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Abstract: Nowadays, deep learning has emerged as a transformative technology in various domains, 

including process monitoring. Massive advanced deep learning algorithms, such as autoencoder, recurrent 

neural network, and convolutional neural network, have been explored in the application of chemical 

processes to enhance the overall monitoring performance. Nevertheless, deep learning models often imply 

complex structures and a huge number of parameters, leading to limited generalization ability when they 

are employed in industrial chemical processes. In this work, the above limitation is addressed by monitoring 

the representative and discriminative features extracted in the latent space by Siamese autoencoder. The 

reconstruction ability and discriminative information between a pair of inputs are considered in the 

extraction of latent features, by which better process monitoring performance can be achieved with much 

fewer model parameters.  Case study on an industrial chemical process is investigated to demonstrate the 

effectiveness of the proposed method.  

Keywords: Process monitoring, deep learning, Siamese neural network, catalytic reforming, heat 

exchanger. 

1. INTRODUCTION 

Safe and stable operation has been an important prerequisite 

for chemical production. With the increasing scale and 

complexity of modern industrial processes, the various 

nonideal conditions and random factors during practical 

process operation can rarely be sufficient described by first-

principle models, leading to a poor process monitoring 

performance.  

Relying on the rapid development of measurement techniques, 

complex industrial systems are equipped with massive sensors, 

and large amounts of data implying internal process operation 

information can be stored through the distributed control 

systems (DCS), which facilitates the emergence of data-driven 

process monitoring methods(Severson, et al. (2016)). 

Multivariate statistical process monitoring (MSPM), 

represented by principal component analysis (PCA) and partial 

least square (PLS), has been an effective way to detect 

abnormal deviations based on process data since 1990s (Kresta, 

et al. (1991)). Generally, MSPM methods transform data into 

a lower representative space through liner projection, where 

monitoring statistics are then established for fault 

detection(Chiang, et al. (2000)). Qin  reviewed the application 

of traditional MSPM methods in process industry(Qin (2012)).  

Kano et al. evaluated the performance of different MSPM 

methods in monitoring Tennessee Eastman (TE) process(Kano, 

et al. (2002)), which is a well-known benchmark simulation 

process. Nevertheless, different from simulation processes, 

chemical industrial processes are far more complex with 

significant nonlinearity and process dynamics, making it 

difficult to be captured through statistical feature extraction(Ji 

and Sun (2022)).  

As an alternative, deep learning techniques have attracted 

significant attentions as a new branch of data-driven process 

monitoring research(Kong and Ge (2021)). Under this 

category, autoencoders (AEs) have been widely reported to be 

employed for fault detection(Wan, et al. (2019)). The AE can 

be regarded as a special neural network structure containing an 

encoder layer and a decoder layer. The encoder layer is used 

for feature extraction and dimensionality reduction, and the 

decoder layer is adopted for data reconstruction. The overall 

objective of AEs is to minimize the difference between 

original data and reconstructed data. Benefitting from the 

activation functions of neural networks, AEs are able to 

effectively extract the nonlinear relationships among process 

variables.  

The process dynamics and other complex features of industrial 

process data can also be considered simultaneously through 

the integration with different neural network structure, such as 

recurrent neural network (RNN)(Zhang, et al. (2020)) and 
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convolutional neural network (CNN)(Wu and Zhao (2018)). 

To further improve fault detection performance, Ma et al 

considered the model residuals of CNN to amplify the process 

deviations(Ma, et al. (2022)). Zhang and Qiu integrated the 

dynamic latent variable model into the CNN to better capture 

process dynamics(Zhang and Qiu (2022)). Yu et al proposed a 

long short-term memory (LSTM) AE to extract the long-term 

time dependency(Yu, et al. (2021)). Ma et al. proposed a three-

dimensional convolutional AE for spatial feature extraction in 

three-dimensional equipment(Ma, et al. (2023)).  

One main issue should be concerned is the generalization 

ability of the deep learning models, as the powerful fitting 

ability is derived from complex model structure and numerous 

trainable parameters.  Regularization is an effective technique 

to avoid overfitting by applying certain constraints on the 

parameters of the model. Lee at al. proposed a variation AE-

based process monitoring method to constrain the distribution 

of latent features(Lee, et al. (2019)). Cheng et al. further 

combined variation AE with RNN(Cheng, et al. (2019)). 

