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Abstract: In this work, two model-based controllers were developed, one based on a nonlinear
model-based controller (NMPC) using a population balance model (PBM) and another using a
machine learning approach based on a neural network inverse model-based controller (NNIMC).
The performance of the two model-based controllers was compared for different scenarios to
obtain optimal temperature policies for controlling the mass yield and crystals’ size for the
unseeded batch cooling crystallization of paracetamol. The results show that both strategies are
effective for crystallization control, presenting comparable results for the controlled variables
in different scenarios. The controllers were also tested by applying random noise in the state
variables. In these cases, the NNIMC presented advantages in having a lower computational
cost for optimum control action calculations and less control effort regarding the manipulated
variable’s variation to reach values for the control variables at the end of the batch close to the
NMPC and the setpoints.

Keywords: Neural networks, Model predictive control, NNIMC, Machine learning, Batch
process control, Noise

1. INTRODUCTION

Crystallization processes are applied in separating and
purifying substances, especially in the pharmaceutical and
food industries. The understanding of the underlying pro-
cesses and their sensitivity to the operating parameters
are key aspects to meet product specifications and pro-
duction yield targets (Nagy and Braatz, 2012; Lewis et al.,
2015). However, crystallization processes exhibit complex
nonlinear behavior, requiring advanced modeling frame-
works like population balances. These models often involve
estimating multiple parameters from experimental data, a
challenging task due to the diverse range of crystallization
setups and operating conditions (Nagy, 2009).

Ensuring control over crystal size, shape, and mass yield
is essential in industrial crystallization. Concerning the
control of crystallization processes, there have been differ-
ent proposed control strategies, such as PID and model-
based controllers (Nagy, 2009; Jha et al., 2017; Moraes
et al., 2018; Grover et al., 2020). In model-based control

schemes, the adoption of Model Predictive Control (MPC)
becomes feasible and more appealing when the output
variables, such as solute concentration and crystal size
distribution, can be measured and monitored (Lima et al.,
2022; Kalbasenka et al., 2012).

Nagy and Braatz (2003) introduced a Nonlinear Model
Predictive Control (NMPC) approach, explicitly address-
ing parameter uncertainty to enhance the robust perfor-
mance of state estimation in batch processes. Furthermore,
NMPC has been employed in the polymorph control of the
L-glutamic acid system (Hermanto et al., 2011). Szilágyi
et al. (2018) have developed an NMPC specifically de-
signed to control the chord length distribution. Wang et al.
(2023) proposed an NMPC for crystal size online control
of alum crystallization, showing better performance when
compared to model-free approaches.

Another noteworthy approach in establishing model-based
control policies is the dynamic programming method,
which allows the offline calculation and storage of con-
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trol input policies. Empirical models, such as the Markov
State Model based on experimental measurements, have
been utilized in the dynamic programming approach to
crystallization control (Grover et al., 2020). In this sense,
machine learning offers a versatile and flexible alternative
for modeling in this context. Data-driven approaches have
been applied to chemical processes, leveraging the abil-
ity to capture intrinsic nonlinearities with low computa-
tional costs (Venkatasubramanian, 2019). Despite recent
advancements in data-driven modeling, there is a notice-
able gap in studies applying machine learning algorithms,
especially neural networks, to control crystallization oper-
ations (Xiouras et al., 2022).

Damour et al. (2010) employed a neural network-based
NMPC for continuous sugar crystallization, using crystal
mass as the controlled variable and feed mass flow rate as
input. Anandan et al. (2022) developed a controller based
on reinforcement learning for paracetamol crystallization
to achieve the desired crystal size. The literature also
presents hybrid modeling approaches incorporating neural
networks and population balance (Meng et al., 2019; Lima
et al., 2023a) and studies proposing NMPC approaches
using recurrent neural networks for crystallization control
(Zheng et al., 2022a,b).

In the present work, controlling the mass and crystal size in
the batch cooling crystallization of paracetamol was inves-
tigated using model-based optimal control schemes. Two
approaches were developed and compared: an NMPC and
a neural network inverse model-based controller (NNIMC).
The population balance developed by Kim et al. (2023)
was applied as the internal model of the NMPC (and as
the plant model), and the NNIMC was obtained based on
NMPC simulation datasets. Four different target specifica-
tions scenarios for the controlled batches were evaluated,
and scenarios with normally distributed noise in the state
variables were also considered. The NNIMC exhibited ad-
vantages, such as lower computational cost and less ma-
nipulated variable effort, especially in the cases evaluated
with noise.

