
Recursive Dynamic inner Principal
Component Analysis for Adaptive Process

Modeling ⋆

Qilin Qu ∗,∗∗ Yining Dong ∗∗ Ying Zheng ∗

∗ School of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:

zyhidy@mail.hust.edu.cn)
∗∗ School of Data Science, City University of Hong Kong, Hong Kong

China (e-mail: yining.dong@cityu.edu.hk)

Abstract: Dynamic latent variable (DLV) methods, represented by dynamic-inner principal
component analysis (DiPCA), take into account the high dimensionality and auto-correlation of
industrial process data to successfully extract and model the dynamic components. Meanwhile,
the time-varying dynamics involved in industrial processes motivate us to explore adaptive DLV
methods. In this paper, we propose a recursive DiPCA (RDiPCA) for time-varying dynamic
process modeling. Specifically, a recursive autocovariance matrices updating method and the
corresponding deflation method are given to achieve low computational costs. The computational
efficiency is further improved by a recursive parameter initialization approach in the iterative
optimization algorithm solving procedure. Finally, the effectiveness of the proposed algorithm
is demonstrated with experiments on a numerical dataset and a wastewater treatment plant
dataset.

Keywords: Dynamic latent variable methods; Recursive dynamic-inner principal component
analysis; Adaptive dynamic process modeling.

1. INTRODUCTION

Owing to the development of computer science and mea-
surement technology, accessible industrial process data has
been of great help in improving the safety and quality of
production. In addition, monitoring and control based on
big data analytics such as Qin et al. (2020) and Basanta-
Val (2018) are becoming an important part of the indus-
trial production process. At the same time, the large-scale,
high-dimensional, dynamic, and time-varying industrial
process data poses significant challenges to data-driven
modeling and monitoring.

Principal component analysis (PCA) is one of the most
widely used techniques in industrial process monitoring.
It detects process anomalies by mapping high-dimensional
cross-correlated data into principal component subspace
and residual subspace and establishing separate or com-
bined monitoring indices. To address the time-varying
characteristic of processes, Li et al. (2000) proposed a
recursive PCA, which transforms the eigenvalue computa-
tion into a one-rank modification problem by recursively
updating the data covariance matrix. On top of that, Qin
(1998) proposed a recursive PLS. These methods greatly
reduce the computational cost and makes it possible to up-
date the model online to monitor time-varying processes.

⋆ This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFA1003504;
in part by the National Natural Science Foundation of China under
Grant 22322816 and 61873102; in part by the CityU New Research
Initiatives under Grant 9610640.

However, PCA assumes that process data is static and
not auto-correlated. Practically, widespread control loops
make this assumption difficult to justify. Therefore, some
methods consider the dynamics of processes, such as
DPCA by Ku et al. (1995). Further, attempting to address
dynamic and time-varying characteristics simultaneously,
Hu et al. (2012); Hajarian et al. (2020); Feng et al. (2022)
extended the DPCA method into a recursive approach and
also established the corresponding adaptive monitoring
indices. Despite discussing on dynamics, these methods
are generally based on DPCA, which does not have an ex-
plicit dynamic objective thus lacks the ability to separate
dynamic components. Moreover, the consistency between
the mean and variance of the lagged sample vectors is
ignored, which increases the computational cost and makes
the covariance matrix of the augmented sample vector not
block Toeplitz.

To construct temporal monitoring statistics and provide
more meaningful information, slow feature analysis (SFA)
based modeling and monitoring was proposed by Guo
et al. (2016). The idea is to isolate temporal dynamics
from steady conditions of processes. Shang et al. (2018)
developed a tailored recursive SFA (RSFA) algorithm and
an adaptive monitoring method by considering the time-
varying dynamic behavior of process variables. However,
SFA focuses only on first order dynamics, which makes the
dynamic information inadequate.

Dynamic latent variable (DLV) methods were proposed
to extract the dynamic components. Li et al. (2011,

12th IFAC International Symposium on
Advanced Control of Chemical Processes
July 14-17, 2024. Toronto, Canada

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative Commons License CC-
BY-NC-ND.