Cacciarelli and Kulahci proposed orthogonal AEs to regularize 

the correlation among latent variables(Cacciarelli and Kulahci 

(2022)). Although the aforementioned regularization could 

reduce the risk of overfitting, the feature extraction ability and 

fault detectability of the model can also be affected.  

In this work, a Siamese AE (SAE) with constraints is proposed 

for monitoring chemical industrial processes. The Siamese 

neural network (SNN) contains two subnetworks with two 

different inputs but the same structure and 

parameters(Bromley, et al. (1993)), implying that the size of 

the dataset can be extended while the complexity of the model 

is the same as ordinary neural networks. Moreover, the training 

objective of the Siamese AE consists of both the reconstruction 

error and the conditional contrastive loss, by which the global 

features of variable correlation and local features of sample 

distance can be considered simultaneously to enhance the 

process monitoring performance. The effectiveness of the 

proposed methods is verified through a heat exchanger unit of 

a catalytic reforming process. 

2. PRELIMINARIES 

2.1 PCA 

PCA is a widely used data analysis method for statistical 

process monitoring. It can reduce the dimension of data and 

extract the main information of process variables through 

examining the variance-covariance of the process 

variables(Wang and He (2010)). Given a set of normalized 

historical data 𝑿𝑛×𝑚 consisting of 𝑛 data samples and 𝑚 

process variables, the data can be transformed as follows, 

𝑿𝑛×𝑚 = 𝑻𝑷𝑚×𝑘
𝑇 + 𝑬 (1) 

where 𝑻 = 𝑿𝑛×𝑚𝑷𝑚×𝑘 is the score matrix, 𝑷𝑚×𝑘 denotes the 

projection matrix, which is solved through the Lagrange 

multiplier method, 𝑘  is the number of the principal 

components, and 𝑬 represents the residual.  

For online monitoring, the real-time sample 𝒙 is transformed 

by  𝑷𝑚×𝑘 into principal component space (PCS), and the 𝑇2 

statistic is adopted to measure the changes in PCS, 

𝑇2 = ∑
(𝒑𝑖

𝑇𝒙)2

𝜆𝑖

𝑘

𝑖=1

(2) 

where 𝒑𝑖  represents the projection of the 𝑖 th projection 

direction and 𝜆𝑖  denotes its corresponding eigenvalue. 

Relatively, the squared prediction error (SPE) statistic is used 

to monitor the residual space. 

𝑆𝑃𝐸 = ∑ (𝒑𝑖
𝑇𝒙)2

𝑚

𝑖=𝑘+1

(3) 

Under the assumption that process data follow a multivariate 

Gaussian distribution, the control limits of 𝑇2  and SPE 

statistics at certain confidence intervals can be 

determined(Jackson and Mudholkar (1979)). 

2.2 AE, RNN, and LSTM 

The AE can be regarded as a nonlinear version of PCA, which 

adopts neural networks to fit the nonlinear relationship among 

variables. As shown in Figure 1, the encoder compresses the 

input data into a lower-dimensional representation, while the 

decoder works to reconstruct the original input data with the 

compressed representation. Generally, AEs can be trained 

using backpropagation to minimize the difference between the 

original input and the reconstructed output. 

 

RNN is a special neural network structure, which can extract 

dynamic features of the process through the information 

transfer in latent states ℎ𝑡, so it is widely applied to time series 

analysis. The schematic diagram of the RNN model is shown 

in Figure 2(a), and it can be seen that the latent state ℎ𝑡 of the 

RNN model at the moment 𝑡 is related not only to the input 𝑥𝑡 

at the current moment, but also to the latent state ℎ𝑡−1 of the 

previous moment, and thus the dynamic information in the 

time series could be captured.  

Theoretically, the long-term temporal dependence in the time 

series can be considered by the iterative calculation of the 

latent states, but this simple state transfer in RNN does not 

work well in dealing with the long-term time series because 

each iteration multiplies the latent states of the past moments 

by the weight coefficients, which means the weight 

coefficients of the latent states in distant moments will be very 

small or even close to zero, and therefore the long-term 

information is almost forgotten by the RNN.  

