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Abstract: Fast quantum control helps reduce the influence of unavoided disturbances and
hence plays a vital role in practical quantum technology and chemical reactions. Instead
of optimizing the terminal cost like standard optimal quantum control methods, this paper
formulates the problem as a trajectory optimization problem, and implements the sequential
quadratic programming algorithm to search for short control fields. The core idea is to minimize
the cumulative intermediate error to incentivize early achievement of the designed gate. The
numerical result on the Toffoli gate demonstrates the effectiveness of the proposed method.
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1. INTRODUCTION

Controlling quantum phenomena is a fundamental task in
many areas, such as guiding chemical reactions, initializing
quantum computers, and constructing quantum circuits
(see Dong and Petersen (2023); Fan et al. (2023); Dong
and Petersen (2022); Dong et al. (2020)). In this paper,
we focus on searching for short quantum control fields to
accomplish fast quantum control. Fast quantum control is
crucial for practical quantum technology, as the coherence
time of practical qubits is limited and unavoided noises
hinder the control performance with a long quantum
operation time. The quantum speed limit (QSL) considers
the maximum speed at which a quantum system can
evolve while satisfying certain constraints (see Deffner and
Campbell (2017); Caneva et al. (2009)). As shown in Fig.
1, a quantum system cannot be controlled to evolve to the
target state faster than a specific time, which is referred
to as the quantum speed limit time. Previous studies have
revealed that the QSL time, τQSL, is a fundamental bound
restricted by the intrinsic properties of the system (see
Deffner and Campbell (2017)). Mandelstam and Tamm
(1945) first found the uncertainty relation between energy
and time, given as △H · △T ≥ ℏ, and derived the
expression of QSL as τQSL = πℏ

2△H , where ℏ is the reduced
Planck constant and △H is the standard deviation of
the Hamiltonian H. Later, Margolus and Levitin (1998)
proposed another QSL expression, defined as τQSL =

πℏ
2<H> .
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Fig. 1. Fidelity landscape for a three-qubit quantum gate.
There are various methods to estimate the quantum speed
limit. For example, Boscain et al. (2014) characterized
the time-optimal trajectories for two-level quantum sys-
tems based on the Pontryagin Maximum Principle. Jones
and Kok (2010) gave a geometrical interpretation of the
quantum speed limit. In particular, Caneva et al. (2009)
first revealed the link between quantum dynamics and
optimal algorithms, that is, the efficiency of the quantum
optimal algorithm is governed by the intrinsic property of
the system. Caneva et al. (2009) utilized optimal control
methods to estimate the QSL. Instead of directly opti-
mizing the evolution time T , they set a fixed value T
and implemented the Krotov algorithm to optimize the
controls. From an initial set of T , they steadily reduced the
value of T and observed the failure of the Krotov algorithm
at a certain threshold transfer time τ . The ‘collapse time’
τ is proven to be very close to the theoretical estimate of
TQSL. Zahedinejad et al. (2014) also found the ‘collapse
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property’ of the optimal algorithms (also named greedy
algorithms), which would be trapped to local optimums
with very short transfer time T and very short controls.
Inspired by Caneva et al. (2009), we are not meant to treat
the time as a variable but to reach a local minimum trans-
fer time near the quantum speed limit using the ‘collapse’
property of the optimal algorithm. In particular, this paper
adopts the trajectory optimization technique. From the
perspective of motion planning, the quantum gate control
problem can be understood as a path planning problem
with fixed starting and ending points. Leung et al. (2017)
introduced the intermediate cost J(u) = 1 − 1

