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Abstract: Causality is a fundamental relationship in the physical world, around which almost all activities 
of human life revolve. Causal inference refers to the process of determining whether an event or action 
caused a specific outcome, which involves the evaluation of cause-and-effect relationships in data. This 
paper presents a new approach to discover latent causal representations of crucial variables in easy-to-
obtain data. The proposed method takes a form of trade-off between compression of input data and the 
causality between the learnt latent variables and critical variables, thereby removing the irrelevant 
information contained in input data and obtaining the decoupled, strongest causal factors. By introducing 
variational bounds and specific configurations, the optimisation objective is relaxed to a tractable problem. 
The approach compacts causal discovery and inference into one model, which is flexible to downstream 
tasks and parsimonious in the parameters. A case study on an exhaust-emission dataset shows that the 
proposed method improves the predictive performance over the baseline model, which is a variational 
information bottleneck model with the same hyperparameters.  
Keywords: causal inference, latent causal variables, soft sensors, information bottleneck, variational 
inference. 

1. INTRODUCTION 

Throughout history, the vast majority of human activities have 
revolved around the fundamental question of causal analysis. 
Many scientific research problems can be put down to a causal 
inference problem (Imbens & Rubin, 2015), for instance, on 
the macrolevel, how an industrial policy affects the national 
economy, how minimum wages and immigration affect the 
labour market, and what impact a public policy has on the 
crime rate. Prominent examples of using causal analysis to 
solve such problems are Prof. Joshua D. Angrist and Prof. 
Guido W. Imbens, who won the Nobel Prize for Economics in 
2021 for “their methodological contributions to the analysis of 
causal relationships” (The Royal Swedish Academy of 
Sciences, 2021).  At the individual microlevel, people always 
wonder how the patient’s situation would have been if 
different treatments had been taken. In the area of process 
monitoring and fault diagnosis, a very critical question is what 
is the root cause of a failure (Duan, Chen, Shah, & Yang, 2014), 
and, for soft sensing, which factors cause fluctuations in the 
key indicator (Yu, Xiong, Cao, & Fan, 2022). 

The most commonly used concept for inferring associations 
from data is correlation, which is the core of statistical 
analysis. It is an associational concept that can be defined 
completely by a joint distribution of the observed variables. 
However, correlation quantifies only superficial associations 
wrapped in observations during data generation process that 
are determined by causal structures of the underlying system. 

 
♦ Xinrui Gao acknowledges funding from the Swiss National 
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Contrasting with statistical analysis, which in principle 
estimates the likelihood of events given certain environments, 
causal analysis seeks to infer the likelihood of events and its 
dynamics under changing environments (Pearl, 2008). From 
this point of view, the standard statistical analysis can be 
regarded as a projection of causal analysis onto one single 
environment. Whereas, only by knowing the complete 
information of the likelihood and its dynamics under the whole 
changing process of environments that the system interact 
with, can the real causal structures of the system be identified 
from observations. 

In many cases, identifying the causal factors of some critical, 
hard-to-measure variables is of great interest, since this will 
result in an accurate and exact model to infer the critical 
variables from easy-to-measure variables. In this paper, a new 
method of discovering latent causal factors of critical variables 
from input variables is proposed. It is formulated as a trade-off 
between maximising the transfer entropy between the latent 
causal representations and the critical variables and 
minimising the mutual information (MI) between the input and 
the latent causal variables. Hence, the resulting model tends to 
forget irrelevant information in the massive input data and 
maximise the causal relationship between the latent 
representations and the critical variables. The method is 
verified using an exhaust-emission dataset. 
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2. INFORMATION BOTTLENECK  

The proposed method is motivated by the information-
bottleneck (IB) theory. Hence, IB and one of variants, the 
variational information bottleneck (VIB), are reviewed. 

