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Abstract: Applying model-based design of experiments to compute maximally-informative
campaigns with multiple parallel runs is challenging. Effort-based methods can overcome some
of these challenges through discretizing the experimental space into a finite set of candidate
experiments, then applying convex optimization techniques to determine the optimal efforts
for each candidate, and finally rounding the efforts to integer numbers of runs for a target
experimental campaign size. For small experiment campaigns in particular, the final rounding
can result in large suboptimality. This paper presents an approach to solving the exact design
problem, where the effort variables being optimized are constrained to taking integer values. We
consider model parametric uncertainty and formulate risk-inclined, risk-neutral and risk-averse
exact design problems as mixed-integer nonlinear programs (MINLPs) with convex participating
functions. We demonstrate the tractability of an outer-approximation algorithm to solve such
MINLPs to global optimality on a case study involving the exothermic esterification of propionic
anhydride with over 1000 experiment candidates and 100 uncertainty scenarios.

Keywords: Optimal experiment design, Model-based design of experiments, Experiment
campaign, Mixed-integer optimization, Uncertainty

1. INTRODUCTION

Model-based design of experiments (MBDoE) for param-
eter precision can greatly accelerate the development of
predictive mechanistic models (Franceschini and Macchi-
etto, 2008). A particular focus in the literature has been
on sequential MBDoE, where (possibly dynamic) exper-
iments are designed one-at-a-time using gradient-based
techniques to maximize a chosen information criterion. For
nonlinear models, the resulting optimization problems are
typically nonconvex, and thus prone to converging to local
optima. Numerical failure caused by singular informa-
tion matrices is also commonplace. These computational
challenges hinder the design of experimental campaigns
comprising multiple parallel runs.

Effort-based methods (Fedorov and Leonov, 2014; Kusumo
et al., 2021; Vanaret et al., 2021) can overcome these
challenges through discretizing the experimental space into
a finite set of candidate experiments. These methods deter-
mine the fraction of the total number of experiments (the
effort) to be associated with each candidate, with a view to
selecting the combination of experiments having maximal
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information content. Treating the efforts as continuous
variables leads to convex problems that can be solved
efficiently using nonlinear programming techniques. This
convexity is even preserved when accounting for uncertain
model parameters, either in risk-neutral formulations (e.g.,
maximizing the average information) or in risk-averse for-
mulations (e.g., maximizing the conditional-value-at-risk
(CVaR) of information) (Kusumo et al., 2022b). Current
practice entails solving such convex problems in a first
step, which typically results in fractional values for the
optimized efforts, then applying a rounding procedure to
obtain integral efforts after specifying the total number of
experiments in the campaign. But such a posteriori effort
rounding could result in large suboptimality, especially for
campaigns with a small number of experiments.

The focus of this article is on tackling the exact design
of experiment campaigns, where the efforts are directly
treated as integer decision variables in the optimization
problem. Such problems can be formulated as mixed-
integer nonlinear programs (MINLPs) with convex partic-
ipating functions. The use of branch-and-bound has long
been proposed to tackle these MINLPs (Welch, 1982),
however this approach can result in enumerating a large
number of candidate designs. Exact designs can also be for-
mulated as mixed-integer quadratically-constrained pro-
grams (MIQCPs) (Sagnol and Harman, 2015), but this
requires the introduction of a large number of auxiliary
variables and can lead to memory storage issues and
long computational times in cases involving a large num-
ber of candidate experiments. Herein, we investigate the
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tractability of a tailored outer-approximation algorithm
to solve these MINLPs to global optimality (Sec. 3). We
consider risk-inclined, risk-neutral and risk-averse exact
design problems (Sec. 2), and we use the esterification of
propionic anhydride as an illustrative case study (Sec. 4).

