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Abstract: Patients with chronic kidney disease suffer from renal anemia due to inadequate
erythropoietin (EPO) secretion. Determining the optimal EPO dosage and frequency is complex
and requires decision-support technologies. Model predictive control (MPC) is an effective
decision-making technique that requires a prediction model of the controlled process. In this
work, it was discovered that Physics-Informed Neural Networks for Control (PINNC), which
integrates physiological model with data-driven methodology, were capable of predicting the
patient hemoglobin level with good accuracy and computational efficiency. Based on this
prediction model, we developed a zone MPC framework to optimize the dosing strategy.
Simulation results show that the proposed control method can serve as an effective tool for
determining the optimal EPO dosages for renal anemia patients.

Keywords: Renal anemia; Erythropoietin therapy; Model predictive control; Physics-informed
neural networks

1. INTRODUCTION

Patients with chronic kidney disease often experience re-
nal anemia due to inadequate secretion of erythropoietin
(EPO)(Babitt and Lin, 2012). The treatment for this con-
dition involves the administration of recombinant human
EPO, which is typically prescribed based on hemoglobin
(Hgb) levels and previous dosage records. However, de-
termining the optimal EPO frequency and dosage is a
complex task that requires extensive clinical experience.
This is because while low Hgb levels can lead to anemia,
excessive Hgb levels can increase the risk of Hgb fluctua-
tions and even mortality (Bradbury et al., 2009). Thus, it
is essential to provide medical staff with decision-support
technologies that can assist in determining the optimal
EPO dosage and frequency to maintain desired Hgb levels
and minimize treatment costs.

Model predictive control (MPC) is used in this work to
determine the optimal EPO dosage for anemia treatment.
Based on receding-horizon optimization, classical MPC is
designed to achieve a set-point target, which is appropriate
for systems that need to follow specific trajectories. How-
ever, many practical control problems require keeping the
desired state within a defined zone, rather than a specific
value. This type of target zone is frequently required in
biomedical control systems, such as the regulation of blood
glucose levels and Hgb levels. In such cases, it is possible to
integrate the target zone into MPC by using Zone Model
Predictive Control (ZMPC)(Grosman et al., 2010).ZMPC
divides the trajectory into two parts: permitted ranges and
undesired areas. The objective of ZMPC is to manipulate
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the EPO dosages so that the Hgb levels stay within the
permitted ranges. The block diagram of the ZMPC system
for Hgb control is presented in Figure 1.

Physics model and data-driven model are widely used in
predictive control. Physics models are based on fundamen-
tal principles and can provide a deep understanding of
the underlying mechanisms that govern a system, while
data-driven models can capture complex relationships and
patterns in data that may not be readily apparent through
physical models alone. In the context of regulating human
Hgb levels, physiological model may not fully capture the
complexities of real patient. On the other hand, relying
solely on a data-driven approach may struggle with in-
accuracies because of data deficiencies or poor clinical
data quality. The convergence of physics-based models and
data-driven approaches, however, presents a promising av-
enue, offering a more potent and adaptable framework for
predicting and controlling human hemoglobin levels with
improved accuracy and applicability. Introduced by Raissi
et al. (2019), physics-informed neural networks (PINN)
is a type of machine learning technique that combines
the power of neural networks with the physical laws that
govern the system. This is achieved by adding penalty
terms on physical law (model equation) violations to the
loss function for neural network training. This combina-
tion can regularize the learning process and improve the
performance of neural networks. In control applications,
PINN can be used to model and control complex systems
that may be difficult to model using traditional physics-
based models. Using PINN, we can learn from data and
incorporate prior knowledge of the system’s physics to
make predictions. This allows the PINN to be trained on
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Fig. 1. ZMPC structure

limited data, reducing the need for expensive and time-
consuming data collection.

Using PINN in MPC can improve the accuracy and ef-
ficiency of the control algorithm, especially in systems
with complex or nonlinear dynamics. However, the original
PINN does not have interfaces for control input. Besides,
the initial states are fixed in one value, which does not
meet the requirement for rolling optimization in MPC.
Considering these limitations, we apply a modified PINN
structure called Physics-Informed Neural Nets for Con-
trol (PINNC) (Antonelo et al. (2024),Nicodemus et al.
(2022)) in the controller design. The inputs of PINNC
consist of time, initial states and control input, making
it suitable for MPC implementation. Furthermore, we
proposed an approximate exponential function to address
impulse inputs and modified PINNC network structure to
address time delay in differential equations. To mitigate
the challenge of limited training data, we introduced a
method for generating augmented training data, aiming
to counteract noise in clinical data and enhance the train-
ing of neural networks. Additionally, we showcased the
remarkable computational efficiency of PINNC within the
ZMPC architecture, affirming its capacity for EPO dosage
optimization for individualized anemia treatment.