685



2014) proposed a DLV modeling algorithm and an im-
proved structured dynamic PCA algorithm. The former
method extracts latent variables by maximizing the auto-
covariance between samples and their delayed augmenta-
tion, while the latter one maximizes the variance of the
delayed samples. Then both methods establish a vector
auto-regressive (VAR) model for latent variables to repre-
sent dynamic relationships. Further, Dong and Qin (2018);
Dong et al. (2020) proposed DiPCA and DiCCA methods
and designed a model structure that ensures the objective
of the outer dynamic latent variable extraction model is
consistent with the inner latent variable prediction model,
making the extracted dynamic components interpretable.

Currently, to the best of our knowledge, no existing DLV
methods can address the time-varying nature of processes.
In this paper, we take the advantages of DiPCA to investi-
gate adaptive modeling methods for dynamic time-varying
processes. Specifically, we propose a recursive DiPCA that
greatly reduces the computational costs of model updat-
ing by consistently updating the mean and variance of
the sample and augmented sample vectors. Therefore, the
auto-covariance matrices are updated in an efficient way
that only calculation on new samples is required. The
corresponding efficient deflation method is also given to ex-
tract multiple DLVs. In addition, a recursive initialization
method is proposed to further accelerate the computation
by reducing the iteration times in solving the optimization
problem.

The subsequent parts of this paper are organized as fol-
lows. Section 2 reviews the dynamic-inner principal com-
ponent analysis method. Section 3 introduces the proposed
the recursive dynamic-inner principal component analysis
algorithm. Section 4 gives experiments with simulation
data and industrial data. In Section 5 we discuss the
conclusions.

2. DYNAMIC-INNER PRINCIPAL COMPONENT
ANALYSIS

2.1 Objective Function

The optimization problem of DiPCA can be formally
described as follows. Let xh be a m × 1 time series at
time h where the dynamics are concentrated in a subspace
spanned by P, then it can be represented by

xh = Pth + ϵh. (1)

The l-dimensional (l < m) dynamic latent vector th
contains all the dynamics in xh.

By focusing on the first dynamic latent variable, we have
a scalar AR inner model as

th = β1th−1 + · · ·+ βsth−s + rh, (2)

with the latent variable extracted from the original vari-
ables by a linear outer model as

th = xT
hw. (3)

Then the prediction of t̂h formed according to (2) can be
written as

t̂h = xT
h−1wβ1 + xT

h−2wβ2 + · · ·+ xT
h−swβs

=
[
xT
h−1 xT

h−2 · · · xT
h−s

]
(β ⊗w),

(4)

where β = [β1 β2 · · · βs].

If raw samples are collected as a data block

X0 =
[
x0
1 x0

2 · · · x0
s+N

]T
,

X0
i =

[
x0
i x0

i+1 · · · x0
i+N−1

]T
, for i = 1, . . . , s+ 1.

(5)

For easy representation, we refer to the current model as
the kth model. Then the data should be standardized
before model building using the current mean vector
bk and a diagonal matrix Σk containing the standard
deviations as

X = (X0 − 1s+NbT
k )Σ

−1
k ,

Xi = (X0
i − 1NbT

k )Σ
−1
k ,

where

bk =
1

s+N
(X0)T1s+N ,

1j = [1 1 · · · 1]
T ∈ Rj , for j = N, s+N,

Σk = diag(σk,1, σk,2, · · · , σk,m),

The element σk,i in Σk denotes the standard deviation of
the ith variable.

Then define

Xk = Xs+1,

Zk = [Xs Xs−1 · · · X1] ,

Rzx
k = ZT

kXk/(N − 1),

where Rzx
k essentially contains a series of auto-covariance

matrices of the standardized xh from lag 1 to lag s.

Aiming to extract explicit dynamic latent relations,
DiPCA objective function maximizes the covariance be-
tween th and t̂h, which can further be derived as

max .
w,β

wT (Rzx
k )T (β ⊗ w)

s.t. ∥w∥ = 1, ∥β∥ = 1.
(6)

2.2 Algorithm

According to Dong and Qin (2018), the optimization prob-
lem (6) can be solved by inducting Lagrangian multipliers.
The key parameters w and β for one DLV extraction can
be obtained using the following algorithm.

Algorithm 1 Iterative algorithm to solve problem (6).