2. PROBLEM DEFINITION

Consider a system with nx experimental controls x ∈ X ⊂
Rnx and ny measured responses y ∈ Rny ,

y = η(θ,x) + ϵ, (1)

where θ ⊂ Rnθ are uncertain parameters in the math-
ematical model η. For simplicity, the measurements are
assumed to be independent, and the measurement error
ϵ ∈ Rny is assumed to have zero mean E(ϵ) = 0 with
uncorrelated and homoscedastic covariance Σy. Although
written in closed form in Eqn. (1), the model η may also be
defined implicitly via a set of algebraic and/or differential
equations without the loss of generality.

We consider an experimental campaign comprising Nt > 0
experimental runs for the purpose of generating data for
the estimation of the model parameters θ. Since such
campaigns often consist of repeated runs with identical ex-
perimental controls (replicates), it is convenient to denote
an experimental design ξ as

ξ
.
=

{
x1 . . . xNc

p1 . . . pNc

}
, (2)

where Nc ≤ Nt is the number of distinct runs, and
pi ∈ (0, Nt] is the number of replications, or effort, of
the i-th experimental candidate with controls xi for each
i = 1, . . . , Nc, so that the pi’s add up to Nt. The set
{x1, . . . ,xNc

} is called the support of the experimental
design ξ, denoted by supp(ξ).

Designs having integral efforts, pi ∈ Z+, are called exact
designs. In contrast, a continuous design allows pi to vary
continuously in the standard simplex

∑
i pi = Nt with

pi > 0,∀i. The distinction between continuous and exact
designs generally becomes less important in practice as Nt

grows larger.

An optimal design ξ∗ is one that maximizes some scalar
information criterion ϕ,

ξ∗ ∈ argmax
ξ

ϕ (ξ) , (3)

applicable to both continuous and exact designs. Deter-
mining such an optimal design entails searching over all
possible number of supports Nc ≤ Nt, the experimental
controls x1, . . . ,xNc

∈ Rnx , and the corresponding efforts
p1, . . . , pNc

∈ (0, Nt] simultaneously.

Herein, our focus is on computing experimental campaigns
which are optimal for model calibration. The information
criterion ϕ is expressed as a function of the Fisher infor-
mation matrix (FIM), M ∈ Rnθ×nθ given by (Atkinson
et al., 2007)

M(ξ,θ)
.
=

Nc∑
i

piA(xi,θ). (4)

Under the assumption of uncorrelated homoscedastic error
in (1), the atomic matrix A of a given experimental
support xi is computed as

A(xi,θ)
.
=

∂η

∂θ
(xi,θ)

⊺
Σ−1

y

∂η

∂θ
(xi,θ) . (5)

In the classical D-optimal sense, the information criterion
in (3) for a maximal local design (LD) is expressed as

ϕLD (ξ)
.
= log det (M(ξ,θ0)) , (6)

where θ0 are the nominal parameter values. This for-
mulation is risk-inclined in the sense that it ignores the
uncertainty in the model parameters.

To mitigate the risk of uninformative experiments, one can
adopt the Bayesian paradigm and describe the model pa-
rameter uncertainty with a probability distribution π(θ).
The average design (AD) approach maximizes the ex-
pected value of information content over the model un-
certainty,

ϕAD(ξ)
.
=

∫
θ

π (θ) log det (M(ξ,θ)) dθ. (7)

The above takes a neutral attitude towards risk. By con-
trast, a risk-averse attitude can look at those model uncer-
tainty scenarios corresponding to a given lower percentile
of the information content. For instance, information cri-
teria for a maximal risk-averse design both in terms of the
value-at-risk (VaR) and conditional-value-at-risk (CVaR)
can be expressed as (Kusumo et al., 2022b)

ϕVaR
β (ξ)

.
= max

{
V :

∫
θ:Φ(M(ξ,θ))≤V

π(θ)dθ ≤ (1− β)

}
(8)

ϕCVaR
β (ξ)

.
=

∫
θ:Φ(M(ξ,θ))≤ϕVaR

β
(ξ)

π(θ)Φ (M(ξ,θ)) dθ, (9)

where a higher confidence value β ∈ [0, 1) corresponds to
higher risk avoidance.

