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Abstract: In recent years, extreme electricity prices have occurred with greater frequency
and magnitude. Accurately predicting extreme electricity prices is of great interests to market
participants. This paper aims to forecast real-time electricity prices for the next 24 hours
for the Houston load zone in Electric Reliability Council of Texas (ERCOT), targeting at
providing accurate prediction of potential extreme prices. Historical energy prices from ERCOT
and weather data from the National Oceanic and Atmospheric Administration (NOAA) were
used. A new modeling framework that takes forecasted upper bound of exogenous variables to
predict both (1) real-time prices with uncertainty using a temporal fusion transformer (TFT)
model as well as (2) likelihood of having extreme prices in the forecasting horizon is proposed.
Additionally, a concatenated model fusion strategy is applied as an additional step to further
increase the framework’s capability of accurately forecasting extreme prices. Our proposed
method showed better forecasting capability with a RMSE of 35 compared to other state of
the art methods such as auto-encoder long short-term memory (AE-LSTM) and PatchTST
(RMSE of 49 and 42 respectively) on the same testing period. In addition, we quantified the
uncertainty of the predictions leveraging the quantile output from the TFT model and found
that 97% of the time, the 98th quantile of the forecasting horizon contains the actual real time
price. Our proposed framework provided an accurate and robust approach for forecasting normal
and extreme electricity prices that could have significant economic benefits to electricity market
participants.

1. INTRODUCTION

The price of electricity is a key indicator of market activity.
Electricity price forecasting has been a major focus of
practitioners and researchers in the energy market because
it is essential for market participants to set up bidding
strategies and create appropriate products. Nevertheless,
electricity price forecasting is volatile and it can be influ-
enced by a variety of factors such as holidays, weather
and policy. As electricity markets become increasingly
integrated, it becomes more difficult to forecast the price.
Moreover, extreme price (i.e., price peaks) happens from
time to time mostly caused by rare events such as winter
storms and extreme heat, can result in significant losses for
market participants if it cannot be accurately forecasted.
Most wholesale electricity marketplace includes two mar-
kets that work together in a multi-settlement system (Ka-
mat and Oren, 2002). The day-ahead (DA) energy market
allows market participants to commit to buy wholesale
power the day before the operating day to help avoid
price volatility. The real-time (RT) energy market allows
market participants to buy wholesale power during the
actual operating day. The RT energy market balances the
difference between DA commitments and actual RT elec-

tricity demand and production by generating a separate
financial statement. For demand that deviates from DA
commitments, it establishes a RT Locational Marginal
Price (LMP) that is charged to participants in the DA
energy market. Therefore, it is necessary to forecast elec-
tricity prices in the RT energy markets accurately in order
to plan electricity demand rationally and avoid economic
losses. An example of such opportunity is shown in Figure
1 when DA price is much lower than RT price from 12pm
to 6pm and being able to predict a coming peak of higher
RT price to increase purchase of electricity at DA price
will result in significant economic savings.

Extensive research efforts have contributed to the devel-
opment and utilization of advanced technologies for elec-
tricity price forecasting. Statistical methods, such Auto-
Regressive Integrated Moving Average (ARIMA) (Nguyen
and Hansen, 2017) and Generalized Auto-regressive Con-
ditional Heteroskedastic (GARCH) (Garcia et al., 2005),
are widely used to forecast electricity prices. However,
many statistical methods are limited in dealing with com-
plex or nonlinear time series problems, especially extreme
electricity prices. Compared to conventional statistical
models, machine learning models due to their superior per-
formance has boosted their popularity in the recent years.
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Fig. 1. Example of Economic Opportunity when Large Gap
exists between DA and RT Electricity Price

Especially since the mid-2010s, least absolute shrinkage
and selection operator (LASSO) (Uniejewski et al., 2016)
methods have become popular due to its ability to auto-
matically select and reduce the dimension of the regressors
to a small subset of key relevant ones. Therefore, it has
also been adopted in energy price forecasting, and one
recent example is the development of LASSO-Estimated
AutoRegressive (LEAR) model that combines statistical
and machine learning methods (Lago et al., 2021).

In the recent decade, as computational resources becomes
readily available that makes training of deep neural net-
works (DNN) feasible, DNNs especially RNNs (recurrent
neural networks) have quickly become the most popular
energy price forecasting methods among other disciplines.
Li et al. applied the long short-term memory (LSTM) ar-
chitecture combined with feature selection algorithms (Li
and Becker, 2021). Chang et al. built a hybrid model based
on wavelet transform and ADAM-optimized LSTM neural
network (Chang et al., 2019). Yang et al. combined convo-
lutional neural network (CNN) and gated recurrent neural
network (GRU) to form a Tri-Branch CNN-GRU (Yang
and Schell, 2022a). Haoling et al. developed a quadruple
branch, CNN-based autoencoder (QCAE) framework to
address the issue of noise and high dimensional feature
space (Yang and Schell, 2022b).