Input: Rzx
k and order s

1: Initialize a random unit vector w
2: repeat
3: β = (Is ⊗w)TRzx

k w
4: β := β/∥β∥
5: Find w as the eigenvector corresponding to the

largest eigenvalue of (Rzx
k )T (β⊗Im)+(β⊗Im)TRzx

k
6: until convergence

Output: Parameters w and β

After solving w and β, the predicted DLV can be obtained
by a inner model

t̂s+1 = α1ts + α2ts−1 + · · ·+ αst1, (7)

where
ti = Xiw. (8)

The coefficients α = [α1 α2 · · · αs]
T

is the least square
solution by

α = (TT
s Ts)

−1TT
s ts+1, (9)

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

686



where
Ts = [ts ts−1 · · · t1] = Zk(Is ⊗w). (10)

To extract the next DLV, the data matrix should be
deflated to remove the impact from the current DLV,
t = Xw, as

X := X− tpT , (11)

where the loading vector p is calculated as

p = XT t/tT t. (12)

Then the deflated X can form Xk and Zk. The next DLV
can be extracted by repeating the same algorithm above.

3. RECURSIVE DYNAMIC-INNER PRINCIPAL
COMPONENT ANALYSIS

If a new DiPCA model is required when new raw samples
are collected after the initial samples as

X0
new =

[
x0
s+N+1 x0

s+N+2 · · · x0
s+N+L

]T
, (13)

a direct way is to repeat the processes in Section 2.1 by
adding the new raw samples in (5) to re-organize the whole
data matrix as

X0
k+1 =

[
X0

X0
new

]
. (14)

Considering the time complexity, this approach has to
calculate all the required relations of X0

k+1. For space
complexity, the algorithm has to memorize the old data
matrix. Undoubtedly, its computational costs increase
rapidly when the model updates over and over.

By noticing that the calculation procedure of Algorithm 1
is only related to Rzx

k , a recursive algorithm is proposed
to efficiently update the model by keeping and updating
the autocovariance matrices as follow.

3.1 Recursive Updating of Autocovariance Matrices

In order to update the autocovariance matrices, the mean
and variance update strategy is first explored. The up-
dated mean vector can be represented with relation to the
initial mean vector as

bk+1 =
1

s+N + L

[
(s+N)bk +

(
X0

new

)T
1L

]
. (15)

The recursive calculation of the standard deviation of the
jth original variable is

(s+N + L− 1)σ2
k+1,j =(s+N − 1)σ2

k,j + (s+N)∆b2k+1(j)

+ ∥X0
new(:, j)− 1Lbk+1(j)∥2,

(16)
where ∆bk+1 = bk+1 − bk; bk+1(j) and ∆bk+1(j) are the
j-th elements of the corresponding vectors; X0

new(:, j) is
the j-th column of X0

new. The detailed derivation can be
found in Li et al. (2000).

Then the standardized X0
k+1 is calculated by

Xk+1 = (X0
k+1 − 1s+N+Lb

T
k+1)Σ

−1
k+1, (17)

where Σk+1 = diag(σk+1,1, σk+1,2, · · · , σk+1,m).

To update the autocovariance matrices, which is essen-
tially equivalent to the update of Rzx

k , Xk and Zk should

be updated in advance. The derivation of the recursive
update of Xk+1 is

Xk+1 =

[[
X0

s+1

X0
new

]
− 1N+Lb

T
k+1

]
Σ−1

k+1

=

[[
XkΣk + 1NbT

k

X0
new

]
− 1N+Lb

T
k+1

]
Σ−1

k+1

=

[
XkΣkΣ

−1
k+1 − 1N∆bT

k+1Σ
−1
k+1

Xnew

]
.

(18)

where Xnew = (X0
new − 1Lb

T
k+1)Σ

−1
k+1.

Z0
k+1 is formed with X0

k+1 as

Z0
k+1 =

[
Z0

k

Z0
new

]
, (19)

where

Z0
k =

[
X0

s X0
s−1 · · · X0

1

]
,

Z0
new =

 x0
s+N x0

s+N−1 · · · x0
N+1

· · · · · · · · · · · ·
x0
s+N+L−1 x0

s+N+L−2 · · · x0
N+L

 .