3. COMPUTATIONAL METHODOLOGY

3.1 Optimization Formulations

The proposed computational framework builds on the
continuous-effort design methodology (Fedorov and Leonov,
2014; Kusumo et al., 2021; Vanaret et al., 2021), where
the experimental design space is discretized into a finite
collection of experiment candidates, denoted by Xs

.
=

{x1, . . . ,xNs
} ⊂ X with Ns ≫ Nt. In the case of a simple

experimental design space X , a sample can be obtained via
gridding or the application of low-discrepancy sequences
such as Sobol’ sampling (Sobol’, 1967). In the presence
of operational constraints, adaptive sampling techniques
may instead be used to draw samples from a restricted
experimental space (Kusumo et al., 2022a).

Likewise, the distribution π of the uncertain model pa-
rameters is discretized as a set of Nπ parameter scenarios,
collected in the set Θπ. For simplicity and without loss
of generality, such samples are assumed to be equally
weighted. In practice, the samples could be obtained as the
posterior distribution from a Bayesian inference problem
with an appropriate likelihood function and prior.

These discretizations recast the search over ξ in (3) into a
more tractable, finite-dimensional search over the experi-
mental efforts pi associated with each experiment candi-
date xi ∈ Xs,
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(p∗1, . . . , p
∗
Ns

) ∈ argmax
p

ϕ (p) . (10)

A noteworthy difference with the experimental campaign
(2) is that the optimal efforts (p∗1, . . . , p

∗
Ns

) are allowed to
take a value of zero. The support of the optimal design
ξ∗ is then recovered after solving (10) as the collection of
experimental samples xj ∈ Xs that have an effort pj > 0,

supp(ξ∗)
.
= {xj ∈ Xs : pj > 0}. (11)

A maximal local exact design is computed by solving the
following pure integer nonlinear program (INLP),

max
p

log det

(
Ns∑
i=1

piA(xi,θ0)

)
(12)

s.t.

Ns∑
i=1

pi = Nt, pi ∈ Z+, ∀i, (13)

and for a maximal average exact design, the following
INLP,

max
p

1

Nπ

Nπ∑
j=1

log det

(
Ns∑
i=1

piA(xi,θj)

)
(14)

s.t.

Ns∑
i=1

pi = Nt, pi ∈ Z+, ∀i, (15)

where the objective function is an estimator of the average
design criterion (7) using a sampled average approximation
(SAA) based on the discretized model uncertainty set Θπ.

A maximal CVaR exact design is computed by solving the
following mixed-integer nonlinear program (MINLP),

max
p,v,δ

v − 1

(1− β)Nπ

Nπ∑
j=1

δj (16)

s.t. δj ≥ v − log det

(
Ns∑
i=1

piA(xi,θj)

)
, δj ≥ 0, ∀j

(17)
Ns∑
i=1

pi = Nt, pi ∈ Z+, ∀i (18)

where the auxiliary (continuous) variables v and δj model
the VaR and the potential shortfall of information below
the VaR value in each uncertainty scenario j = 1, . . . , Nπ.
This formulation also uses an SAA and follows the seminal
work by Rockafellar and Uryasev (2000); see Kusumo et al.
(2022b) for a step-by-step derivation.

Recall that the continuous design counterparts to the opti-
mization problems (12)–(13), (14)–(15) and (16)–(18) are
readily obtained upon relaxing the integrality restrictions
pi ∈ Z+ as pi ≥ 0. Since the continuous efforts will
not be exact repetitions of the experimental candidates
in general, a rounding procedure needs to be applied.
While typically suboptimal, such rounding procedures may
still provide a good guess for the exact design. Where
the number of continuous supports Nc is no larger than
the target number of experiments Nt in the campaign,
a popular rounding procedure, called efficient rounding
(Pukelsheim and Rieder, 1992), constructs rounded efforts

p†i as follows:

• Calculate p†i
.
= ⌈(1− Nc

2Nt
)pi⌉ for i = 1, . . . , Nc.