N

∑
j Fj

to penalize deviations from the target gate and approach
the time-optimal solution. Propson et al. (2022) utilized
trajectory optimization to achieve time-optimal control
and suppress errors caused by parameter uncertainties.
This paper treats the intermediate error as the main
cost instead of a penalty and implements the sequential
quadratic programming algorithm to optimize the tra-
jectory. The minimized cumulated deviations contribute
to a time-optimal trajectory. Since it is hard to obtain
a globally time-optimal trajectory through a single run
of optimization, our methods work in an iterative way
that adjusts the length of the trajectory and repeatedly
implements the optimization to explore the better control
trajectory. Numerical simulations of a three-qubit quan-
tum gate demonstrate the effectiveness of the proposed
method. The proposed method reduces the control time
from an initial guess of T = 10µs to T = 3.1µs with few
iterations.
The rest of this paper is organized as follows. Section
2 introduces several basic concepts about the quantum
gate control task, trajectory optimization and sequential
quadratic algorithm. In Section 3, the trajectory-optimal
quantum gate control algorithm is presented in detail.
The numerical results of a three-qubit quantum gate are
presented in Section 4. Concluding remarks are drawn in
Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

This section provides a brief introduction to quantum gate
control problem, trajectory optimization and sequential
quadratic programming.

2.1 Control Design of Quantum Gates

Considering a n-level closed quantum system, the state
|ψ⟩ ∈ Cn (wave function) can be represented with a
complex vector (see Nielsen and Chuang (2001)), as

|ψ⟩ = [α1, α2, · · · , αn]
T , (1)

where {αj} are amplitudes of orthogonal basis |j⟩, satis-
fying

∑n
j=1 |αj |2 = 1.

The state evolution follows the Schrödinger equation:
d

dt
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ , |ψ(t0)⟩ = |ψ0⟩ . (2)

The state transfer can be described by a propagator
U(t, t0):

U(t, t0) |ψ0⟩ = |ψ(t)⟩ . (3)

The propagator U(t, t0) can also be named as a quantum
gate in quantum information, and its evolution follows

d

dt
U(t) = −iH(t)U(t), U(0) = In, (4)

where In = diag(1,1,· · · , 1) is the n-dimensional identity
matrix. The Hamintonian H(t) consists of two parts, 1)
free Hamitonian H0 and 2) control Hamitonian Hc =∑M

m=1 um(t)Hm,
H(t) = H0 +Hc[u(t)] (5)

Here, {um(t)} are external controls that interact with the
quantum system, e.g., representing the amplitudes and
phases of electromagnetic fields.
In quantum engineering, the piece-wise-constant (PWC)
technique is often used to discretize the control function
{um(t)}, i.e., um(j) = cj , t ∈ [(j − 1)△t, j△t] hence
simplifying the computation of propagator U . At the jth
time interval, the jth propagator is given as

Uj = exp[−iH(j)△t]Uj−1. (6)
The quantum gate control task is to design suitable
controls {um(t)} to steer the propagator toward the target
gate.

2.2 Trajectory Optimization

Trajectory optimization mainly serves motion planning
and control of robotics (see Howell et al. (2019)). Gener-
ally, a numerical trajectory optimization problem follow-
ing discrete dynamics can be formulated as follows:

min
x,u

lN (xk) +

N−1∑
k=0

lk(xk, uk)

s.t. xk+1 = f(xk, uk,△t),
gk(xk, uk) ≤ 0,

hk(xk, uk) = 0.

Here, k is the time-step index, xk and uk are the states and
control variables, N is the maximal control-step length,
g(x) and h(x) are constraint functions, and lN (xk) and
lk(xk, uk) are terminal and intermediate costs.

2.3 Sequential Quadratic Programming

SQP is a widely used optimization tool for nonlinear op-
timization problems (see Boggs and Tolle (1995); Gill and
Wong (2011)). A general form of nonlinear optimization
task can be given as

min
x
f(x)

s.t. ▽gu(x) ≤ 0 (u = 1, 2, · · · , p),
▽hv(x) = 0 (v = 1, 2, · · · , q). (7)

The target function f(x) and constraint functions gu(x)
and hv(x) all could be nolinear. SQP is an iterative search
method starting from an initial guess xk and its core
idea is to transfer the nonlinear optimization into a linear
quadratic programming problem using Taylor expansion,
as
min
x
f(x) =

1

2
[x− xk]T▽2f(xk)[x− xk] + ▽f(xk)[x− xk]

s.t.