Figure 1. The structure of an ordinary AE. 
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Comparatively, LSTM neural network is proposed as a special 

RNN and shows good performance in dealing with long-term 

time dependence of time series, which is widely used in the 

fields of time series prediction and process monitoring, etc. As 

shown in Figure 2(b), the LSTM neural network adopts three 

gate structures and one memory unit to decide the transfer and 

update of information between latent states.  The LSTM neural 

network introduces the concept of memory through the 

memory unit 𝐶𝑡, while the transfer and updating of information 

in the latent state can be controlled through the gate structure 

calculated as follows, 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (6) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝑔𝑡 (8) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝐶𝑡) (9) 

where 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡represent the input gate, forget gate, and output 

gate, respectively, 𝑥𝑡 is the input at the current moment, 𝑔𝑡 is 

the candidate state at the current moment, 𝐶𝑡 , 𝐶𝑡−1 are the 

memory cells at the current moment and the previous moment, 

ℎ𝑡 , ℎ𝑡−1 denote the latent states at the current and the previous 

moments, 𝑊, 𝑏   are the weight and bias, and 𝜎, 𝑡𝑎𝑛ℎ  are 

activation functions. Benefiting from these gate structures, 

irrelevant information from past moments can be forgotten by 

the LSTM neural network, while useful information can be 

selectively stored in the memory cells, which makes the LSTM 

neural network more effective in extracting long-term 

temporal dependency of time series data. Meanwhile, the 

complexity and parameters of the model are also significantly 

increased, making it be vulnerable to overfitting when the 

dataset is insufficient. 

2.3 SNN 

SNN is a special type of neural network architecture that 

contains two inputs. As shown in Figure 3, it is composed of 

two identical sub-networks that share the same weights and are 

connected to a loss function that compares the similarity 

between the two embeddings. The SNN can learn the 

similarity between pairs of inputs directly from the data 

without requiring any explicit supervision. It has been widely 

used in various applications such as face verification and 

signature verification. 

 

With the multi-input structure of the SNN, features of each 

input can be extracted by a sub-network, and the model is 

trained through learning the similarity of latent features. The 

sub-networks share the same parameters, which reduces the 

number of trainable parameters and extend the available 

training samples, and therefore the generalization ability of the 

model can be enhanced, making it better capture the data 

features and effectively avoid the occurrence of overfitting, 

especially for few-shot learning tasks or even one-shot 

learning tasks(Zhou, et al. (2021)).  

3. SAE-based fault detection method 

3.1 Motivation 

The SAE model is proposed to improve the generalization and 

fault detection capability of deep learning models for process 

monitoring applications. According to the structural design of 

SNN shown in Figure 3. A single-layer neural network is used 

as the basis model to extract the latent features of the input data,  

𝑧1 = 𝑓(𝑤1𝑥1+𝑏1) (10) 

𝑧2 = 𝑓(𝑤1𝑥2+𝑏1) (11) 

where 𝑥1, 𝑥2  are the two inputs of the SNN, 𝑧1, 𝑧2  are the 

corresponding latent features extracted by the encoder, 𝑤1 , 𝑏1 

are weight and bias.  

In most cases, only one type of data is considered in industrial 

process monitoring, i.e., time series data. Since the two inputs 

of the network have the same data source and are significantly 

similar, the two LSTM neural networks in the SAE model 

proposed in this section use the same weights and structure. 

On the other hand, by introducing the twin neural network 

structure, the generalization ability of the model trained with 

the same sample size can be significantly improved. As 

mentioned earlier, this stems from the multiple-input structure 

of the SNN. For 𝑛 training samples, the two-input SNN is able 

to naturally extend the sample size to 𝑛(𝑛 − 1)/2  by data 

integration. In addition, to further investigate the distribution 

of latent features extracted by the deep learning model, the 

conditional contrastive loss is adopted as the loss function to 

regularize the distribution of latent features,  

𝑙𝑜𝑠𝑠 = 𝑤1

∥ 𝑥1 − 𝑥1̃ ∥2
2

𝑛
+ 𝑤2

∥ 𝑥2 − 𝑥2̃ ∥2
2

𝑛
+ 

𝑤3 ∥ 𝑧1 − 𝑧2 ∥, 𝑥1, 𝑥2 ∈ 𝑃 (12) 

Figure 2. The schematic diagram of (a) RNN, (b) LSTM. 