• While Nt ̸=
∑Nc

i=1 p
†
i , repeat:

If Nt >
∑Nc

i=1 p
†
i , increment p†j ← p†j + 1 for j ∈

argmin{p†i/pi : 1 ≤ i ≤ Nc};
Else if Nt <

∑Nc

i=1 p
†
i , decrement p†j ← p†j − 1 for

j ∈ argmax{p†i/pi : 1 ≤ i ≤ Nc}.
Alternatively, if Nc > Nt, the greatest effort rounding
procedure simply assigns an equal effort of 1 to the Nt

number of supports with the largest efforts and zero effort
to the rest.

3.2 Numerical Solution Algorithm

Except for the integrality restrictions pi ∈ Z+, the opti-
mization problems (12)–(13), (14)–(15) and (16)–(18) are
otherwise convex. This follows from the property that the

term log det
(∑Ns

i=1 piA(xi,θj)
)
is concave in the variable

pi, while the other terms are all linear in pi, v or δi.

Of the alternatives to solve MINLPs with convex par-
ticipating functions, we consider an outer-approximation
(OA) decomposition algorithm (Duran and Grossmann,
1986; Fletcher and Leyffer, 1994). Although the MINLPs
may comprise hundreds or even thousands of integer vari-
ables for practical problems, our hypothesis is that con-
vergence to an exact design optimum may require only
a small number of iterations when initialized from the
rounded optimum of its continuous design counterpart,
thereby avoiding having to consider a large number of
suboptimal designs. We put this hypothesis to the test
later in the case study.

The OA algorithm is therefore initialized by solving the
continuous design counterpart, which provides an upper
bound on the exact design optimum; a lower bound is
then obtained by rounding the optimal efforts in the
continuous design. The nonlinear programming (NLP)
solver for the continuous design problem is itself initialized
by setting all the efforts pi at positive values, for instance
all equal to Nt/Ns. The rationale behind this initialization
is that, if the FIM were to be singular at a point with
all pi > 0, then it would also be singular for any convex

combination
∑Ns

i=1 pi = Nt with pi ≥ 0, 1 in which case
the discretized (exact or continuous) design problem would
fail to have any solutions. Such singularity could indicate
that the collection Xs of experiment candidates needs to
be augmented, or that the full experiment design problem
(3) itself does not have any solutions for the prescribed
measured responses y.

After initialization, the OA algorithm iterates between
the numerical solution of a mixed-integer linear program
(MILP) master subproblem (which provides an updated

1 Suppose that
∑Ns

i=1
Nt
Ns

A(xi,θj) is a singular matrix and let the
vector v ∈ Rnθ be in the null space. Since the atomic matrices
A(xi,θj) are positive semi-definite, it follows that v⊺A(xi,θj)v = 0
for each i = 1, . . . , Ns. For any non-negative combination of efforts
pi ≥ 0, we have:

v⊺

(
Ns∑
i=1

piA(xi,θj)

)
v =

Ns∑
i=1

piv
⊺A(xi,θj)v = 0.

Therefore,
∑Ns

i=1
piA(xi,θj) is also a singular matrix. 2
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upper bound on the information content and a new exact
design candidate) and the solution of a continuous primal
subproblem obtained by fixing the integer variables in the
original MINLP at the master MILP solution (which may
result in obtaining an improved feasible solution). The op-
timization problems (12)–(13) and (14)–(15) being INLPs,
their primal subproblems reduce to a simple evaluation of
the (local or average) information criterion. By contrast,
the risk-averse problem (16)–(18) is an MINLP and the
primal subproblems there search over the subspace of the
auxiliary variables v and δ.