▽gu(xk)T [x− xk] + gu(x
k) ≤ 0(u = 1, 2, · · · , p),

▽hv(xk)T [x− xk] + hv(x
k) = 0(v = 1, 2, · · · , q).
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3. TRAJECTORY OPTIMIZATION FOR CONTROL
DESIGN OF QUANTUM GATES

We first consider a quantum gate optimal control problem,
which mainly focuses on minimizing the terminal distance
between the target gate W and the controlled U(T ):

Minimize
u

J(u) = ||W − U(T )||

s.t. Uj+1 = e−iH(tj)dtUj ,

H(tj) = H0 + u(tj)Hc,

|u(tj)| ≤ umax.

(8)

Only the terminal state U(T ) is considered, while the
intermediate states are ignored.
The overall control time T is usually treated as a fixed
hyper-parameter. As mentioned before, a short protocol
duration helps compensate for the effects of unavoided
noises. To explore a proper setting of T , a practical way is
to implement a numerical QOC algorithm like GRAPE (a
first-order gradient descent algorithm) and vary the value
of T to find the phase change of the fidelity landscape(see
Bukov et al. (2018); Caneva et al. (2009) ). But such a
method usually be very computationally expensive.

Fig. 2. Trajectory Optimization.

From the perspective of motion planning, the standard
quantum gate control problem is a typical trajectory
problem where the initial and target states are fixed, and
the primary goal is to drift the error to zero with proper
control design. Since only the terminal cost is considered,
the trajectory obtained by the standard QOC method
could be non-optimal. As shown in Fig. 2, the trajectory
optimization would take account of all the intermediate
errors and give a better trajectory that achieves the target
state earlier. Hence, the core idea of this paper is to
implement trajectory optimization to achieve the target
gate faster.
To implement the trajectory optimization, a proper mea-
sure of the distance is of great importance. The squared
error can be used to compute the distance between two
states or matrices. Propson et al. (2022) mentioned that
the squared-difference cost leads to a diagonal Hessian and
can speed up the computation.
A more common way to estimate the distance between
quantum states or propagators is to compute the ‘In-
fidelity’, which originates in the the squared Hilbert-
Schmidt norm. The distance between two matrices can be
measured by the squared Hilbert-Schmidt norm, which is
defined as (see Palao and Kosloff (2002)):

||X||2HS = Tr[X†X], (9)
Here, Tr[·] refers to the trace of a matrix and † represents
conjugate transpose. Hence, the error between the jth
propagator Uj and target gate W is

||W − Uj ||2HS =Tr[(W − Uj)
†(W − Uj)]

= 2n− 2ReTr[W †Uj ],
(10)

where n is the system dimension. Maximizing ReTr[W †Uj ]
can be proved to be the same as maximizing |Tr[W †Uj ]|2
(see Wu et al. (2016)). We define the ‘Fidelity’ F :

F(Uj ,W ) =
1

n2
|Tr[W †Uj ]|2, (11)

which lies at [0,1]. And (1−F) is referred to as ‘infidelity’.
When the target gate is perfectly achieved, the error 1 −
F(Uj ,W ) goes to zero.
Since many manipulation tasks of quantum systems de-
mand high precision, i.e., the infidelity less than 10−4, the
logarithmic infidelity can be an improved measure and is
given as:

L(U j ,W ) = log10(1−F) = log10(1−
1

n2
|Tr{W †U j}|2),

(12)
which reflects the error magnitude and lies at (−∞, 0].

Fig. 3. Optimization framework

The optimization framework is shown in Fig. 3. The gate
evolves from the identity matrix In and the cost J is
defined as the sum of the intermediate error:

J(u) =

KP∑
j=1

L[Uj ,W ], (13)

where KP is the length of the trajectory. We do not
tend to optimize the energy cost but bound the drifts as
|u(tj)| ≤ umax.
The optimization algorithm is presented in Algorithm 1,
and includes two main steps.
1) Step 1
In this step, we predict the KP propagators based on a
control guess uguess and then implement the SQP algo-
rithm to optimize the cost.
The optimization problem can be concluded as
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Algorithm 1 Trajectory-optimal quantum gate control
Input: Initial guess of trajectory length KP(0), the
PWC duration time dt, termination condition Lter,
precision threshold ϵ for the SQP optimizer.
// Iteration //
Step 1: Implement the SQP algorithm to solve the
trajectory optimization problem defined in (14) and
obtain control u.
Step 2: Compute and evaluate the KP-length error
trajectory obtained in Step 1.
if min(Lj) ≥ Lter then

End the algorithm since it fails to achieve the target
gate.

else
Update T = m · dt where m is the step index of the
propagator Uj that first achieves the target gate. Store
the control variables u(1 : m).
Reset the trajectory length KP = m and return to
Step 1.

end
Output: Optimal control u∗ and control time T ∗ = m∗ ·
dt.

Minimize
u

J(u) =

KP∑
j=1

L[Uj ,W ]

s.t. Uj+1 = e−iH(tj)dtUj ,

H(tj) = H0 + u(tj)Hc,

|u(tj)| ≤ umax, j = 1, · · · ,KP.

(14)

2) Step 2
Step 1 will output the KP-step-length optimal control u∗.
At the second step, based on u∗, we compute and evaluate
the KP-length error trajectories {Lj , j = 1, 2, 3, · · · ,KP}.
The m-th propagator U∗

m that first achieves L(U∗
m,W ) ≤

Lter denotes a better T setting as T ∗ = m · dt. In the
trajectory optimization task, it is hard to obtain a globally
optimal trajectory through a single optimization run. A
practical way is to optimize the trajectory step by step.
Therefore, we store the optimal controls u(1 : m), and
repeat Step 1 with a new setting of the trajectory length
KP= m to further optimize the trajectory.
When all Lj fail to achieve L(U∗

j ,W ) ≤ Lter, it indicates
the control time is approaching the QSL limit or the SQP
algorithm is trapped to a local optimum. For this case, we
stop the iteration and end the algorithm.
Each new iteration gives a better trajectory and better
setting of control time T . In the end, the algorithm can
find a T that is close to real TQSL. Compared with common
ways that implement a QOC algorithm and vary T step by
step to explore the ‘collapse’ time, our method iteratively
updates and could drastically save the computation time.

4. NUMERICAL RESULTS

In this section, we implement the proposed method for
the control design of the Toffoli gate. The Toffoloi gate
is a three-bit gate, also named the Controlled-Controlled-
NOT gate. When the first and second qubits are at |11⟩,
the Toffoloi gate flips the third state; otherwise, it leaves
the third qubit unchanged. The CCNOT gate has the form:

WCCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (15)

The system Hamiltonian is considered as (see Ge and Wu
(2021)):

H(t) =J12σ
z
1σ

z
2 + J23σ

z
2σ

z
3

+

3∑
k=1

[ukx(t)σ
x
k + uky(t)σ

y
k ].

(16)

Here, σx, σy and σz are Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 1
1 0

)
, σz =

(
0 −i
i 0

)
(17)

and σx,y,z
k denotes the Pauli operator associated with

the k-th qubit, e.g., σx
2 = I2 ⊗ σx ⊗ I2. J12 = J23 =

1 MHz are the qubit-qubit coupling strengths. The
{ukx(t), uky(t), k = 1, 2, 3} are control fields along the
x-axis and y-axis and are discretized with duration time
dt = 0.1µs.
In the simulations, we first compare three categories of
cost design, following

µ Cost function design J(u)

1 Infidelity
∑N

i=1
[1−F(Uj ,W )]

2 Sequared error (L2 norm)
∑N

i=1
[||Re(W − Uj)||2L2

+ ||Im(W − Uj)||2L2]

3 Logarithmic infidelity
∑N

i=1
[L(Uj ,W )]