The blocks in Z0
k+1 should have the same bk+1 and Σk+1

as X0
k+1, since they are submatrices of X0

k+1. Therefore,
the following intermediate vector and matrix can be intro-
duced

ak+1 = 1s ⊗ bk+1,

Ξk+1 = Is ⊗Σk+1.

Then, the recursive update of Zk+1 is calculated as

Zk+1 =

[
ZkΞkΞ

−1
k+1 − 1N∆aTk+1Ξ

−1
k+1

Znew

]
, (20)

where

∆ak+1 = ak+1 − ak = 1s ⊗∆bk+1,

Znew = (Z0
new − 1La

T
k+1)Ξ

−1
k+1.

Following by the update of Zk+1 and Zk+1, the update of
Rzx

k+1 that consists of autocovariance matrices from lag 1
to lag s can be expressed as

Rzx
k+1 =

1

N + L− 1
ZT
k+1Xk+1

=
N − 1

N + L− 1
Ξ−1

k+1ΞkR
zx
k ΣkΣ

−1
k+1

− 1

N + L− 1
Ξ−1

k+1ΞkZT
k 1N∆bT

k+1Σ
−1
k+1

− 1

N + L− 1
Ξ−1

k+1∆ak+11
T
NXkΣkΣ

−1
k+1

+
N

N + L− 1
Ξ−1

k+1∆ak+1∆bT
k+1Σ

−1
k+1

+
1

N + L− 1
ZT

newXnew.

(21)

Regarding the above relation, we can have the following
assumption in most cases of industrial process data:

(1) The number of samples for training is large such
that N >> s > 1. Then we have 1

N+L−1Z
T
k 1N ≈ 0,

1
N+L−11

T
NXk ≈ 0, and therefore

1

N + L− 1
Ξ−1

k+1ΞkZT
k 1N∆bT

k+1Σ
−1
k+1 ≈ 0,

1

N + L− 1
Ξ−1

k+1∆ak+11
T
NXkΣkΣ

−1
k+1 ≈ 0.

(22)

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

687



(2) The amount of new samples is much less than that
of the initial samples N >> L, and perturbation on the
variance is not significant, then

ΞkΞ
−1
k+1 ≈ Ism,

ΣkΣ
−1
k+1 ≈ Im.

(23)

(3) Old samples are exponentially ignored as they do
not represent the current process when process dynamics
changes. The recursive calculations for (15) and (16) with
a forgetting factor µ are:

bk+1 =µbk + (1− µ)
1

L
(X0

new)
T1L,

σk+1,j =µ(σ2
k,j + (s+N)∆b2k+1(j))

+ (1− µ)
1

L
∥X0

new(:, j)− 1Lbk+1(j)∥2.

(24)

Therefore, the recursive calculation of Rzx
k+1 in (21) re-

duces to
Rzx

k+1 =µ
(
Rzx

k + 1s ⊗ (Σ−1
k+1∆bk+1∆bT

k+1Σ
−1
k+1)

)
+ (1− µ)

1

L
ZT

newXnew.
(25)

By now, a new DLV that describes the current dynamics
can be obtained by Algorithm 1.

3.2 Recursive Parameter Initialization

Recall that in Algorithm 1, the initialization of the param-
eter w exerts a great influence on the convergence speed.
To reduce the computational costs further, a recursive
parameter initialization strategy is proposed here.

When the projection matrix Wk =
[
w1

k,w
2
k, · · · ,wl

k

]
of

the k-th model is known, where l is the number of DLVs,
we initialize the first w of the (k + 1)-th model as

w1
k+1 = w1

k. (26)

After the i-th vector wi
k+1 of the (k + 1)-th model is

obtained, where i = 1, 2, · · · , l − 1 , the wi+1
k+1 of the next

DLV is initialized as
Wi

k+1 =
[
w1

k+1,w
2
k+1, · · · ,wi

k+1

]
wi+1

k+1 =
(
Im −Wi

k+1(W
i
k+1)

T
)
wi+1

k ,

wi+1
k+1 := wi+1

k+1/∥w
i+1
k+1∥.

(27)

Obviously, the orthogonality ofWk+1 are maintained from
(27).