New linear cuts are appended to the master MILP sub-
problem at each iteration through linearizing the convex
nonlinear objective and/or constraint functions of the
MINLP at the solution of the previous primal subproblem.
Recall that the only nonlinearities in the optimization
problems (12)–(13), (14)–(15) and (16)–(18) are due to

the terms log det
(∑Ns

i=1 piA(xi,θj)
)
. Expressions for the

derivatives of these terms with respect to the efforts pi
directly follow from Jacobi’s formula, 2

∂

∂pi

[
log det

(
Ns∑
i=1

piA(xi,θj)

)]
(19)

= tr

( Ns∑
i=1

piA(xi,θj)

)−1

A(xi,θj)


Note that such linear outer-approximation cuts may only

be appended when the FIMs
∑Ns

i=1 p̂iA(xi,θj) are non-
singular at the solution point p̂i of the previous mas-
ter MILP subproblem, for all model parameter scenar-
ios θj ∈ Θπ. Otherwise, the integer-cut ∥p− p̂∥1 ≥ 1
is added to the next master MILP subproblem instead.
The rest of the cuts corresponding to linear objective or
constraint functions are added to the initial master MILP
subproblem only. In order to expedite the convergence of
the OA algorithm, the initial master MILP subproblem
incorporates additional cuts derived from the linearization
of any nonlinear objective or constraint functions at the
continuous design optimum (prior to rounding).

3.3 Software Implementation

The continuous design relaxation problem and any primal
NLP subproblem during the OA iterations are solved
using the sparse nonlinear solver SNOPT (v7.7), 3 with
both feasibility and optimality tolerances set to 10−7 and
analytic gradients based on Eqn. (19). The master MILP
subproblems are solved using the solver GUROBI (v10.0), 4

with relative and absolute convergence tolerances of 10−6

and 10−9, respectively. The OA iterations are terminated
when the relative gap between the master solution value
and the incumbent is below 10−5.

2 An efficient computational implementation entails a single

Cholesky decomposition of the FIM
∑Ns

i=1
piA(xi,θj) = LjL

⊺
j

per model parameter scenario θj , followed by the solution of two
triangular systems for each direction pi, LjBi,j = A(xi,θj) and
L⊺
jCi,j = Bi,j , and finally computing tr Ci,j .

3 https://ccom.ucsd.edu/~optimizers/solvers/snopt/
4 https://www.gurobi.com/solutions/gurobi-optimizer/

The OA algorithm is coordinated from C++, using the
library MC++ (v2.3) 5 to evaluate and differentiate ex-
pression trees. Linear algebra calculations, including ma-
trix rank and determinant, Cholesky decomposition and
triangular system solve, are carried out using the library
Armadillo (v12.6), 6 interfaced with MC++ through exter-
nal operations.

4. CASE STUDY

4.1 Experiment Design Problem Definition

The case study is based on Kusumo et al. (2022a) and
considers the exothermic esterification reaction between
butan-2-ol and propionic anhydride,

(CH3CH2CO)2O
A: propionic anhydride

+CH3CHOHC2H5
B: butan-2-ol

H2SO4−−−−→

C2H5CO2(CH3)CHC2H5
C: butyl propionate

+ C2H5CO2H
D: propionic acid

.
(20)

Experiments on a bench-scale calorimeter start with an
initial charge of the anhydride (A), containing N0

A moles
with volume V 0

A at the given reaction conditions. The
alcohol (B) is fed into the reactor at a time-varying
volumetric feed rate u (L s−1) and concentration C in

B
(mol L−1). Both the initial charge of A and the feed of B are
pre-heated to the set reaction temperature before starting
the experiments. The esterification reaction is initiated by
introducing the alcohol into the reactor and runs for a
given batch time τ .

Neglecting thermodynamic non-idealities in the reaction
mixture, a simple mechanistic model of the calorimeter
can be formulated as

dξA(t)

dt
=

r(t)V (t)

N0
A

with ξA(0) = 0 (21)

dV (t)

dt
= u(t) with V (0) = V 0

A (22)

r(t) = k◦ exp

(
−Ea

RT

)[
NA(t)

V (t)

]α [
NB(t)

V (t)

]β
(23)

NA(t) = N0
A [1− ξA(t)] (24)

NB(t) = C in
B

[
V (t)− V 0

A

]
−N0

AξA(t) (25)