2. PHYSIOLOGICAL MODEL

In this work, we developed the PINN model based on
pharmacokinetic and pharmacodynamic model proposed
by Chait et al. (2013). The model describes the relation-
ship between Hgb responses and EPO dosages. The model
are defined as a pharmacokinetic (PK) model described
by Equations 1-4, and a pharmacodynamic (PD) model,
described by Equations 5-8

dE(t)

dt
= − V · E(t)

Km + E(t)
− α · E(t) + dose(t) (1)

Ep(t) = E(t) + Een (2)

kin(t) =
S · Ep(t)

C + Ep(t)
(3)

Een =
C ·Hen

µ ·KH · S −Hen
(4)

dR(t)

dt
= kin(t−D)− 4x1(t)

µ2
(5)

dx1(t)

dt
= x2(t) (6)

dx2(t)

dt
= kin(t−D)− 4x1(t)

µ2
− 4x2(t)

µ
(7)

Hgb(t) = KH ·R(t) (8)

In the PK model equations, E(t) denotes the amount
of exogenous recombinant human EPO, Een denotes the

endogenous EPO, Ep(t) is the total EPO in plasma,
kin(t) is the red blood cells (RBC) production rate, and
dose(t) is the EPO dosing in international unit (IU) which
is modeled as a train of impulses (Ren et al., 2017).
Additionally, the model contains some parameters: Hen

is the Hgb level due to endogenous EPO, µ represents
the mean RBC life span, V is the maximum exogenous
EPO clearance rate, Km stands for the exogenous EPO
level that produces half-maximum clearance rate, α is the
linear clearance constant, S represents the maximal RBC
production rate stimulated by EPO, C is the amount of
EPO that produces half-maximum RBC production rate
(McAllister et al., 2018).

In the PD model, states R(t) represent the population of
red blood cells, states x1(t) and x2(t) are internal states
that aid in calculating R(t), Hgb(t) is the Hgb level which
can be clinically measured, parameters D is the time
required for EPO-stimulated RBCs to start forming, KH

is the average amount of Hgb per RBC (mean corpuscular
Hgb, or MCH, in a complete blood count) which takes the
value of KH = 29.5pg/cell (McAllister et al., 2018).

In addition to the use in PINN modeling, the above
PK/PD model is also used as the basis of the patient sim-
ulator in this work. This is achieved through numerically
solving the delayed differential equations (DDE).

3. PHYSICS-INFORMED NEURAL NETWORKS FOR
CONTROL

PINN model can incorporate the physical model equations
in data-driven models to improve interpretability and
predictive power of neural networks. Notice that for the
conventional PINN, the initial conditions are fixed. If
control inputs appears in the model, they are also fixed.
As a result, the PINN model can not handle the case with
varying initial conditions and control inputs. Hence, it is
not qualified for MPC application.

The physics informed neural network for control (PINNC)
was proposed by Antonelo et al. (2024). Compared with
original PINN, the modified PINNC has two more inputs
for control action u and initial conditions. As initial
conditions and control actions change with each rolling
optimization, the proposed PINNC can generate model
predictions based on these inputs. The output of this
network is given by Equation 9.

x̂(kT + t) = fNN (t, x(kT ), u(kT )), t ∈ [0, T ] (9)

It’s worth noting that in PINNC, we consider multiple
equidistant time intervals, each interval is represented by
[kT, (k+1)T ]. Traditional PINN tends to degrade rapidly
for long time intervals and can only accept input t in
the time duration of the training data (Antonelo et al.,
2024). Through the shorter period of T , PINNC solves this
degradation problem. Given the initial condition x(kT )
and input u(kT ), all the states during this time interval
can be predicted by trained PINNC. After getting x((k +
1)T ), we can use the final states as new initial states for
next time interval and repeat this process iteratively.

There is a delay in the impact of the EPO input on the
Hgb response, necessitating the inclusion of previous EPO
dosages in addition to the current dosage for the neural
network. In general, for the differential equations with
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input delay defined by Equation 10, the neural network
structure can be designed as Figure 2.

dx

dt
= f(t, x(t), u(t), ..., u(t− τT )) (10)

For simplicity in expression, consider a scalar state

Fig. 2. PINNC architecture to handle delay

variable x and a single ODE equation, the corresponding
loss function is a combination of two parts through user-
specified weights wdata and wode as follows.

