlenecks. Although this is desirable,
another aspect of inventory control is to mitigate short-
term fluctuations in the inventories. This is clearly at odds
with the aggressive goal of maximising throughput. The
simplest way to consider these dual goals is to introduce
a constraint on the constraint on the change in the levels,
i.e.

|hi(tk)− hi(tk−1)| ≤ ∆maxhi, i = 1, ..., NI (13)

where ∆maxhi limits the allowable change of hi. Although
it is more common to penalise or restrict the change in
the control variable, this is undesirable for the inventory
problem as we are okay with fluctuations in the flow if
these don’t significantly influence the levels. We also note
that this constraint implicitly contains the logic that goal
a applies to shorter time scales, and goal (b) to a longer
time scale. Additionally, small level variations as this is
typically acceptable.

Practically we note that (1) this constraint should be
enforced as a soft constraint to prevent infeasibility of
the MPC problem and (2) this constraint introduces a
new bottleneck source, as sometimes the inflow or outflow
from a tank can be limited by this constraint. Practically
one may also wish to consider some kind of allowed
“acceleration” of the change in height, this can easily
be incorporated by allowing ∆maxhi to increase (to some
upper limit) if this constraint was active at a previous
iteration. We note that if ∆maxh is chosen sufficiently
small then this not only restricts not the transients but can
induce a bottleneck by making a large flow rate infeasible
due to it resulting in a inventory increasing too fast.

As pathological example of what can result from an
excessively small ∆maxh we consider Example 2 with (13)
and ∆maxhi = 0.03hmax,i for all tanks. The results are
shown in Figure 4 and should be compared with Figure
2. This choice of ∆maxh results in a bottleneck when the
levels are refilled after the disturbance to F0 has ended
(Figure 4b). In addition, due to the constraint the levels
of the first two tanks drop together, and the level of the
third tank begins to drop when the first tank reaches its
lower limit, as if it did not the level of the second tank
would decrease too fast. Thus the constraint can induce a
non-intuitive coupling between non-adjacent inventories.
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(a) Level profiles of applying the MPC scheme without dis-
turbance model to a system with incorrect Fmax

(b) Level profiles of applying the MPC scheme with distur-
bance model deadbdeat ouput to a system with incorrect Fmax

(c) Level profiles of applying the MPC scheme with distur-
bance model deadbdeat input to a system with incorrect Fmax

(d) Level profiles of applying the MPC scheme with distur-
bance model Youla to a system with incorrect Fmax

Fig. 3. Use of MPC for the inventory control problem with
incorrect identification of bottleneck (Example 3).

(a) Tank levels of the MPC scheme with measured distur-
bances and constraint on ∆h.

(b) Flow rates of the MPC scheme with measured change in
bottleneck and constraint on ∆h. Note that the maximum
flow rates are not reached due to the ∆h constraint.

Fig. 4. Performance of the MPC scheme using objective
(3) for Example 2.

Lastly, in terms of the process throughput the scheme still
prioritises keeping F3 at its maximum, however due to
the constraint the effective maximum flow rate when the
tank is being depleted is around 0.93 (Figure 4a, around
t = 50 min).

5. DISCUSSION

5.1 Comparison to prior work

This paper considers the same inventory control problem
as Zoticǎ et al. (2022); Skogestad (2023) in which a a
decentralised control structure consisting of simple control
elements was proposed. In comparison, this work proposes
the use of an MPC scheme. Under identical scenarios both
control schemes will find the same steady state operating
point, with the transient behaviour of the schemes deter-
mined entirely by their tunings. As such, it is not infor-
mative to compare these schemes quantitatively. Qualita-
tively, the decentralised control scheme is computationally
simple as it uses simple control elements. However, the
MPC scheme does not represent a computational burden
as a small, convex optimisation problem is solved which
can be done very reliably and efficiently. An important
benefit of the MPC scheme is that if future information
is available, then this can be directly incorporated in
the MPC problem. Similarly, the MPC scheme can be
augmented in several ways, with two suggestions outlined
below. Based on simplicity, it is likely that unless more
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complex process topologies and constraints are considered
(and the schemes are suitably extended), the decentralised
control scheme will be preferred.

5.2 Delay in transportation

In this work we have considered that there is no delay in
the transport between units. Because of this the outflow
from a unit can be more than amount of substance in that
unit. To avoid this one can introduce a constraint of the
form:

MoutF (tk) ≤ aihi(tk) (14a)

Mout
ij =

{
−1 if Fj exits vessel i

0 otherwise
(14b)

where Mout ∈ RNI×NF is an incidence matrix that de-
scribes the processes outflows. This constraint requires
the total outflow from a unit is less than or equal to the
amount of substance in the unit at a point in time.

5.3 Incorporation of economics

The proposed scheme does not make direct use of the
process economics. This choice is an intentional choice, as
economic considerations of processes can be very complex.
Instead based on assumption of increasing throughput
being economically preferred, we avoid explicit inclusion of
the process economics. In practice this may not be the case
e.g. due to increased cost or inefficiencies if some invento-
ries are kept high. If this is the case then one can design
tiered soft constraints that promote operating in a prede-
fined “Goldilock” zone, but allows for short transients in
the less profitable operating regions if necessitated.

6. CONCLUSION

We address the task of allocating process inventories to
maximise production and bottleneck isolation using a
model predictive control (MPC) scheme. This approach
addresses the two challenges associated with mitigating
the effects of bottlenecks, while also allowing incorporation
of the goal of minimising short term inventory fluctuation.
Unlike the claims of previous works this is done without re-
quiring a computational expensive formulation, bottleneck
forecast, multi-scenario approach or similar. Furthermore,
we also investigated the use of a Youla-Kucera tuning of
a disturbance model for the MPC scheme and showed it
to be effective when provided with incorrect operational
information, e.g. leaks or misidentified bottlenecks.

Further work can include considering systems that are
more complicated, this includes recycles, parallel process-
ing sections, multiple product streams and units that re-
quire a minimum flow to safely operate, e.g. a compressor.
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