3.3 Deflation

After one DLV is extracted with the updated Rzx
k+1, this

component should be removed from the data when another
DLV is required. According to (12), the loading vector p
can be calculated with the current Xk+1 as

p =
XT

k+1Xk+1w

wTXT
k+1Xk+1w

=
Rxx

k+1w

wTRxx
k+1w

. (28)

where Rxx
k+1 = XT

k+1Xk+1/(N + s+ L− 1).

Similar to (25), the covariance matrix Rxx
k+1 can be up-

dated recursively as

Rxx
k+1 =µ

(
Rxx

k +Σ−1
k+1∆bk+1∆bT

k+1Σ
−1
k+1

)
+ (1− µ)

1

L
XT

newXnew,
(29)

Therefore, the calculation of p can be achieved after
updating Rxx

k+1.

Once p is calculated, Zk+1 and Xk+1 can be deflated using
p as in (11), which in turn leads to a deflation in Rzx

k+1 as

Rzx
k+1 :=

[
Zk+1 − Zk+1(Is ⊗wpT )

]T [Xk+1 − Xk+1wpT
]

:=Rzx
k+1 − (Is ⊗wpT )TRzx

k+1 −Rzx
k+1wpT

+ (Is ⊗wpT )TRzx
k+1wpT .

(30)

In addition, it can be inferred from (28) that the covariance
matrix Rxx

k+1 should also be deflated such that the next p
can be calculated. The deflation of Rxx

k+1 is

Rxx
k+1 :=

[
Xk+1 −Xk+1wpT

]T [
Xk+1 −Xk+1wpT

]
:=Rxx

k+1 − 2Rxx
k+1wpT + (wpT )TRxx

k+1wpT .
(31)

3.4 Inner model

The least square solution of the inner model (9) can be
rewritten as

α = ((Is ⊗w)TRzz
k (Is ⊗w))−1(Is ⊗w)TRzx

k w, (32)

where Rzz
k = ZT

k Zk/(N − 1).

Therefore, it can be calculated by the recursive update of
Rzz

k+1 as

Rzz
k+1 =µ

(
Rzz

k + (1s1
T
s )⊗ (Σ−1

k+1∆bk+1∆bT
k+1Σ

−1
k+1)

)
+ (1− µ)

1

L
ZT

newZnew.

(33)

When the inner model of the next DLV is required, Rzz
k+1

should be deflated as

Rzz
k+1 :=Z̄T

k+1Z̄k+1

=Rzz
k+1 − 2Rzz

k+1(Is ⊗wpT )

+ (Is ⊗wpT )TRzz
k+1(Is ⊗wpT ),

(34)

where Z̄k+1 =
[
Zk+1 − Zk+1(Is ⊗wpT )

]
.

So far, the RDiPCA algorithm can be organized as Al-
gorithm 2. We can conclude that multiple DLVs and the
corresponding inner model can be updated with the re-
cursive update of Rzx

k+1, R
xx
k+1, and Rzz

k+1. Additionally,
for space complexity, RDiPCA only needs to memorize
the three matrices Rzx

k , Rxx
k , Rzz

k , and the corresponding
mean vector and standard deviation. More importantly,
the computational costs of updating these matrices will
not increase since the scales of these data matrices do not
accumulate.

4. CASE STUDY

We conduct experiments on a numerical case and a
wastewater treatment plant case to find out the effective-
ness of the proposed method. By comparing with DiPCA
without update (DiPCA-N) and direct update (DiPCA-
D), the RDiPCA achieves significant improvement in time-
varying DLV extraction, computational costs, and predic-
tion accuracy.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

688



Algorithm 2 RDiPCA algorithm to extract multiple
DLVs.
Input: Previous model Rzx

k ,Rxx
k ,Rzz

k ,bk,Σk,Wk; new
raw samples X0

new; order s; number of DLVs l
1: Update bk+1,Σk+1 using (15), (16)
2: Update Rzx

k+1,R
xx
k+1,R

zz
k+1 using (25), (29), (33)

3: for i = 1, 2, · · · , l do
4: if i = 1 then
5: Initialize wi

k+1 using (26)
6: else
7: Initialize wi

k+1 using (27)
8: end if
9: repeat

10: βi = (Is ⊗wi)TRzx
k+1w

i

11: βi := βi/∥βi∥
12: wi is the eigenvector corresponding to the largest

eigenvalue of (Rzx
k+1)