Loss(θ) = wdataLossdata(θ) + wodeLossode(θ) (11)

where

Lossdata(θ) =
1

Ndata

Ndata∑
n=1

(y(tn)− x̂(tn, xn, un; θ))
2

(12)

Lossode(θ) =
1

Node

Node∑
n=1

(
dx̂

dt

∣∣∣∣
τn

− f(x̂(τn, xn, un; θ), τn)

)2

(13)

where (tn, yn), n = 1, · · · , Ndata are collected data points
with yn being the state measurement value, where τn,
n = 1, · · · , NODE are sampled time points for model
residual evaluation without corresponding measurement
data. Related study has shown that, if the differential
equations can represent process system accurately, it is
sufficient for training dataset to contain only the initial
conditions (Antonelo et al., 2024). But taking full advan-
tage of additional data into loss function can accelerate
convergence and improve accuracy of neural network. The
automatic differentiation is also employed for calculating
the residuals of model equations.

4. HGB PINNC MODELING AND ZMPC

4.1 Modified PK equation for PINNC Modeling

To build a PINNC model based on the PK/PD model
Equations 1-8, there is an issue that the impulse input
differential Equation 1 cannot be directly used to calculate
the residual, and approximating this non-smooth model
residual function through neural networks is inefficient. To
address this issue, we proposed an approximate analytical
approximation solution (Equation 14) for the differential
equation 1. This equation describes the decay process of
exogenous EPO in the human body, where a0, a1, a2, a3
are undetermined parameters, tj and dosej correspond
to the j-th EPO administration time and dosage value,

respectively. N(t) is the total number of dosing times up
to time t.

E(t) =

N(t)∑
j=1

dosej ·exp
[
−(a0e

−dosej
a1 + a2)(t− tj)

a3

]
(14)

4.2 Training Data Generation

Our strategy for training the PINNC model involves
the generation of augmented training data derived from
clinical data, driven by two primary considerations.

Firstly, clinical record data often exhibit measurement
noise and disturbances that pose challenges in effectively
training the neural network using only clinical Hgb and
EPO dosages data. Moreover, exceptional situations such
as internal bleeding, blood transfusion, infections, and iron
absorption, which are not accounted for in the PK/PD
model equations, introduce further complexities into the
training process (Chait et al., 2013).

Secondly, clinical data typically lacks information on vari-
ables x1 and x2, which could enhance the training of the
PINNC model (Wang et al., 2017). To address these issues,
we begin by collecting a clinical dataset encompassing
EPO dosage values and Hgb records. Subsequently, we
employ the inverse PINN method proposed by Zhang and
Li (2023) to estimate the unknown parameters of the
PK/PD model from the clinical data. Finally, with the
estimated PK/PD model parameters, we numerically solve
the model equations (Equations 1-8) to obtain simulated
data on Hgb, x1, and x2 for use as training datasets.

4.3 Loss function for training

With the collected clinical data for anemia patient and
the augmented training data generated using the above
procedure, the loss function for PINNC model contains
the following terms

Lossdata =
1

Ndata

Ndata∑
n=1

{
(Hgb(tn)−KH · R̂(tn))

2

+ (x1(tn)− x̂1(tn))
2 +(x2(tn)− x̂2(tn))

2
}

(15)

Lossode =
1

Node

Node∑
n=1


(
dx̂1(t)

dt

∣∣∣∣
τn

− x̂2(τn)

)2

+

(
dR̂(t)

dt

∣∣∣∣
τn

−
{
kin(τn −D)− 4x̂1(τn)

µ2

})2

+

(
dx̂2(t)

dt

∣∣∣∣
τn

−
{
kin(τn −D)− 4x̂1(τn)

µ2
− 4x̂2(τn)

µ

})2


(16)

4.4 PINNC-based ZMPC for Hgb Control

Like ordinary MPC, zone-MPC uses rolling optimization
to calculate optimal manipulated variables and takes the
first control input into action based on recurrent states.
The significant part of zone-MPC is the cost function.
Instead of driving the model output to a specific set point,
the cost function of zone-MPC will penalize the prediction
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out of defined zone and allow the model output to stay
in the permitted range. The zone-MPC is formulated as
following

min

N∑
i=1

Ck+i

∥∥Rk+i −Rref
∥∥2
Q
+

N−1∑
j=0

∥∆EPOk+j∥2R (17)

s.t. Ck+i =

{
0, if HgbLB ≤ KHRk+i ≤ HgbUB

1, otherwise
(18)

Rref =
1

2KH
(HgbLB +HgbUB) (19)