2.1 Information Bottleneck   

The problem of extracting concise representations of one set 
of variables to predict target variables is widespread in the 
machine-learning area. IB solves it by a trade-off between the 
complexity of the representations and the prediction accuracy 
of the target variable, which can be formulated mathematically 
as a variational problem in terms of the stochastic mapping 
p(z| x), that is (Tishby, Pereira, & Bialek, 1999),  

 
( )

( ) ( )min
p z x

I X ;Z I Z;Yβ= −  (1) 

where X is the model input variables that are going to be 
compressed, Z is the resulting representation, Y is the critical 
variable, β is the trade-off coefficient for the two factors, and 
I (⋅; ⋅) is the MI between the random variables defined as  
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To exclude the degenerate solution, β is no larger than 1. 

Equation (1) shows that the information of X passed to Y 
through representation Z is compressed as much as possible 
and is therefore interpreted as the information “bottleneck”. 
Coefficient β controls the trade-off between compression and 
accuracy, and can be seen as the Lagrange multiplier of the 
equivalent problem 

 ( )
( )
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=

=
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 (3) 

where Ic is the least amount of information that is shared 
between Z and Y. 

2.2 Variational Information Bottleneck  

Equation (3) is difficult to solve because MI is hard to 
calculate in general, which limits the application of IB theory 
to special cases, e.g., discrete variables (Tishby, Pereira, & 
Bialek, 1999), and jointly variables (Chechik, Globerson, 
Tishby, & Weiss, 2005). To overcome this, VIB builds a 
variational bound on Objective (1), making the problem 
tractable (Alemi, Fischer, Dillon, & Murphy, 2017, April). 

Based on Theorem 2.7.4 in (Cover & Thomas, 2006), MI is a 
concave function of the marginal distribution for a fixed 
conditional and a convex function of the conditional 
distribution for a fixed marginal. This gives the bounds of I (Z; 
Y) and I (X; Z), that is, 
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where q (y| z) is a variational approximation of the real 
prediction p (y| z), and r (z) is a known distribution used to 
approximate (or constrain) the real marginal p (z). Since the 
output entropy H (Y) cannot be influenced by modelling or data 
processing, we can omit this term. Substituting Equations (4) 
and (5) into Equation (1), gives the upper bound on the 
objective function of IB, that is, 
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Then, minimising  can be relaxed to minimising its upper 
bound u, and is further transformed into 
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where DKL is the Kullback-Leibler (KL) divergence. The first 
equality of Equation (7) holds since p (z, y) = ∫ p(z, y, x)dx = ∫ 
p(x) p(y| x) p(z| x)dx from the Markovian assumption Y ↔ X ↔ 
Z (Alemi, Fischer, Dillon, & Murphy, 2017, April). The 
second equality is derived based on the empirical distribution 
approximation p (x, y) =  ( ) ( )1

1
t t

N

t
N δ δ

=∑ x yx y  where d is 
the Dirac distribution (Murphy, 2022). To solve Problem (7), 
three quantities need to be defined: the encoder output 
distribution p (z| x), the prior marginal r (z) of the latent 
representation z, and the prediction distribution q (y| z). 

3. PROPOSED METHOD 

In this section, the details of the proposed method are 
explained. The objective function is formulated based on a 
physically meaningful motivation. The original objective is 
then relaxed to a tractable problem by introducing variational 
bounds on related quantities and using appropriate 
configurations.  

3.1 Transfer Entropy for Measuring Causality 

From the definition in Equation (2), MI quantifies the overlap 
of the information content between two systems. However, it 
is incapable of understanding the asymmetric statistical 
coherence between systems that evolve over time. To answer 
this question, transfer entropy is proposed to quantify the 
directional information transfer from one system to another by 
taking the dynamics of information transport into account 
(Schreiber, 2000). Mathematically, the transfer entropy from 
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X to Y exclusively measures the response of Y to X, while 
excluding that due to confounders and its own history, by 
conditioning on appropriate transition probabilities, that is 
(Kaiser & Schreiber, 2002), 
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where k and l are time delays, Y t is the random response 
variable at time t, X t − k: t − 1 = [X t − k, , X t − 1] is the random 
driving vector, Y t − l: t − 1 is also a random vector with similar 
form, and the letters in lowercase are realisations of the 
corresponding random variables. It is shown in the definition 
that the transfer entropy is a special case of the MI between the 
history of the driving element and the current response 
element, conditioning on the history of the response element. 
In short, transfer entropy is a conditional MI. 