T (βi ⊗ Is) + (βi ⊗ Is)
TRzx

k+1

13: wi := wi/∥wi∥
14: until convergence
15: Inner model αi = ((Is⊗wi)TRzz

k+1(Is⊗wi))−1(Is⊗
wi)TRzx

k+1w
i

16: Deflation using (30), (31), (34)
17: end for
Output: Updated model Rzx

k+1, Rxx
k+1, Rzz

k+1, bk+1,
Σk+1, Wk+1

4.1 Numerical case

In this numerical case, tk is generated from a time-varying
vector auto-regression process, and xk is generated from a
latent variable model as

tk = Atk−1 + vk

xk = Ptk + ek,

where vk ∈ R3 ∼ N([0, 12]), ek ∈ R10×1 ∼ N([0, 12]),
and P ∈ R10×3 sampling from R10×3 ∼ N([0, 12]).
Then samples are continuously generated from a initial
coefficient matrix A1 to a updated coefficient matrix A2,
where

A1 =

(
0.5 0 0
0 0.4 0
0 0 0.3

)
, A2 =

(
0.9 0 0
0 0.4 0
0 0 0.3

)
.

22000 samples are generated in total and the coefficient
matrix changes at the 20000-th point. We choose s = 1
and l = 3 to fit the models.

Fig. 1 shows the DLVs extraction results of several meth-
ods. By comparing the auto-correlation of the DLVs and
the corresponding dynamic error (DR), it can be concluded
that when dynamic changes, DiPCA-N and DiPCA-D can
not accurately extract and model the auto-correlation of
the first DLV, resulting in time-dependent DR. Meanwhile,
RDiPCA extracts all the dynamics in DLVs. Fig. 2 il-
lustrates the prediction results on the first variable (X1).
RDiPCA shows its best prediction accuracy among these
methods.

Table 1 summarizes several indices of these methods,
where RDiPCA has the best performance in terms of
smaller mean square error (MSE), more accurate eigen-
values and lower computational costs. Notably, despite the
number of initial samples is quite large, the Computational
Time (CT) of RDiPCA is not affected. This demonstrates

S
am

p
le

 A
u

to
co

rr
el

at
io

n

0

0.5

1

0
Lag

DLV1 DLV2 DLV3 DR1 DR2 DR3

R
D

iP
C

A
D

iP
C

A
-D

D
iP

C
A

-N

10 20

Fig. 1. DLVs extraction results when dynamic changes.
DLV(k) means the k-th dynamic latent variable.
DR(k) means the k-th dynamic error.

RDiPCA ensures the CT on covariance matrices not in-
crease as model updates.

Table 1. Performance comparison between dif-
ferent methods in simulation data.

CT MSE eigenvalues

DiPCA-N 0.010403s 0.6224 0.4919 0.4004 0.3207
DiPCA-D 0.010499s 0.5908 0.5226 0.4002 0.3176
RDiPCA 0.001272s 0.5050 0.8936 0.4024 0.3045

Real 0.9 0.4 0.3

4.2 Wastewater treatment plant-BSM1

This is a Benchmark Simulation Model 1 (BSM1) de-
veloped by the International Water Association (IWA),
which aims to realize a long-term simulation study in the
whole wastewater treatment plant (WWTP). A number
of researches related to chemical engineering have been
taken on this dataset to verify their effectiveness in process
modeling, control, and monitoring. In this case, 17 process
variables (PV1-17) are used, and 4000 continuous samples
with time-varying dynamics are collected. The first 2700
samples are used to train an initial model, followed by 500
samples to update it, and the last 800 to test.

After normalizing with the same scaling, we compare the
prediction performance of the three methods. Fig. 3 shows
the prediction results on PV1. It can seen that RDiPCA
prediction is the closest to the real value, especially on the
peak points. Table 2 shows the corresponding MSEs of all
the process variables and CTs. It illustrates RDiPCA is
able to capture the dynamic changes more appropriately
while costs less time to update the model.

Table 2. Performance comparison between dif-
ferent methods in steam process data.