2. METHODOLOGY

2.1 Nonlinear Model Predictive Control

An NMPC strategy was proposed for controlling the parac-
etamol unseeded batch crystallization in ethanol solution.
The population balance model (PBM) developed by Kim
et al. (2023) was used as the internal model of the con-
troller and to simulate the process. This model accounts for
crystal nucleation, growth, and dissolution. Furthermore,
it was solved by applying the method of moments, in which
the moment is defined by:

µi =

∫ ∞

0

Lin(L) dL, i = 0, 1, 2, 3, ... (1)

where µi is the ith order moment, L is the characteristic
crystal size, and n(L) is the number density of crystals.
The moments µ0, µ1, µ2, and µ3 are proportional to the
total number, length, surface area, and volume of crystals,
respectively.

The paracetamol crystallization PBM is described as

dµ0

dt
= B1 +B2 (2a)

dµ1

dt
= Gµ0 (2b)

dµ2

dt
= 2Gµ1 (2c)

dµ3

dt
= 3Gµ2 (2d)

dC

dt
= −3kV ρcGµ2 (2e)

where kV is the volume shape factor and ρc is the solid
density of crystals [g/cm3]. These parameter values can be
found in Kim et al. (2023). B1 is the primary nucleation
rate

B1 =

kb1exp

[
− 16πν2σ3

3k3T 3(lnS)2

]
, S ≥ 1

0, S < 1
(3)

where kb1 is a rate constant [(min.g solvent)−1], σ is the
interfacial energy between crystal and solution [J/m2], k is
the Boltzmann constant [m2kg/(s2K)], and ν is the volume
of one solute molecule [m3]. S is the supersaturation and
is calculated by the ratio between the concentration in the
solution C [g/g] and the saturated concentration at the
system temperature Cs [g/g], as described by

S = C/Cs (4a)

Cs = 4.590× 10−7T 3 − 3.610× 10−4T 2

+9.669× 10−2T − 8.707
(4b)

where T is the process temperature [K].

B2 is the secondary nucleation rate

B2 =

{
kb2 (S − 1)

α
mβ

s , S ≥ 1

0, S < 1
(5)

where kb2 is a rate constant [(g/kg)
−β/(min.g solvent)],ms

is the mass of crystals in a unit of mass solution [g/kg], α
and β are model parameters (Kim et al., 2023).

The growth and dissolution rates are described by

G =


kgexp

(
−Eag

RT

)
(C − Cs)

γg , S ≥ 1

kdexp

(
−Ead

RT

)
(Cs − C)

γd , S < 1
(6)

where kg and kd are the pre–exponential rate constants
for the crystal growth [(µm/min)(g solute/g solvent)−γg ]
and dissolution [(µm/min)(g solute/g solvent)−γd ], respec-
tively, Eag and Ead are the activation energies for growth
and dissolution [J/mol], and γg and γd are exponential
parameters on supersaturation for the growth and disso-
lution, respectively. R is the universal gas constant [J/(mol
K)] (Kim et al., 2023).

The NMPC aims to minimize the objective function

J =

Ncv∑
e=1

f+P∑
f=k+1

δe (ye(f)− yspe (f))
2

+

Nmv∑
a=1

k+M−1∑
b=k

λa∆ua(b)
2 (7)
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where ua is the manipulated variable a, ye is the controlled
variable e, yspe is the desired value of the controlled variable
e, P is the prediction horizon, M is the control horizon,
and Ncv and Nmv are the number of controlled and
manipulated variables, respectively. δe is the weight value
related to the controlled variable e and λa is the weight
value related to the manipulated variable a. In this work,
the controller aims to maintain the mean volume crystal
size L̄30 and the mass of crystals m by manipulating the
temperature of the process. The controlled variables are
described in Eqs. (8) and (9), in which msolvent is the
mass of ethanol and was defined as 100 g according to the
experiments in Kim et al. (2023).