Figure 3. The schematic diagram of SNN. 
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𝑙𝑜𝑠𝑠 = 𝑤1̃

∥ 𝑥1 − 𝑥1̃ ∥2
2

𝑛
+ 

𝑤2̃(max(𝑚𝑎𝑟𝑔𝑖𝑛−∥ 𝑧1 − 𝑧2 ∥ ,0)), 𝑥1 ∈ 𝑃, 𝑥2 ∈ 𝑁       (13)  
where 𝑥1̃, 𝑥2̃  are the reconstruction of the decoder, 

𝑤1, 𝑤2, 𝑤3, 𝑤1̃,  𝑤2̃  are weights of each term of the loss 

function, 𝑃  represents that the input belongs to normal 

operating conditions in this fault detection task,  𝑁 represents 

that the input belongs to abnormal operating conditions, and 

𝑚𝑎𝑟𝑔𝑖𝑛 is a user-defined parameter. 

The purpose of the constraints imposed on the feature space by 

Equation 12 and Equation 13 is to minimize the distance 

between the normal samples in the feature space and to 

maximize the distance between the normal and faulty samples 

in the feature space. Meanwhile, the reconstruction error of the 

normal input samples remains as one item of the loss function 

to extract more representative features from the data and 

ensure the data reconstruction capability of the model. The 

weights occupied by each item of the loss function in the 

model training can be adjusted by the weight coefficients, and 

the conditional contrastive loss is used as the main target in 

this work, with a weight of 0.8. In summary, with the loss 

function, the distribution of the normal samples in the feature 

space in historical data can be compressed to a minimum range, 

which can effectively improve the fault detection capability of 

the model. 

As for the implementation of fault detection, in most existing 

AE-based process monitoring studies, the reconstruction error 

is used as the loss function for model training and fault 

detection is performed by monitoring the changes in the 

reconstruction error, without discussing the differences 

between the features of normal data and fault data extracted in 

the latent space, resulting in a complete black-box process for 

process monitoring and poor transparency of fault detection. 

In fact, feature extraction, as the core part of process 

monitoring models, makes faults more easily be detected in the 

feature space by monitoring the changes in the distribution of 

latent variables. Therefore, the fault detection of the proposed 

SAE model is performed based on the 𝑇2  statistic in the 

feature space, which is also consistent with the training 

objective of the SAE model, 

𝑇2 = z𝑡Λ𝑧
−1𝑧𝑡

𝑇 (14) 

where 𝑧𝑡 is the latent feature extracted at t step, and Λ𝑧
 is the 

covariance matrix of the eigenvectors. A control limit can be 

determined by the kernel density estimation (KDE) 

method(Silverman (1986)), by which the online process 

monitoring can be realized 

3.2 Process monitoring procedures 

The implementation procedures of SAE model in process 

monitoring modeling and online application are shown in 

Figure 4, which mainly consists of two parts: offline modeling 

and online monitoring, and the specific steps of each part are 

as follows: 

Offline modeling: 

(1) Data under normal operating conditions are selected from 

historical data for model training. 

(2) Training data are normalized to zero mean and unit 

variance. 

(3) Normalized training data are divided into two parts and 

input into the SNN. 

(4) The SAE-based process monitoring model is determined. 

(5) The 𝑇2 statistics of normal samples are calculated by the 

encoder of the SAE model. 

(6) The control limit of the  𝑇2 statistic is determined through 

KDE method. 

Online monitoring: 

(1) Test data are normalized with the mean and variance of 

training data. 

(2) Normalized test data are input into the trained encoder of 

the SAE model. 

(3) 𝑇2 statistics of test data are calculated and compared with 

the control limit.  

