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Abstract: In the mining industry, flotation is a commonly used process to separate valuable
minerals from waste rock in a concentrator. The rougher flotation is the first stage of the
process and in Boliden AB’s concentrator at Aitik, it consists of two lines of four flotation
cells each. In this paper we consider one line and the buffer tank upstream of it. Modeling this
process step, and maintaining an updated model over time, is a challenge. The process itself
changes over time as equipment degrades and parts are replaced. Additionally, the operating
conditions in the flotation process change as the ore quality varies. We address these challenges
by using reinforcement learning (RL) to design a state feedback controller for level control,
without the need of an explicit process model. Using simulations, we compare the performance
of the resulting controller to that of the cascade coupled PI-control structure that operates the
real plant today. The RL-based controller improves the performance and shows good potential.
However, convergence to an admissible control law requires careful hyper-parameter tuning.
Industrial deployment thus requires further work to ensure the required reliability.

Keywords: Machine learning methods and applications, Advanced process control, Flotation,
Level control, Reinforcement learning.

1. INTRODUCTION

To produce metals, the raw ore needs to be processed in
order to concentrate the minerals that will later be smelted
into metals. In the process of concentrating minerals,
flotation is commonly used. In series of flotation cells,
differences in surface properties are used to separate the
valuable minerals from waste rock. To do so, the ore
is milled and mixed with water to form a slurry to
which chemical reagents are added. The reagents make
the selected minerals water repellent, which allows them
to attach to air bubbles generated at the bottom of the
flotation cells and form a mineral froth on top of the slurry
in the cells. To extract more of the minerals from the
slurry, the tailing from one flotation cell is the feed to the
next. The froth is collected as it flows over the rim of the
flotation cells. As stated in Bergh and Yianatos (2011),
this makes good level control one of the foundations to
having good overall recovery of the minerals.

Level control in flotation is traditionally governed by PI
controllers. However, since the flotation cells are connected
in series, the cell levels form a strongly coupled system
(Jamsa-Jounela et al., 2003). The control performance
of the PI controllers are often sufficient under normal
operating conditions, but not when disturbances, such as
inflow variations, enter the system. Therefore multivari-
⋆ This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. The authors affiliated with
the Department of Automatic Control are members of the ELLIIT
Strategic Research Area at Lund University.

able controllers and cascade coupling of SISO-loops are
sometimes used. For example, LQ-control and a decoupling
controller was investigated by Stenlund and Medvedev
(2002). Model predictive control (MPC) has been imple-
mented for flotation by Brooks and Munalula (2017) to
control the froth velocity. With this objective, the MPC
targets the references to the base layer controllers rather
than the level control itself.

A challenge with model-based approaches is that they rely
on the development and maintenance of good models. Not
only does the ore quality vary over the deposit, which
results in different operating conditions, but equipment
is also degraded over time and occasionally exchanged
which require model updates to maintain good control
performance.

This paper investigates reinforcement learning for level
control as an example of how a state feedback law can
be designed without the need of an explicit process model.
The considered process section will be the rougher flota-
tion circuit at the concentrator plant in the Aitik mine,
run by Boliden AB located in Gällivare, northern Sweden.
The performance of the resulting controller is compared
in simulation to the existing control structure of the plant
today.

2. PROCESS DESCRIPTION AND MODELING

The considered process consists of a buffer tank and four
flotation cells. A schematic picture of the process is shown
in Figure 1. The slurry from the two upstream milling lines
enters the buffer tank.Its volumetric inflow rate is hence
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Fig. 1. Schematic overview of the considered process sec-
tion: a buffer tank followed by four flotation cells in
series. Slurry is actively pumped from the buffer tank
to the first flotation cell. The slurry level in tank/cell
i is hi, and neighboring flotation cells are mounted at
a height difference ∆h. The flow qi out of flotation cell
i is moderated by the control signal vi to a nonlinear
valve.

controlled by the milling lines and is therefore considered
as a disturbance. The slurry is actively pumped from the
buffer tank to the first flotation cell. The flotation cells
themselves are of equal size and mounted with ∆h height
difference between neighbors. Slurry flow between adjacent
cells is driven by their difference in hydrostatic pressure,
and moderated by a valve, as shown in Figure 1.

For the Aitik plant, it is a fair approximation to assume
constant slurry density throughout the process section,
and that the combined flow of froth from all cells is
negligible compared to the flow of slurry between the cells.