L̄30 =

(
µ3

µ0

) 1
3

(8)

m = kV ρcµ3msolvent (9)

The initial supersaturation, the initial temperature, and
the setpoints used for controlling the paracetamol crys-
tallization are presented in Table 1. Before starting the
process control, the crystallization was maintained at the
initial temperature for 60 min in all cases to promote the
initial growth. After that, the control is started and the
process is controlled for 200 min. A sampling time of one
minute was adopted. All simulations were performed with
a computer having the following specifications: Intel Core
i7-10700, CPU 2.9 GHz, and 16 GB of RAM.

Table 1. Setpoints used to analyze the perfor-
mance of the NMPC, and initial supersatura-

tion and temperature.

Case L̄sp
30 [µm] msp [g] S0 T0 [°C]

1 225 9.0 1.35 30.0
2 200 9.0 1.35 30.0
3 175 7.0 1.30 33.4
4 160 8.0 1.28 33.4

The NMPC was implemented using the Python library
built in Lima et al. (2023b). Therefore, the Casadi (An-
dersson et al., 2019) software for nonlinear optimization
and automatic differentiation was employed to solve the
NMPC with the orthogonal collocation on finite elements
approach. The interface IDAS from Casadi was used to
solve the ODE system. The NMPC tuning was defined
based on sensitivity analysis of the controller’s perfor-
mance to achieve the setpoints in Table 1, which were
chosen based on the study of Kim (2021). The NMPC
constraints were defined as

0°C ≤ T (k) ≤ 70°C (10a)

−1°C ≤ ∆T (k) ≤ 1°C (10b)

2.2 Neural Network Inverse Model Control

With the NMPC development, some controlled batches
were simulated and a neural network was built to predict
the optimal temperature to achieve the setpoints of the
mean volume crystal size L̄30 and the mass of crystals. This
NNIMC strategy is presented in Fig 1. The neural network
uses the temperature, µ0, µ1, µ2, µ3, the concentration, and

the setpoints of the controlled variables at a time step k
to predict the optimal temperature at time step k + 1.

Fig. 1. Inverse model as a neural network scheme.

The neural network was trained with simulated data from
the NMPC. This dataset was composed of 150 simulated
crystallization batches. These batches were run consid-
ering different setpoint values and changing the initial
temperature and the initial supersaturation. Moreover, the
batches were run with an initial growth period of 60 min,
maintaining the process at the initial temperature and
then the application of the control system for 200 min to
achieve the desired values of the controlled variables, con-
sidering a sampling time of 1 min. Therefore, the dataset is
composed of 30,000 values of temperature, concentration,
µ0, µ1, µ2, µ3, L̄30, and mass of crystals.

The neural network was built using the Keras library from
Python (Chollet et al., 2015). The dataset was randomly
divided, of which 60% was used for training, 30% for
testing, and 10% for validation. The number of hidden
layers, the number of neurons, and the activation function
of the hidden layers were selected using the Keras tuner to
minimize the mean squared error considering the valida-
tion set. The tuner was set to find the optimal neural net-
work composed of one to five hidden layers and 10 to 500
neurons in each layer. Also, the search region of the hidden
layers’ activation function was composed of ReLU, SeLU,
ELU, and hyperbolic tangent. The maximum number of
trials was defined as 300 in the Keras tuner. The neural
networks were trained with the Adam algorithm, with a
batch size of 200 and early stopping. The performance
of the NNIMC was also tested for the cases presented in
Table 1, and the simulations were performed on the same
computer as the NMPC simulations.

The control scheme is presented in Fig. 2. The PBM devel-
oped by Kim et al. (2023) is used as the simulated process,
making predictions of µ0, µ1, µ2, µ3, and the concentration
for the given initial conditions. These predictions, the
current temperature, and the setpoints are scaled and are
introduced to the neural network. The variables are scaled
in the range of 0 to 1, considering their maximum and
minimum values of the entire dataset (train, test, and
validation). Then, the neural network predicts the scaled
value of the optimum temperature to achieve the setpoints.
The temperature in the range of 0 to 1 is inverse scaled to
the original temperature range and introduced to the PBM
to make new predictions of the state variables according to
the actual values of µ0, µ1, µ2, µ3, and the concentration.
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Fig. 2. NNIMC scheme, in which q−1 is a shift operator.