 

4.  CASE STUDIES 

4.1 Description on the heat exchanger unit of the catalytic 

reforming process and datasets 

In this section, the proposed SAE-based process monitoring 

method is validated through a heat exchanger unit in a catalytic 

reforming process. The unit consists of four reactors, four 

heating furnaces and one plate heat exchanger, which is shown 

in Figure 5. A total of 28 process variables collected from the 

DCS of the facility are selected for process monitoring, 

including the pressure, temperature, and flow rate of the 

process.  

Figure 4. The implementation procedures of the 

proposed SAE-based process monitoring method. 
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The pressure-drop at the hot side of the key equipment heat 

exchanger could increase abnormally, which would affect its 

heat exchange efficiency, resulting in increasing fuel gas 

consumption of the heating furnace. Therefore, it is necessary 

to monitoring the heat exchanger unit to early detect this type 

of abnormal deviation. Although there are several fault types 

in this process, the step fault is easy to be detected and cannot 

be utilized to verify the strength of the proposed method. 

Therefore, a slowly changing fault is considered in this case 

study. 

 

In this case study, a dataset consisting of 3,000 samples with a 

sampling frequency of 1 minute under normal operating 

conditions is used to train the process monitoring model, 20% 

of which is used as the validation data. The test dataset 

contains 1,000 samples with a fault that occurs at the 660th 

sample. The fault is shown as an abnormal rise of the pressure 

drop at the hot side of the heat exchanger, which is a slowly 

changing cumulative process, and hard to be noticed by the 

operators at its early stage because it does not reach the alarm 

limit of DCS.  

The monitoring performance of the proposed method is 

evaluated by fault detection delay (FDD) and false alarm rate 

(FAR), and compared with other related methods including 

PCA, AE, and LSTM AE. 

4.2 Results and discussion 

The process monitoring results of different methods are shown 

in Figure 6. It can be shown that the fault can be detected by 

the proposed method at the 679th sample, which is at least 22 

minutes earlier than other methods.  

The evaluation indicators of different methods are summarized 

in Table 1. According to the results, PCA is able to detect this 

fault but it takes 65 minutes and the FAR is high.  AE performs 

better than PCA because the nonlinear feature of data can be 

captured by the neural networks in AE. Although LSTM is 

effective to extract the long-term time dependency of time 

series, the process monitoring performance is not enhanced in 

this case study. The reason could be attributed to the huge 

number of parameters, which are much more than the number 

of available training samples. Comparatively, the proposed 

SAE-based process monitoring method achieve the best 

performance over different methods. The fault can be detected 

by the proposed method much earlier with the lowest FAR. 

The number of parameters of the proposed method is also 

much less than LSTM AE.  

In summary, it can be proved that the SAE-based process 

monitoring method proposed in this work can effectively 

improve the generalization performance of the neural network 

model and significantly enhance the fault detection capability 

of the model without increasing the complexity of the model 

structure and the number of parameters, showing good 

prospects for practical industrial applications. 

 

(a)                                       (b) 

 

(b)                                       (d) 

Table 1. Summary of process monitoring results 

Method FDD FAR Parameters 

PCA 𝑇2 198 5.76% / 

PCA SPE 65 6.36% / 

AE 41 5.49% 20,252 

LSTM AE 42 6.00% 182,448 

SAE 19 2.13% 34224 

 

5. CONCLUSIONS 

This work presents a SAE-based process monitoring method 

with a promising generalization performance and fault 

detectability. With the multi-input structure of the SNN, the 

sample size of the training dataset can be significantly 

expanded, and the conditional contrastive loss is adopted to 

constrain the distance between the two inputs in the feature 

space, which effectively compresses the distribution range of 

normal data in the latent space, and therefore fault data can be 

early and effectively detected through observing changes in 

the 𝑇2statistic established in the latent space. The application 

in two industrial chemical processes illustrate that the 

proposed SAE method significantly improves the 

generalization and fault detectability of the ordinary neural 

network model without increasing the complexity of the model 

Figure 5. The flow chart of the heat exchange unit of the 

catalytic reforming process. 

Figure 6. Process monitoring results of different 

methods: (a) PCA SPE, (b) AE, (c) LSTM AE, (d) 

SAE. 
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structure and the number of parameters, which provides an 

effective strategy for further research on the practical 

industrial application of deep learning models in process 

monitoring. 
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