2.1 Buffer tank model

The level in the buffer tank, h0, will depend on the inflow
and outflow of slurry,

dh0

dt
=

1

A0
(qin − q0), (1)

where A0, qin and q0 are the tank cross section area and
the tank inflow and outflow rate, respectively. An estimate
of the inflow, qin, is available in the control system. The
outflow q0 is related to the control signal, v0, to the pump
that drives the slurry to the first flotation cell. From
process data, it can be concluded that q0 has a linear
dependency on v0. Therefore q0 is modeled as

q0 = Kfv0, (2)

where Kf is a constant. Combining equations (1) and (2)
gives us the model

dh0

dt
=

1

A0
(qin −Kfv0). (3)

The responses to step changes in the control signal v0 are
shown in Figure 2, both for the resulting model, and the
real process.

2.2 Flotation cell model

As for the buffer tank, the level in flotation cell i, hi, can
be modeled as

dhi

dt
=

1

A
(qi−1 − qi). (4)

Here A is the cross section area of the flotation cell. For
the flotation cells, the outflow, qi, is approximated by a
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Fig. 2. Step responses of the slurry level resulting from a
sequence of steps in the control signal v0. Red line
shows experimental data from the real process; blue
line is data from the fitted model (3). The mean value
and linear trends are removed from the step responses.
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Fig. 3. Step responses of slurry level in flotation cell one,
resulting from a sequence of steps in the valve control
signal v1. Red line shows experimental data from the
real process; blue line is data from the fitted model
(4) with (5), for the first cell. The mean value and
linear trends are removed from the step responses.

quadratic function of the control signal vi. The hydrostatic
pressure across the valve will also affect the velocity of the
slurry flow between the cells. Since the valve opening is
small compared to A, Torricelli’s law applies and hence the
volumetric flow rate will be proportional to the square root
of the slurry level difference between the communicating
cells. Thus, qi can be modeled as

qi = (c2iv
2
i + c1ivi + c0i)

√
hi − (hi+1 −∆h). (5)

The constants c2k, c1k and c0k have been chosen to
minimize the L2 error when compared to data from the
real plant. A representative example of the resulting model
match is shown in Figure 3.

2.3 System model

Combining the models described by equations (3) and (4),
we arrive at
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dh0

dt
=

1

A0
(qin −Kfu0), (6a)

dhi

dt
=

1

A
(qi−1 − qi), i = 1, . . . , 4, (6b)

where q0 = Kfu0. To represent effects of other phenomena
that the model does not capture, a disturbance signal
generated by filtering independent white noise sources
through auto-regressive (AR) filters was added to the
individual levels. The coefficients of the AR filters were
chosen to match characteristics of measurements recorded
from the real process, for further details on the noise
modeling (Norlund, 2022).

3. CONTROL

We investigate the use of a reinforcement learning (RL)
algorithm to design a linear quadratic controller. The
algorithm is entirely data-driven and has no knowledge
of the process model described above. This is of practical
interest, since both the process itself, and its operating
conditions, change over time. These changes are hard to
accommodate online within the outlined model.

The algorithm presented below is based on Bradtke (1992)
and Lewis et al. (2012), where the latter also provides
a broader introduction to RL. It relies on N samples,
collected during closed-loop operation of the system, to
update a state feedback controller based on a linear
quadratic control cost function. This procedure is iterated
until the controller converges to the state feedback law
that is optimal for the imposed cost function.

For the traditional linear-quadratic controller, the cost
function is given by

J(x,u) =

∞∑
i=0

xkQxk + ukRuk, (7)

where u is the sequence of future control signals, and x
is the system state. Also note that x and u represent
deviations from a reference equilibrium defined by href

and uref , leading x and u to be controlled to zero and

h = href + x,

v = uref + u.
(8)

The indexing k in (7) refers to time steps and starts from
the current sample x0. The matrices Q and R are design
matrices chosen to provide an adequate trade-off between
state error and control action. The quadratic cost (7) is
used to arrive at the linear control law

uk = −Lxk, (9)

where the feedback gain L is a constant matrix. The
system that is to be controlled can be modeled as

xk+1 = Axk +Buk, (10)

where the matrices A and B represent the dynamics of
the system. Traditional linear-quadratic (LQ) control is
described further in Glad and Ljung (2000). When the
control law is chosen as in equation (9), to control a system
represented by (10), the closed loop system will become
xi+1 = (A − BL)xi. Since this pattern repeats itself for
future time steps, we have that

xk+N = (A−BL)Nxk. (11)

Using (11), (7) can be written as

J(x,u)=
xT
k

2

∞∑
i=0

(AT − LTBT )i(Q+ LTRL)(A−BL)ixk

=
1

2
xT
k PLxk =: Q(xk,uk).