3. CONTROL ANALYSIS

The NMPC was tuned with a control horizon equal to 5
and a prediction horizon equal to 10. Moreover, δe was
tuned as 10−2 for L̄30 and 1 for m, while λa was defined
as 10−5. For the NNIMC, the optimal neural network
presented 4 hidden layers, each with 180 neurons, and
ReLU as the activation function of all hidden layers. Table
2 presents the mean squared error (MSE), mean absolute
error (MAE), and the R2 for the training, test, and
validation datasets using the optimal neural network to
make predictions and considering temperature values not
normalized. Therefore, the predictions of the NNIMC were
very similar to the original values for the three datasets.

Table 2. Metrics values to evaluate the neural
network.

Metric Train Test Validation

MSE 9.297× 10−3 1.233× 10−2 8.474× 10−3

MAE 4.330× 10−2 4.686× 10−2 4.197× 10−2

R2 0.9998 0.9997 0.9998

Table 3 presents the values of the mean volume crystal
size and the mass of crystals at the end of the batch,
and the sum of the squared variation of the manipulated
variable, representing the total control effort, for each
simulated case with both control approaches. The two
strategies could reach values close to the setpoints for
both controlled variables. For Case 1, the NNIMC and
the NMPC presented offsets on both controlled variables.
The NMPC achieved a mean volume crystal size closer
to the setpoint than the NNIMC, while the opposite was
observed regarding the mass of crystals. For the other
three cases, the control strategies reached values of the
controlled variables closer to the setpoints compared to
the previous case, not presenting a significant offset. The
performance of the NMPC was better than the NNIMC
in Case 2, while the performance of the NNIMC was
better in Cases 3 and 4. However, the performance of
both control methods was similar, reaching similar values
of the controlled variables at the end of each batch.
Regarding the control action, both approaches proposed
similar temperature values, verifying a better performance,
in terms of control effort, of the NMPC in Cases 1 and 2,
while the NNIMC was better in the other scenarios.

Fig. 3 presents the performance of the NMPC and the
NNIMC for Case 4. The behavior of the control actions
calculated by both approaches is similar. A stable tem-

Table 3. L̄30 and m values at the end of the
controlled batches with the NMPC and the

NNIMC, and the total control effort.

Case System L̄30 (µm) m (g)
∑

∆u(k)2

1
Target 225.0 9.00 -
NNIMC 211.6 9.70 6.18
NMPC 212.8 9.88 4.66

2
Target 200.0 9.00 -
NNIMC 196.6 9.20 9.91
NMPC 197.7 9.16 7.87

3
Target 175.0 7.00 -
NNIMC 174.3 7.06 17.47
NMPC 173.6 7.12 22.99

4
Target 160.0 8.00 -
NNIMC 159.1 8.03 22.61
NMPC 159.0 8.07 24.19

perature is maintained after the setpoints are achieved.
Moreover, the NMPC and the NNIMC can achieve the
setpoints immediately after the initial growth of 60 min
without control and maintain the controlled variables on
the desired values until the end of the batch. In Fig. 3,
both strategies presented a small overshoot for the crystal
mass before achieving the setpoint. Therefore, the NNIMC
and the NMPC present a potential for controlling the
paracetamol batch crystallization process.

Fig. 3. Performance of the NMPC and the NNIMC for
Case 4.

Table 4 presents the average time the NNIMC and the
NMPC required to calculate the control actions in each
case. Both approaches took around the same time to ob-
tain these values. The NNIMC took less time to calculate
the temperature in Cases 2 and 4, while the opposite
happened in Cases 1 and 3. A relevant characteristic of a
controller is obtaining the control action quickly in order to
apply this change immediately to the process and achieve
the desired values of the controlled variables without delay.
Both control approaches demanded less time than the
sampling time to compute a control action.

Real measurements always present uncertainties, and to
account for this, we tested the performance of the con-
trollers by applying random noise in the state variables
following the normal distribution. The noise is described in
(11), in which ymi is the state variable i (concentration and
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Table 4. Mean time for the NNIMC and the
NMPC to calculate the optimal control action.