Xk+i = fPINNC(T,Xk+i−1, EPOk+i−1, EPOk+i−2)
(20)

∆EPOk+j = EPOk+j − EPOk−1 (21)

0 ≤ EPOk+j ≤ EPOmax (22)

where the state variable is Xk+i = {Rk+i, x1 k+i, x2 k+i},
fPINNC is the prediction model using PINNC, Ck+i is a
penalty coefficient, which penalizes the prediction out of
permitted range. The mean value of two bounds is the
reference value in Equation 19. It has been proved by
Gondhalekar et al. (2013) that zone-MPC has robustness
against plant model mismatch as well as against measure-
ment noise. But because there is no penalty to restrain
states in the permitted range, the optimal output may
be close to the upper bound or lower bound. To solve
this problem, usually we can choose a tighter range than
actually desired scope.

5. RESULTS

To evaluate the proposed modeling and control strategy,
we designed a virtual patient based on the PK/PD model
1-8, with the model parameters reported in Table 1. With

Table 1. Parameters for PK/PD model

α Km V C D Hen µ S

0.384 129 497 38.0 5.61 6.15 90.4 0.00565

the virtual patient in place, we were able to generate
various control input sequences (EPO dose sequences), use
them to generate training data and test the prediction
performance of the PINNC model as well as the control
performance of ZMPC. To simulate the effects of blood
transfusion or infection on the patient’s Hgb response, we
multiply the red blood cell population R(t) by a parameter
Ad. Furthermore, to simulate the noise in clinical blood
test data, we add a Gaussian noise to the updated RBC
population.

In the training process of the PINNC, the proposed ap-
proximate model equation 14 is used to replace equation 1.
As detailed in Zhang and Li (2023), we simulate the origi-
nal Equation 14 to get the profile of E(t) under the a given
EPO dose sequence. Afterwards, we sample data from the
true solution and then use the least squares method to es-
timate the parameters in the approximate model equation
14. The corresponding parameters a0, a1, a2, a3 have been
estimated as 2.5, 2760, 0.0572 and 1.73, respectively .

To account for time delays in the equations, the EPO
input from the previous period is incorporated into the
neural network. The architecture depicted in Figure 2 is
employed, with τ set to 1. Considering the Hgb treatment

process, we set the sampling period T as 7 days. The
neural network consists of 5 hidden layers, each with 128,
256, 512, 256, and 128 neurons. Additionally, Ndata is set
to 945, and Node is set to 9450. The Adam optimizer is
utilized with a learning rate of 0.0001. Following 50000
epochs of training, we attain a suitable PINNC model for
MPC implementation.

5.1 PINNC model prediction performance

Before implementing PINNC into MPC, we test the model
prediction accuracy through self-loop prediction. In this
method, we iteratively apply the model to predict the Hgb
profile, relying on the initial state and the provided dosing
sequence. The self-loop function can be characterized as
follows:

x̂((k + 1)T ) = f(T, x̂(kT ), u(kT ), ..., u(kT − τT )) (23)

In addition, we also compare the self-loop PINNC model
with the Long Short-Term Memory (LSTM) network
which is a pure data-driven recurrent neural network ca-
pable of time series analysis and prediction, proposed by
Hochreiter and Schmidhuber (1997). The LSTM network
comprises three hidden layers with 64, 128, and 64 neurons,
respectively. Based on past 8-week Hgb and EPO data,
LSTM network predicts the Hgb value of following week.
To mitigate overfitting and improve the generalization
ability of LSTM, the sample data is divided into a training
set (70%) and a validation set (30%).

The neural network’s performance is evaluated across
multiple test sets. Figures 3-4 and Table 2 illustrate the
self-loop predictions of the PINNC and LSTM networks,
along with the corresponding root mean square error
(RMSE). In test set 1, we reduce the EPO dosages in
the training set by half and compare the model’s self-loop
predictions with the original PK/PD model solution. The
results are presented in Figure 3. In test set 2, we generate
a set of random EPO dosages based on the mean and
standard deviation of the EPO dosage data in the training
set. Figure 4 displays the three predicted Hgb trajectories
based on this random input sequence.