(12)
Here PL depends on the chosen feedback gain L. Also note
that

Q(xk,uk) =
1

2
(xT

kQxk+uT
kRuk)+Q(xk+1,uk+1). (13)

Combining equation (10), (12) and (13), Q(xk,uk) can be
expressed as

Q(xk,uk)=
1

2
(xT

kQxk+uT
kRuk)

+
1

2
(Axk+Buk)

TPL(Axk+Buk)

=

(
xk

uk

)T (
ATPLA+Q ATPLB
BTPLA BTPLB+R

)(
xk

uk

)
.

(14)
Minimizing Q(xk,uk) with respect to uk is done by
solving

∂Q(xk,uk)

∂uk
= 0, (15)

resulting in

uk = −(BTPLB +R)−1BTPLAxk, (16)

being a minimizer of Q(xk,uk). When a linear model of
the system, as in equation (10), is available, PL is found
by solving an algebraic Riccatti equation. Its solution is
then used to calculate the gain matrix of the control law
in equation (16).

Now let us move on to the case when the system model
is unknown. As further explained in Lewis et al. (2012),
equation (14) can be written

Q(xk,uk) =

(
xk

uk

)T (
Sxx Sxu

Sux Suu

)(
xk

uk

)
. (17)

Here Sxx and Suu are symmetric matrices and ST
xu = Sux.

Minimizing Q with respect to uk results in the control law

uk = −S−1
uu Suxxk. (18)

This means that if the matrix elements of S can be
estimated from data, then a control law can be determined.
Combining equation (13) and (9) and re-arranging gives

Q(xk,uk)−Q(xk+1,−Lxx+1) =
1

2
(xT

kQxk + uT
kRuk).

(19)
With a data set at hand, the right-hand side of this
equation consists of only known variables. By expanding
equation (17), one can tell that Q(xk,uk) is linearly
dependent on the elements of S, and can be written

Q(x,u) = φ(x,u)Tθ (20)

where θ contains the elements of S and φ(x,u) contains
the corresponding combinations of the elements in x and
u. For example if the system has one state and one control
signal, expanding equation (17) gives

Q(xk, uk) = Sxxx
2
k + 2Sxuxkuk + Suuu

2
k

=
(
x2
k 2xkuk u2

k

)(Sxx

Sxu

Suu

)
= φ(x, u)Tθ.

(21)
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Combining (19) and (20) gives(
φ(xk,uk)−φ(xk+1,−Lxk+1)

)T
θ

=
1

2
(xT

kQxk + uT
kRuk).

(22)

The θ-vector is the only unknown in (22). To solve for
θ, at least as many equations as elements of the θ-vector
are required. Equation (22) is valid at every time step,
and can hence be formed for each sample to give the
required number of equations to solve for θ. Assembling
these equations into a system, we arrive at

Φθ = Y, (23)

where each row of Φ contains the first factor in the left-
hand side of (22) for a unique time step, and the rows of Y
contain the right-hand side of equation (22) for each time
step. From (23), the least squares approximation of θ can
be found according to

θ̂ = (ΦTΦ)−1ΦTY. (24)

With this approximation of the elements in S, the control
law can be updated according to equation (18).

4. SIMULATIONS

4.1 Designing a controller with the RL-algorithm

The algorithm derived in Section 3 is summarized in
Algorithm 1.

Algorithm 1 Tune a controller with the RL-algorithm

L: Stabilizing feedback gain
Q: State weight matrix for cost function
R: Control signal weight matrix for cost function
e : f(t) + Noise (ensuring sufficient exploration)
N : Number of samples before updating L

while |L− Lnew| > tol or other stop criteria do
L = Lnew

Collect N samples of data with the control law
uk = −Lxk + ek
Construct Φ and Y
Calculate θ̂ with equation (24)

Find Lnew from θ̂ according to equation (18)
end while

In the case where the algorithm is applied to a simulation
model of the process described in Section 2, the initial,
stabilizing feedback gain is chosen to be, L = I. For this
process, keeping the levels of the flotation cells close to
their reference points is the highest priority. Therefore, the
weights in Q corresponding to the cell levels have higher
values than the weights corresponding to the buffer tank
and the weights in R corresponding to the control signals.