The three experiments follow the same hyper-parameter
settings. We set the pulse length as KP = 100. The
guessed control parameters are randomly initialized. The
‘StepTolerance’ for the optimizer (SQP) is 10−4. Fig. 4
displays the cost training curves and control trajectories,
namely, the achieved fidelity F and logarithmic infidelity L
versus the control pulse indexes. As seen from the trajector
curves, optimizations based on the 1−F cost and L2 cost
fail to achieve the target gate since the fidelities are always
less than 0.99, while the optimization based on L achieves
gate error less than 10−4 at time t = 4.5µs, which indicates
a better setting of the protocol duration time.
As mentioned above, solving the trajectory optimization
problem defined in (14) could achieve the target gate
and drastically reduce the control time. To obtain an
optimal setting of T that is close to QSL, we can run the
proposed approach to optimize the trajectory iteratively.
We run the algorithm ten times and present the learning
curves for optimal control time, i.e., the optimal control
time denoted by the trajectory versus the iteration index
within a single algorithm run. As shown in Fig. 5, starting
from an initial guess of T = 10µs, the best-estimated
control time T is 3.1 µs, while the worst estimation is
T = 3.4µs. To verify the real QSL time, we implement
the widely used QOC algorithm GRAPE (see Khaneja
et al. (2005)), varying the control duration time T from
10 µs to 0.1 µs. For the GRAPE algorithm, the learning
rate is 0.02 and the maximum iteration number is 50000.
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(a) Training curve for the infidelity cost.
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(b) Fidelity trajectory.
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(c) Infidelity trajectory.
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(d) Training curve for the squared error
cost.
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(e) Fidelity trajectory.
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(f) Infidelity trajectory.
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delity cost.

0 2 4 6 8 10
Time

0

0.2

0.4

0.6

0.8

1

F
id

el
it

y

(h) Fidelity trajectory.
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(i) Infidelity trajectory.

Fig. 4. The comparison of trajectory optimization using different cost design.
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(a) Best case scenario gives T ∗ = 3.1µs.
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(b) Worst case scenario gives T ∗ = 3.4µs.

Fig. 5. Iteration curves for exploring the optimal control
time, where an iteration refers to solving a trajectory
optimization problem defined in (14).

We also implement the sequential quadratic programming
algorithm, varying the control duration time T from 6 µs
to 0.1 µs. We run GRAPE and SQP three times for each

T value. The threshold for the logarithmic infidelity to
determine the QSL time is -4. As shown in Fig. 6, both the
GRAPE algorithm and SQP denote the optimal control
time T ∗ = 3.1µs.
Fig. 7 plots the optimal control trajectory obtained by
our method. Our proposed method can achieve a QSL
time estimation that is pretty close to the real TQSL,
while guaranteeing high control precision L ≤ −8. The
simulation experiments are implemented with Matlab and
run on a 6-core 3.0 GHz CPU with 16 GB memory. The
computation time for the ten trial runs varies from 10 to
27 minutes, and the average consuming time is 20 minutes.
One run of the GRAPE algorithm takes 147 minutes.
Hence, our method is more computational-friendly and
can stand out for large-scale quantum systems since the
dimension grows exponentially with the number of qubits.

5. CONCLUSION

In this paper, we utilized the trajectory optimization
technique to search for fast quantum control fields. The
core idea is to minimize the cumulative intermediate
gate error to incentivize early achievement of the desired
gate. The proposed method could approach the QSL by
optimizing the trajectory iteratively. Numerical results
demonstrate that the proposed scheme can efficiently
explore a proper control time setting and guarantee high
gate precision. Compared with the widely used GRAPE
algorithm, our scheme can achieve a very close QSL time
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(a) The landscape curve obtained by GRAPE.
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(b) The landscape curve obtained by SQP.

Fig. 6. The landscape curve, i.e., logarithm gate infidelity
versus control time. The red lines plot the average
data among different runs (plotted by gray lines).
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Fig. 7. Optimal control trajectory via the trajectory op-
timization, where the gate error is referred to the
logarithmic infidelity. The control time T = 3.1µs.

estimate. The typical way to estimate QSL utilizing the
optimal algorithm must vary the protocol duration time
for many trial runs. Our scheme is less time-consuming
and stands out for large dimensional quantum control
optimization tasks.
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