Case NNIMC time (s) NMPC time (s)

1 4.081× 10−2 3.981× 10−2

2 4.085× 10−2 4.789× 10−2

3 4.112× 10−2 2.641× 10−2

4 4.091× 10−2 4.208× 10−2

Fig. 4. Performance of the NMPC and the NNIMC for
Case 2 with noise.

moments), and R(t) is a random variable (R(t) ∼ N(0, 1)).
Each case was simulated 300 times to test the controllers’
performance with different noise values.

ỹmi = ymi (1 + 0.01R(t)) (11)

The performance of the controllers for a random simu-
lation of Case 2 with noise is illustrated in Fig. 4. In
the simulations of Case 1, the controllers could not reach
the setpoints again, presenting offset on both controlled
variables. However, the NMPC and the NNIMC could
maintain the controlled variables in their setpoints in most
simulations of the other cases, even accounting for noise.
Moreover, the NNIMC presented the advantage of making
fewer changes in the manipulated variable. This advantage
can also be seen in Table 5 , which presents the standard
deviation and the mean value of the sum of the squared
variation of the manipulated variable in each time step
during the operation of the controllers for the 300 simu-
lations. The NMPC imposed more temperature changes
to the crystallization process compared to the NNIMC,
using more energy to control the process. Furthermore,
the total control effort presented high standard deviation
values, showing that the noise presents a big influence
on the control action, especially in the NMPC. Table 5
also presents the mean values of the mean volume crystal
size and the mass of crystals at the end of the batch and
their standard deviations for the 300 simulations. In most
cases, the NMPC and the NNIMC could achieve similar
values for the controlled variables, closely approaching the
setpoints while exhibiting low standard deviation.

Table 6 presents the average time the control approach
takes to calculate the control actions, accounting for the

Table 5. Standard deviation and mean values
of L̄30 and m at the end of the noisy controlled
batches with the NMPC and the NNIMC,
and standard deviation and mean of the total

control effort.

Case System L̄30 (µm) m (g)
∑

∆u(k)2

1
Target 225.00 9.000 -
NNIMC 208.16± 0.46 9.275± 0.037 17.98± 7.65
NMPC 207.55± 0.47 9.454± 0.022 80.40± 32.83

2
Target 200.00 9.000 -
NNIMC 192.79± 0.06 8.835± 0.012 19.89± 8.69
NMPC 192.11± 2.17 8.61± 0.093 76.27± 56.91

3
Target 175.00 7.000 -
NNIMC 174.62± 0.21 6.849± 0.013 30.07± 9.04
NMPC 172.42± 0.03 7.140± 0.001 131.17± 43.91

4
Target 160.00 8.000 -
NNIMC 158.95± 0.19 7.817± 0.001 36.39± 14.19
NMPC 159.98± 0.23 8.013± 0.001 120.09± 51.30

noise and 200 calculations of the control action in each
simulation of a specific case. The NNIMC demanded a
similar time compared to its performance, not considering
noise. On the other hand, the NMPC demanded more time
in comparison to the previous case. Therefore, the NNIMC
presented an advantage in computational cost compared to
the NMPC.

Table 6. Mean time for the NNIMC and the
NMPC calculate the optimal control action
200 times in each case with noise in the state

variables.

Case NNIMC time (s) NMPC time (s)

1 4.087× 10−2 1.007× 10−1

2 4.059× 10−2 9.375× 10−2

3 4.057× 10−2 1.345× 10−1

4 4.063× 10−2 1.270× 10−1

4. CONCLUSION

This work aimed to show the potential application of
neural network-based control of a batch cooling crystal-
lization process. This proposed controller considered this
machine learning tool as an inverse model, that is an
NNIMC, and its performance was compared to a nonlinear
model predictive controller (NMPC) for controlling the
yield and size of the crystals. The neural network training,
testing, and validation showed predictions very close to the
true values for the respective datasets obtained from the
NMPC simulated data. Comparing the performances, the
NNIMC showed a lower computational cost in the evalu-
ated scenarios accounting for noise. Another advantage of
the NNIMC is that it imposed fewer temperature changes
than the NMPC, using much less energy to achieve the
same control target. In this way, the machine learning
approach proved to be a good alternative to the NMPC,
which uses the population balance model as an internal
model. The introduction of noise into the process suggests
that, for practical applications of crystallization control,
the NNIMC presents greater versatility.
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