To ensure that the samples collected contain enough infor-
mation about the dynamics of the system, a disturbance
component is added to the control signal. The disturbance
component, ek, that is designed to perform sufficient ex-
ploration on this system, consisted of Gaussian white noise
and low frequency square waves. The period of the square
wave was chosen to match the speed of the dynamics of the
system components. The square waves are only present in
one cell at a time, so that the effects of them are seen in

0 400 800 1,200 1,600
−1
0
1

x
0
[%

]

0 400 800 1,200 1,600
−3
0
3

·10−2

x
2
[m

]

0 400 800 1,200 1,600
−3
0
3

u
0
[%

]

0 400 800 1,200 1,600
−5
0
5

u
2
[%

]

0 400 800 1,200 1,600
−3
0
3

e 0
[%

]
0 400 800 1,200 1,600

−5
0
5

Sample
e 2
[%

]

Fig. 4. The first tuning iteration of the RL-algorithm per-
formed on the system consisting of a buffer tank and
four flotation cells. There are square waves present
in the disturbance term, ek, for one cell at a time,
starting with the buffer tank. The buffer tank and
the second cell are shown.

the surrounding cells. They are applied from left to right
in the process, starting in the buffer tank.

Since the system has five states and five control signals, S
is a symmetric 10× 10 matrix with 55 unknown param-
eters to be determined. Thus, the minimum number of
samples before updating is 56, but to get a better estimate
more samples can be gathered. During tuning, N = 2000
samples were collected before the control law was updated.
The inflow of slurry to the buffer tank was assumed to be
constant during the tuning process, as well as the level
references for the cells.

In Figure 4, the first tuning iteration is seen for the buffer
tank and the second cell. The effects of the disturbances in
the buffer tank are clearly seen in the second cell as well.
The impact of the square waves in the first cell is also
clearly visible in the second cell, they take place between
sample 400 and 800.

With five states and five control signals, L will have size
5× 5. How the elements of its diagonal are updated over
the first 15 iterations of the RL-algorithm is shown in
Figure 5. With the control law (9), the diagonal elements
of L tells us how much the state xi contributes to the
control signal ui. Off-diagonal elements in the gain matrix
also contribute to the control signals, but theses gains are,
in our case, smaller. In the considered, and representative,
example, it takes the algorithm seven iterations to con-
verge to a feedback gain.

The controller designed above will drive the states back
to the references that were set when it was designed. To
enable it to follow other references and correct stationary

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

805



0 2 4 6 8 10 12 14

−6

−4

−2

0

2

Iteration

G
a
in

Buffer cell 1 cell 2

cell 3 cell 4

Fig. 5. The RL-algorithm is applied to the system con-
sisting of a buffer tank and four flotation cells. The
evolution—iteration by iteration—of the elements on
the main diagonal of the gain matrix in the feedback
law is visualized as they converge to stationary values.

errors, without re-tuning it, integral action can be added
to the controller. This can be achieved by augmenting the
state vector with integral states of the tracking error, xint,
resulting in

xtot =

[
x

xint

]
. (25)

The feedback gain matrix must also be extended to include
feedback gains for the integral states. One way to achieve
this is to choose the gain matrix for the integral states,
Lint to be a diagonal matrix. The total gain matrix will
then be

Ltot = [L,Lint]. (26)

4.2 RL-based versus currently implemented controller

In the Aitik plant, variations in the slurry flow to the buffer
tank is one of the biggest disturbances to the levels in
the flotation cells. The biggest inflow disturbance occurs
when one of the two milling lines that supply flotation with
slurry unexpectedly stops. This roughly halves the inflow
of slurry to the flotation series. Process data from a real
occurrence of this kind of disturbance has been extracted
and used as input to the model. In Figure 6, the RL-based
controller’s response to the abruptly changed slurry flow
is visualized along with the slurry flow. The RL-based
controller considered is the resulting controller from the
previous section, after the tuning procedure has converged.
There is no tuning active when the controller is tested in
this section.

In the real plant, the level control is governed by cascade
coupled PI-controllers. We have implemented a digital
twin of the control system, including actual parameter val-
ues, in our simulation environment. This way, the control
structure of the real plant and the RL-based controller
can be exposed to the same disturbances and their per-
formance can be compared. In Figure 7, the performance
of the PI-controllers is shown when the system is exposed
to the same inflow disturbance as in Figure 6. While this
paper focuses on the comparison between the PI-structure
and the RL-based controller, the interested reader can
find an evaluation of MPC- and LQ-control for the same
process in Norlund (2022).