Table 2. RMSE for self-loop prediction

LSTM PINNC

RMSE (Test1) 0.4918 0.2579

RMSE (Test2) 0.6120 0.3435

In general, the PINNC provides a better prediction ac-
curacy compared to the LSTM. Although there is error
accumulation, the solution of the optimal control problem
within the MPC framework is robust enough to handle
this error for larger time horizons. In addition to its
accuracy, the PINNC model also demonstrates superior
computational efficiency. Table 3 presents a comparison of
the time required to calculate Hgbk+1 from Hgbk using
both the explicit Euler method from the PK/PD model,
the LSTM network, and the proposed PINNC model. The
Euler method employs a step size of 0.01s, and both the re-
cursive calculation of the Euler method and the LSTM net-
work are computationally expensive. Additionally, when
the PINNC model is integrated into the MPC framework,
there is an added acceleration, as the computation of the
gradient with respect to control inputs can be performed
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Fig. 3. Test 1: Prediction based on half EPO dosages

Fig. 4. Test 2: PINNC prediction based on random EPO
dosages

Table 3. Execution time for calculating Hgb of
next period

Euler LSTM PINNC

Mean execution time (s) 0.0057 0.0179 0.0005

concurrently with the PINNC evaluation, as outlined in
Nicodemus et al. (2022).

5.2 Model predictive control results

In clinical treatment, the EPO dosage is within certain
ranges. To ensure the safety of the patient, we establish
an upper limit on the amount of EPO that can be ad-
ministered, which is based on the highest recorded EPO

value during the patient’s treatment. This limit is ex-
pressed as the inequality constraint 22. For the patient in
this experiment, the maximum EPO dosage is 20,000 IU.
Considering the healthy range for Hgb (Benz, 2008), we
set the target Hgb zone as 13 to 14 grams per deciliter. In
addition, we addressed potential complications that may
arise during treatment in the previous section, such as
internal bleeding and infections. These issues are simu-
lated by multiplying the red blood cell population by a
parameter Ad, as described in Equation 24. The parameter
Ad assumes a value of 1 in the absence of any abnormal
conditions. Nevertheless, at the 175th day, we deliberately
assign it a value of 0.8 to emulate the occurrence of internal
bleeding, resulting in a abrupt reduction in Rk. In a similar
fashion, we modulate Ad to 0.95 between the 525th and
581st days to replicate the presence of a chronic infection.
These disturbances increase the realism of the simulation
and serve as a test of the model’s robustness.

Rk,new = AdRk (24)

Fig. 5. Solution of ODE-based and PINNC-based zone-
MPC with disturbance

The PK/PD Equations 1-8, utilizing the parameters from
Table 1, are employed in the virtual patient simulator and
solved using the Euler method. The prediction horizon for
the system is set at 4 weeks, and the tuning parameters
for zone-MPC are configured as Q = 1000 and R = 0.2.
For comparison purposes, we also implement a zone MPC
using the same PK/PD model as a prediction model. Its
performance is then compared with the PINNC model-
based ZMPC. The simulation results spanning a duration
of 728 days are presented in Figure 5, indicating that
the patient’s Hgb levels, starting at 8.5, stabilize within
the healthy range. Despite instances of internal bleeding
on the 175th day and an infection between the 525th
and 581st day, the controller effectively responds to these
disturbances, restoring the Hgb levels to normal.

We also consider the impact of measurement noise in the
system. A series of Gaussian noise are added to the Hgb
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Fig. 6. Solution of ODE-based and PINNC-based zone-
MPC with disturbance and noise

measurement from the patient simulator. The mean of
the distribution is 0, while the standard deviation is set
to 0.3. The combined effect of disturbances and noise is
shown in Figure 6. When the Hgb level is within the
permissible range, the EPO dosage remains unchanged.
However, when the Hgb level approaches the boundary,
the controller adjusts the dosage value accordingly. The
simulation results demonstrate satisfactory control perfor-
mance over a two-year period. Furthermore, the simulation
results obtained using PINNC closely match the control
response based on PK/PD prediction model, confirming
that PINNC can serve as a reliable approximation model
to replace the physiological model in controller design.

6. CONCLUSION

A key challenge in modeling and controlling the Hgb re-
sponse is the large variability that exists between individu-
als. As such, personalized modeling approaches that incor-
porate patient-specific data and physiological knowledge
may be necessary to develop accurate and effective models
of the Hgb response. The original PINN can not meet the
requirement to update the initial states and control input.
Therefore, we propose to use the PINNC as the prediction
model. This framework makes PINN suitable for controller
design. Meanwhile, this kind of neural network can also use
physics information to improve performance. According to
the optimized EPO dosage and schedule, patient’s Hgb
level can be controlled in the target range. The proposed
zone-MPC system with PINNC model can serve as a data-
driven decision supporting tool for anemia treatment. The
proposed modeling approach can be further extended by
incorporating patient-specific data, such as the patient’s
age, gender, and medical history.
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