Based on Wiener’s idea, “causality” is defined as follows:  one 
variable (element) could be called “causal” to another if the 
prediction of the latter is improved by incorporating the 
information about the former (Wiener, 1956). This conceptual 
idea of causality is mathematically formulated by Granger in 
the context of a linear autoregression of stochastic processes 
(Granger, 1969). Transfer entropy is the nonlinear analogy of 
Granger causality (Barnett, Barrett, & Seth, 2009). This arises 
by transforming the definition of the transfer entropy in 
Equation (8) using the Shannon entropy, that is, 
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In Equation (9), the conditional entropy H (Y t| Y t − l: t − 1) 
indicates the uncertainty in Y t given its history Y t − l: t − 1. 
Likewise, H (Y t| Y t − l: t − 1, X t − k: t − 1) shows the uncertainty in Y t 
given Y t − l: t − 1 and X t − k: t − 1. Therefore, the difference between 
the two terms implies the uncertainty reduction, i.e., the 
improvement of the prediction of Y when introducing the 
information about X. 

3.2 Objective Function and System Structure  

Intuitively, the motivation of the proposed method is to extract 
the causal factors of the critical variables and remove the 
irrelevant information contained in the massive input data, 
thereby giving a more stable and accurate forecast of the 
critical variables. This idea can be interpreted as a trade-off 
between maximising the cause-and-effect relationship 
between the easy-to-obtain variables and the critical variables, 
and minimising the complexity of the latent causal variables. 
Mathematically, the problem can be formulated as seeking a 
mapping p (z| x) to maximise the transfer entropy between the 

critical and the input variables, while minimising the MI 
between the input and the latent variables, that is, 

 
( )

( ) ( )min k l

p z

,
Yx ZI X ;Z T Z;Yβ →= −  (10) 

where β is the trade-off coefficient. 

To simplify Problem (10), the underlying system structure is 
assumed to be similar to a hidden Markov model (HMM) 
(Eddy, 1998), as shown in Figure 1. The relationship between 
X and Z, shown by arrows in Figure 1, is symmetric as it is 
modelled by MI, while the information flow from Z to Y is 
directed by transfer entropy T Z → Y. As well, the flow of time 
is also unidirectional from the past to the future. Several 
substructures of conditional independence are contained in the 
graphical model, e.g., Y t ⊥ X tZ t, Y t ⊥ Z t − 1Z t, and Z t + 1 ⊥ 
Z t − 1 Z t, which reduce largely the complexity of the 
decomposition of the joint distribution.  

 

Figure 1. Graphical structure of the underlying systems 

In this system structure, all information that drives the 
response element Y comes from Z, which means l should not 
be larger than k. These conditions simplify the transfer entropy 
to 
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Equation (11) shows that the HMM-like structure indicates 
that l = k = 1. Substituting p (y t| z t − 1, y t − 1) = p (y t| z t − 1) into 
Equation (11) gives 
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Since I (Y t; Y t − 1) cannot be changed by data processing, it is 
omitted, thereby simplifying the objective function (10) to 
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3.3 Relaxation of the Objective Function   

The simplified objective in Equation (13) cannot be calculated 
directly since the distributions are unknown in general. To 
solve the problem, a tractable upper bound u on the objective 
function is obtained, and the problem is relaxed to minimise 
the upper bound. The relaxed problem is a sufficient condition 
for the original, that is, 
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the second MI in Equation (13) can be rewritten as 
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Since p (y t| z t)  is unknown, analogous to Equation (4), a 
variational approximation q (y t| z t) is introduced. This gives a 
looser lower bound on I (Y t; Z t − 1), that is, 
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The entropy H (Y t) can be ignored since it is a constant. 
Recalling the bound on I (X; Z) derived by Equation (5), the 
upper bound appearing in Equation (14) is  
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This upper bound is tractable after configuring the related 
distributions, which is presented in the next section. 