The level in the buffer tank is not of interest as long as it
does not overflow or become empty. It can be seen from
Figures 6 and 7 that this requirement is met by both the
RL-based controller and the PI-structure.
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Fig. 6. A slurry inflow, qin, extracted from real process
data that contains typical disturbances is fed to the
simulation model of the process consisting of a buffer
tank and four flotation cells. The system is controlled
by the model-free RL-based state feedback controller.
The effect of the disturbances for the levels in the
flotation cells and the buffer tank are shown along
with the corresponding control signals.

The effects on the levels in the flotation cells are of bigger
interest. When the big inflow disturbance occurs at time
t = 10 in Figures 6 and 7, the levels in the cells are affected
by it. For the cells, it is desired that the amplitude of
the level deviations due to the disturbance should be as
small as possible and that the level should return to its
reference fast. It is visible in the figures that the impact of
the disturbance is bigger for the PI-controllers than for the
RL-based controller, both when it comes to the amplitude
of the deviations caused by the inflow disturbance, and
the duration of the effects of it. Comparing the maximum
amplitude deviations in the flotation cells, it is reduced
with 42 % on average by the RL-based controller compared
to the PI-controllers. When it comes to the time it takes
the levels to return to their references, a tolerance around
the reference is chosen and the time it takes for the level
to return to the tolerated area is measured. This time is
on average reduced by 75 % by the RL-based controller
compared to the PI-controllers.

Observing the noise canceling properties of the controllers
in steady state, it can be observed from Figures 6 and 7
that they both have good noise canceling properties. Look-
ing at the root mean square error (RMSE) for a typical
steady state sequence, the RL-based controller reduces it
with roughly 50 % compared to the PI-controllers for the
flotation cells. However, the noise canceling properties of
the PI-controllers is already satisfactory.
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Fig. 7. A slurry inflow, qin, extracted from real process
data that contains typical disturbances is fed to the
simulation model of the process consisting of a buffer
tank and four flotation cells. The system is controlled
by PI-controllers configured to be identical to those
in the real plant. The effect of the disturbances for
the levels in the flotation cells and the buffer tank are
shown along with the corresponding control signals.

5. DISCUSSION

As was demonstrated in the previous section, the RL-based
feedback controller has overall better performance than
the cascade-coupled PI-controllers. It has both better noise
canceling properties and better disturbance rejection. This
serves to show that the method has potential to improve
operation under varying conditions.

Since the algorithm boils down to solving a moderately
sized least-squares problem, it can be executed on almost
any contemporary computer. However, some considera-
tions, discussed below, need to be made before deploy-
ment.

In our studied example, the feedback gain converged over
just a few iterations. This requires that the control signal
perturbations, ek provide sufficient exploration.

Even though the algorithm does not require an explicit
process model, some knowledge of the process is needed for
the choice of the cost function matrices Q and R. For the
initial choice of L, and the design of the additive noise, ek
it is also beneficial to have some prior process knowledge.

Since ek is added to the control signal, the limitations
ensuring that uk stays within its bounds still ensures
this for a physical process. If the tuning process is to
be performed on the real system, the choice of ek will
also constitute a trade off. It should be chosen as small
as possible not to disturb production, while large enough
to ensure sufficient exploration. This can lead to that the

updated controller performs worse than the previous one,
or even destabilises the system.

Looking at the data collection during the tuning procedure
from a production point of view, the applied exploratory
control signal has a large impact on production. To be
practically feasible, further attention would need to be put
on how to achieve adequate exploration, while maintaining
adequate control performance.

Our study has shown that “model-free” RL-based control
can achieve control performance that supersedes that of
the currently implemented control system. However, this
comes at the cost of initially exciting the dynamics more
than would be practically admissible, to obtain sufficient
model knowledge. Future work would therefore need to
focus on improved experiment designs. Here methods
that adjust the experiment online based on the system
response, such as Berner and Soltesz (2017) could prove
viable.

6. CONCLUSION

Summarizing the above observations, one could conclude
that the RL-based control show good potential to design
a state feedback controller without the need of an explicit
process model. This makes it highly relevant for processes
that are hard to model, where the process itself or its
operating conditions change over time. However, the ap-
proach has a number of practical considerations that must
be addressed when applying it to a real process. Particu-
larly, an adequate balance between stable operation during
exploration and sufficient excitation of the dynamics must
be met.
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