Q̇r(t) = (−∆Hr)r(t)V (t), (26)

where t (s) denotes time, ξA (−) the molar conversion of A,
V (L) the volume of reaction mixture, NA and NB (mol)
the respective amounts of A and B, r (mol L−1 s−1) the

reaction rate, Q̇r (J s−1) the rate of heat generation by
the chemical reaction, T (K) the reaction temperature,
∆Hr = −62.5 Jmol−1 the molar enthalpy of reaction,
k◦ (L,mol, s) the pre-exponential factor, Ea (Jmol−1) the
activation energy, α and β the reaction orders for A and B,
respectively, and R = 8.314 JK−1 mol−1 the gas constant.

To prevent a thermal runaway if the temperature control
system should fail, a safety constraint is imposed so a
maximum reaction temperature of Tmax = 405K may
never be exceeded even under adiabatic conditions,

T +min{NA(τ), NB(τ)}
−∆Hr

ρcpV (τ)
≤ Tmax (27)

5 https://github.com/omega-icl/mcpp
6 https://arma.sourceforge.net/docs.html
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with ρ = 900 g L−1 the density, and cp = 2J g−1 K−1 the
specific heat capacity of the reaction mixture.

The objective is to design campaigns of maximally-
informative experiments using the bench-scale calorimeter
to precisely estimate the parameters Ea, k

◦, α, and β while
guaranteeing a safe operation. The kinetic parameters Ea

and k◦ are assumed to follow independent Gaussian distri-
butions, given by Ea ∼ N (8.25, 0.412) × 104 Jmol−1, and
k◦ ∼ N (9.72, 2.922) × 107 (L,mol, s) whereas the reaction
orders α and β are assumed to follow Bernoulli distribu-
tions with a 75% probability of taking a value of 1 and a
25% probability of taking a value of 2.

Measurements of the heat release rate Q̇r and the molar
conversion ξA are available at regular 3000 s intervals.
These are assumed to be independently and identically
distributed, and to follow Gaussian distributions with a
standard deviation of 0.01 for ξA and 1 J s−1 for Q̇r.

The experimental controls consist of the reaction temper-
ature T ∈ [338, 348] (K) and butan-2-ol feed rate u(t),
parameterized as a piecewise-constant profile on 4 time in-
tervals of equal duration with u1, u2, u3, u4 ∈ [0.00, 2.80]×
10−5 (L s−1). For the purposes of this paper, other po-
tential experimental controls are considered to be fixed.
These include the initial amount of A, N0

A = 2.50mol;
initial volume of A, V 0

A = 0.32L; feed concentration of B,
cinB = 10.87mol L−1; and overall batch time, τ = 30 000 s.

The probability distributions of Ea, k◦, α, and β are
jointly discretized using Nπ = 100 Monte Carlo scenarios.
Then, a set of 1080 candidate experiments are drawn
from the restricted experimental space using a nested
sampling algorithm (Kusumo et al., 2022a), all of which
satisfy the safety constraint (27) with 95% probability. The
corresponding 1080 × 100 atomic FIMs (5) are computed
analytically, using the DAE solver IDAS part of SUNDIALS
(v6.1) 7 interfaced with CasADi (v3.5.5) 8 to construct the
forward sensitivity DAEs using automatic differentiation.

4.2 Experiment Design Results

Table 1 reports results for campaigns of Nt = 5 and
8 experiments under different optimality criteria. In all
cases, the D-optimal campaigns are combinations of the
same 6 candidate experiments. Except for the CVaR
designs, the rounded continuous efforts for the local and
average designs turn out to be suboptimal for the exact
design problem. Furthermore, the optimal supports in
the exact design are typically a subset of those in the
rounded continuous design. A notable exception is for
the local D-optimal campaign with 8 experiments where
the exact design comprises Experiment 89, while neither
the continuous design nor the rounded continuous design
contain that experiment. It is also worth noting that the
CVaR D-optimal designs has fewer supports than either
their local or average counterparts. This behavior was also
observed by Kusumo et al. (2022b) and is counter-intuitive
insofar as one could expect to find a greater variety of
supports in a design aiming to minimize risk.