3.4 Configuration of the Proposed Method  

The proposed method is implemented using the structure of 
auto-encoders, which consists of an encoder pφ (Z| X) and a 
decoder qθ (Y| Z), where φ and θ are the parameters of the 
corresponding neural networks fφ and fθ. Since 
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the second term of u can be rewritten as  
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The last equation holds because of the empirical 
approximation (Murphy, 2022) 
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Unlike the independently distributed Z in VIB, {Z t} is a 
stochastic process in this method, which means the dynamics 
need to be considered. Hence, it is a sum of two sources: the 
input X t from the encoder pφ (Z t| X t), and its history from the 
dynamic evolution p (Z t| Z t − 1). The first part can be expressed 
using the reparameterisation trick (Kingma & Welling, 2014), 
that is, 

 ( ) ( ) ( )t , t t tZ f X , X Xφ φ φ φ= = + e u σ e  (22) 

where uφ and σφ are the actual deterministic outputs of fφ, and 
refer, respectively to the centre and scale of pφ (Z t| X t), the 
symbol   refers to the elementwise product, and e is white 
noise. The reparameterisation trick equates a Monte Carlo 
estimation of Equation (20) by sampling Z t over pφ (Z t| X t) and 
the estimation by sampling e over p (e), thereby overcoming 
the difficulty of gradient backpropagation of directly sampling 
over pφ (Z t| X t). Similar to Equation (22), the dynamic 
evolution for the second part is written as 

 ( ) ( ) ( )1 1 1 1t ,t t t tZ f Z , Z Z− − − −= = + ε u σ ε  (23) 

where f(·) is the dynamic transition function, u and σ are the 
centre and scale of p (Z t| Z t ₋ 1), and ε is white noise. 

Given a standard Gaussian distribution as the prior marginal 
r (Z t) =  (0, I), the latent process {Z t} in Figure 1 is  
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Finally, combining Equations (18), (20), and (24) gives 
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  (25) 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

5



In Equation (25), the first term forces the extracted latent 
variable to approach the predefined prior, which can be 
regarded as a regularisation. The second term is actually the 
negative prediction error of the target variable Y. While 
implementing the model, the unknown dynamic transition 
function f(·) can be cancelled out by integrating it into the 
decoder net fθ. This causes no loss in terms of the prediction of 
target variable Y. Specifically, the prediction of Y can be the 
integration of the two parts shown in Equations (22) and (23) 
by the decoder, that is, 

 ( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( )
1

1

i
t t tt p e ,pp Y Z

p e

t

t , t ,

ˆ g z g z f x , f z ,
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where g(·) is the underlying mapping function, and [· ·] is an 
augmentation of the corresponding variables. If the decoder is 
Gaussian, the second term of Equation (25) is equivalent to 
mean squared error, which can be calculated based on 
Equation (26).  In addition, the noise is e ~  (0, I), and the 
distribution of the encoder is specified as pφ (Z| X) = 
(uφ (X), Σφ (X)), which can be reparameterised in the form 
of Equation (22). Thus, Equation (25) is finally a tractable 
objective for the proposed method. 

4. CASE STUDY 

In this section, the proposed method is used to model the 
exhaust emission of a gas turbine, that is, predict the 
concentration of pollutants in the exhaust emission.  

4.1 Dataset at a Glance  

The dataset is collected from a gas turbine in a power plant, 
which is composed of hourly average measurements of eleven 
variables. The first nine variables are input variables and the 
remaining two are critical target variables. Here, we only focus 
on the first one, i.e., the carbon-dioxide (CO2) concentration in 
the exhaust. The complete dataset contains 36,733 samples 
over five years, of which the first 60% are used for model 
training, the next 20% for adjusting the hyperparameters, and 
the remainder as the test set. The basic information about the 
dataset is shown in Table 1. The dataset is downloaded from 
http://www.e-adys.com/datasets/pp_gas_emission.zip. More 
information can be found in Kaya, Tüfekci, and Uzun (2019).  