CT MSE

DiPCA-N 0.011282s 0.7193
DiPCA-D 0.013447s 0.3717
RDiPCA 0.005570s 0.0698

5. CONCLUSION

In this paper, an RDiPCA is proposed to model high-
dimensional, dynamic, and time-varying processes. Model
performances are maintained via a recursive update strat-
egy to follow process dynamic changes. Meanwhile, the
low computational costs of RDiPCA make online updates

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

689



0 200 400 600 800 1000
-4

-2

0

2

4
Real value

RDiPCA

0 200 400 600 800 1000
-4

-2

0

2

4
Real value

DiPCA-D

0 200 400 600 800 1000
-4

-2

0

2

4
Real value

DiPCA-N

Time

Fig. 2. Prediction with lower dimensional dynamics on the first variable of simulation data.

0 200 400 600 800
-1

0

1

2

3

4

5
Real value

RDiPCA

0 200 400 600 800
-1

0

1

2

3

4

5
Real value

DiPCA-D

0 200 400 600 800
-1

0

1

2

3

4

5
Real value

DiPCA-N

Time

Fig. 3. Prediction with lower dimensional dynamics on the MV8 of steam process data.

of the dynamic model feasible. RDiPCA, therefore, can
be directly used to model and monitor nonstationary pro-
cesses. Case studies on a numerical and a wastewater treat-
ment plant demonstrate the effectiveness of the proposed
RDiPCA algorithm.

REFERENCES

Basanta-Val, P. (2018). An efficient industrial big-data
engine. IEEE Transactions on Industrial Informatics,
14(4), 1361–1369.

Dong, Y., Liu, Y., and Joe Qin, S. (2020). Efficient
dynamic latent variable analysis for high-dimensional
time series data. IEEE Transactions on Industrial
Informatics, 16(6), 4068–4076.

Dong, Y. and Qin, S. (2018). A novel dynamic pca
algorithm for dynamic data modeling and process mon-
itoring. Journal of Process Control, 67, 1–11.

Feng, X., Kong, X., He, C., and Luo, J. (2022). High-
dimensional, slow-time-varying process monitoring tech-
nique based on adaptive eigen subspace extraction
method. Journal of Process Control, 117, 122–131.

Guo, F., Shang, C., Huang, B., Wang, K., Yang, F., and
Huang, D. (2016). Monitoring of operating point and
process dynamics via probabilistic slow feature analysis.
Chemometrics and Intelligent Laboratory Systems, 151,
115–125.

Hajarian, N., Sobhani, F., and Sadjadi, S. (2020). An
improved approach for fault detection by simultaneous
overcoming of highdimensionality, autocorrelation, and
timevariability. PLoS ONE, 15(12 December).

Hu, Z., Chen, Z., Hua, C., Gui, W., Yang, C., and Ding,
S. (2012). A simplified recursive dynamic pca based
monitoring scheme for imperial smelting process. Inter-
national Journal of Innovative Computing, Information
and Control, 8(4), 2551–2561.

Ku, W., Storer, R.H., and Georgakis, C. (1995). Dis-
turbance detection and isolation by dynamic principal
component analysis. Chemometrics and Intelligent Lab-
oratory Systems, 30(1), 179 – 196. Cited by: 1284.

Li, G., Qin, S., and Zhou, D. (2014). A new method
of dynamic latent-variable modeling for process mon-
itoring. IEEE Transactions on Industrial Electronics,
61(11), 6438–6445.

Li, G., Liu, B., Qin, S.J., and Zhou, D. (2011). Dynamic
latent variable modeling for statistical process monitor-
ing. volume 44, 12886 – 12891.

Li, W., Yue, H., Valle-Cervantes, S., and Qin, S. (2000).
Recursive pca for adaptive process monitoring. Journal
of Process Control, 10(5), 471–486.

Qin, S. (1998). Recursive pls algorithms for adaptive data
modeling. Computers and Chemical Engineering, 22(4-
5), 503–514.

Qin, S., Dong, Y., Zhu, Q., Wang, J., and Liu, Q. (2020).
Bridging systems theory and data science: A unifying
review of dynamic latent variable analytics and process
monitoring. Annual Reviews in Control, 50, 29–48.

Shang, C., Yang, F., Huang, B., and Huang, D. (2018).
Recursive slow feature analysis for adaptive monitoring
of industrial processes. IEEE Transactions on Industrial
Electronics, 65(11), 8895–8905.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

690