7 https://computing.llnl.gov/projects/sundials
8 https://web.casadi.org/

Computational performance: Local Design Both local de-
signs (left column of Fig. 1) are computed within 1 to 2 sec-
onds on a laptop computer, 9 and the outer-approximation
algorithm takes 13 iterations to converge to the exact
solution (zero gap) in both cases. At iteration 0, the
continuous-effort problem takes 0.46 seconds to solve for
Nt = 5, and 0.34 seconds for Nt = 8. Subsequently, the
cumulative time for solving the master MILP subproblems
is 0.65 seconds for Nt = 5 and 0.29 seconds for Nt = 8.
Both the master and primal subproblem solutions thus
contribute a significant share of the total runtime.

Computational performance: Average Design The run-
time needed to solve the average designs (middle column
of Fig. 1) increases significantly compared to the local
designs, 17 seconds for Nt = 5 and 25 seconds for Nt = 8.
While the number of outer-approximation iterations does
not increase compared to the local designs, it is the time
needed to compute the average criterion values and their
derivatives that increases by 100 times due to the 100 un-
certainty scenarios. Most of the solution time (13 seconds
for Nt = 5 and 20 seconds for Nt = 8) is consumed by
the solution of the initial continuous-effort problem. The
cumulative time for solving the master MILP subproblems
is comparatively short, taking only 0.20 seconds for Nt = 5
and 0.34 seconds for Nt = 8, as a single cut is appended
at every iteration.

Computational performance: CVaR Design A further in-
crease in runtime is observed to solve the CVaR designs
(right column of Fig. 1) compared to the average de-
signs. However, solving the initial continuous-effort prob-
lem requires less time, about 11 seconds in both cases,
and the number of outer-approximation iterations also
decreases. It is the time needed to perform each outer-
approximation iteration that increases significantly for the
CVaR design, as the solution of a proper NLP subproblem
is now required—instead of just evaluating the information
criterion in the local and average design cases. The cumu-
lative time for solving the master MILP subproblems also
increases to 3.2 seconds for Nt = 5 and 9.9 seconds for
Nt = 8, as 100 cuts are now appended at every iteration.

5. CONCLUSIONS

Through this paper, we investigated the performance of a
tailored outer-approximation algorithm to compute exact
designs in optimal experiment campaigns. Despite these
problems being NP-hard, our results demonstrate that
exact designs remain highly tractable for problems with as
many as 1000 experiment candidates and 100 uncertainty
scenarios. Future work will entail testing the methodology
on additional case studies.
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Table 1. Comparison of local, average and CVaR exact designs for D-optimal campaigns with Nt = 5 and 8 experiments.
Each of the 1080 experiment candidates are assigned an experimental ID number. The left-most column reports
experimental supports only, with the corresponding optimal efforts in columns C , R and E referring to the continuous

design, rounded continuous design and exact design, respectively.

Nt = 5 experiments Nt = 8 experiments

local average CVaR local average CVaR

ID# C R E C R E C R E C R E C R E C R E

54 2.41 2 2 2.24 2 2 2.01 2 2 3.86 3 4 3.59 3 4 3.21 3 3
65 0.26 1 0.25 1 1 1.31 1 1 0.41 1 1 0.40 1 2.09 2 2
89 0.36 1 0.57 1 1

259 1.52 1 2 1.56 1 2 1.69 2 2 2.43 2 2 2.50 2 2 2.70 3 3
460 0.68 1 1 1.09 1
523 0.13 0.59 1 0.22 1 0.94 1 1
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Fig. 1. Convergence profile (color lines) and corresponding runtime (shaded boxes) against iteration count of the outer-
approximation algorithm. Top: D-optimal campaign with Nt = 5 experiments. Bottom: D-optimal campaign with
Nt = 8 experiments. Left: local exact design. Middle: average exact design. Right: CVaR exact design.
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