Table 1. Information on the exhaust dataset 

Variables  Min  Mean  Max  

AT: ambient temperature 
(℃) –6.23 17.71 37.10 

AP: ambient pressure (mbar) 985.85 1013.07 1036.56 

AH: ambient humidity (%) 24.08 77.87 100.20 

AFDP: air filter difference 
pressure (mbar) 2.09 3.93 7.61 

 
1  The name predictor is used instead of decoder, since here, the 
decoder is used for predicting the critical variable. 

GTEP: gas turbine exhaust 
pressure (mbar) 17.70 25.56 40.72 

TIT: turbine inlet 
temperature (℃) 1000.85 1081.43 1100.89 

TAT: turbine after 
temperature (℃) 511.04 546.16 550.61 

DCP: compressor discharge 
pressure (mbar) 9.85 12.06 15.16 

TEY: turbine energy yield 
(MWH) 100.02 133.51 179.50 

CO: carbon monoxide 
(mg/m3) 0.00 2.37 44.10 

NOx: nitrogen oxides 
(mg/m3) 25.90 65.29 119.91 

4.2 Model Implementation and Analysis of the Results 

The proposed method is implemented by an auto-encoder, of 
which the encoder is a gated-recurrent-unit (GRU) followed 
by a fully connected (FC) net, and the predictor1 is a simple 
FC net. For comparison, a VIB model is also built, which is 
used as the baseline. Figure 2 shows the pipelines of 
information flow of the VIB and the proposed method. All 
hyperparameters for both models are described in Table 2. The 
two models have the same hyperparameters and architectures 
except for the input dimension of the predictor, which is 
double that of the baseline. Hence, the only difference in the 
two models is the configuration for the latent variable/process 
{Zt}, which is reflected in the input dimension of fθ, and results 
from the fundamental difference in the approach to modelling.  

 
Figure 2. Model pipelines of VIB and the proposed method 

Model performance is evaluated using the coefficient of 
determination (R2) and the mean squared error (MSE). The 
results under different trade-off coefficients β are shown in 
Table 3. It can be seen that the optimal β for the proposed 
model is 1 × 105, while for VIB, it is either 1 × 105 or 1 × 103 
depending on the metric. Furthermore, the proposed method 
has a better performance based on the two metrics than VIB 
under almost all the β. Because the two models have the same 
architectures and hyperparameters, this indicates that 
incorporating causality improves predictive performance.  

 

Configuring {Zt} 
VIB: 

 

Proposed method: 

 

Encoder fφ: 
GRU + FC 

uφ 

σφ 

Z X Y Predictor fθ: 
FC 
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Table 2. Hyperparameters of VIB and the proposed model 

Hyperparameters  Value 

Iteration epoch 500 

Learning rate 1 × 10−4 

Batch size 150 

Sequence length 20 

Number of GRU layers  2 

Dimension of GRU output  128 

Number of FC layers in fφ 2 

Dimension of the output of fφ 128 

Number of FC layers in fθ 2 

Dimension of the output of fθ 1 

Table 3. Model performance of the two models for different β 

β Metrics VIB Proposed model 

1 × 102 
R2 0.470 0.587 

MSE 0.121 0.108 

1 × 103 
R2 0.592 0.602 

MSE 0.100 0.109 

1 × 104 
R2 0.600 0.618 

MSE 0.106 0.103 

1 × 105 
R2 0.608 0.637 

MSE 0.106 0.092 

5. CONCLUSIONS 

This paper proposes a new method of discovering latent causal 
representations of crucial variables using easy-to-obtain data. 
The optimisation objective is relaxed to a tractable problem by 
introducing variational bounds and appropriate configurations. 
The resulting model tends to forget irrelevant information in 
the massive input data and maximise the causal relationship 
between the latent representations and the critical variables. A 
case study on an exhaust dataset shows that the proposed 
method improves the predictive performance. For the future, 
the performance of causal discovery needs to be verified. As 
well, different system structures should be explored to obtain 
more general relaxations of the objective function. 
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