In the past few years, there also have been a lot of advance-
ment in the development of general time series forecasting
models with the heavy adoption of a new type of attention
based architecture – transformers (Vaswani et al., 2017)
that are firstly introduced for language models. Since both
text and time series belong to the type of sequential
data, transformers also quickly get extended to time series
modeling tasks especially for long-horizon forecasting as
the self-attention mechanism can capture long-term de-
pendencies. Different variants such as Autoformer (Wu
et al., 2021) and Informer (Zhou et al., 2021) have been
developed to address the issue of sparsity, computational
complexity and limitations of encoder-decoder structure
that is intrinsic to the conventional transformer architec-
ture. Additionally, Temporal Fusion Transformer (TFT)
(Lim et al., 2021) introduced in 2021 was developed to
provide both interpretability and long-horizon forecast-
ing that deals with various types of data sources. Most
recently, Channel-Independent Patch Time Series Trans-
former (PatchTST) (Nie et al., 2022) is demonstrated to
outperform most state of the art methods on benchmark
datasets through retaining local semantic information in

the embedding by leveraging the patching idea introduced
in VisionTransformer.

Despite the great success of using DNNs for electricity
price forecasting, most methods do not highlight forecasts
of extreme prices, which is especially important as such
situations often implies great economic opportunities.

To address the problem of extreme price prediction, we
introduced a new modeling framework (Figure 2) based
on the latest TFT model that takes in (1) static (i.e.
time-invariant) covariates: S (2) known future covariates
(use both past and future value): Zt−L:t+H (3) exogenous
variables that are only observed in the past: Xt−L:t (4)
exogenous variables in (3) forecasted into the future:

Xf
t:t+H . With (2) and (4), we also trained a separate

classification model to predict the likelihood of having
extreme price for the entire forecasting period. Combining
the likelihood prediction and the quantile output from the
TFT model, we were able to perform a fusion strategy that
further improves the model performance. The proposed
framework is robust as it consistently outperform other
methods under different market conditions.

Fig. 2. Proposed Modeling Framework for Real-Time Elec-
tricity Price Prediction. y: real-time electricity price,
P : probability of extreme price, q: quantile levels of
the predicted y

2. DATA SETS

The hourly day-ahead and real-time electricity price for
the Houston load zone is obtained from ERCOT. The
historical weather data is acquired from the National
Oceanic and Atmospheric Administration (NOAA). The
station we use is the George Bush Intercontinental Airport
(KIAH). The data collected ranges from Jan 1st, 2017 to
December 31st, 2022.

2.1 Feature Selection

To accurately forecast real-time electricity prices, we in-
corporated features such as historical day-ahead prices
($/MWh), date information, weather information, grid
load, energy index and natural gas prices. Specifically, date
information includes 7 features such as hour of the day
(HOD), day of the week (DOW), week of the year (WOY),
month of the year (MOY), day of the year (DOY), season-
ality and whether the specific day is a holiday. Weather
information such as dew point (DP), temperature, pre-
cipitation (in), relative humidity (%), barometric pressure
(inHg), wind speed (mph), visibility as well as dry bulb
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(DBT) and wet bulb temperatures (WBT) were included
(all temperatures are in unit of F). Figure 3 shows the
price and some of the weather information from 2021. We
can observe a significant price increase caused by the Texas
winter storm in February 2021.

Fig. 3. Historical Electricity Price and Examples of
Weather Data for the Houston Load Zone in 2021

For energy index (EI) and natural gas (NG) prices, they
are only available on a daily and monthly basis, therefore
a constant value throughout the day and the month
respectively were used to convert these variables to the
same hourly frequency as the rest of the dataset.

At each time step t, with a backcasting period (L) of 7
days and a forecasting horizon (H) of 24 hours (Figure
4), all the input features can be divided into three main
categories:

• Static (time-invariant) Covariate (S): NG price
• Dynamic (time-varying) Covariate with future known

(Zt−L:t+H)
· Continuous: DA Price, EI
· Categorical: HOD, DOW, WOY, MOY, DOY,

Seasonality, Holiday
• Dynamic (time-varying) Covariate with future un-

known (Xt−L:t−1): DPT, Temperature, Grid Load,
Wind Speed, Relative Humidity, Precipitation, Pres-
sure, Visibility, DBT, WBT

Fig. 4. Illustration of using Backcasting Period for Energy
Price Forecasting

2.2 Data Split

The dataset used for this work consists of features men-
tioned above collected from 2017 to 2022 (6 years). We
split the data into training and test set around 2022
September 1st which means roughly 4 month of data
is used as the testing set to access model performance.
Within the training set, a typical 5-fold cross validation is
applied to select model hyper-parameters when necessary.

2.3 Prepossessing

To facilitate the training of machine learning methods, we
perform the necessary pre-processing on all features. Since
electricity prices do not follow a Gaussian distribution and
contain extreme values (range from < $10 all the way
to $8000), an area (or inverse) hyperbolic sine variance
stabilizing transformation (VST) (Uniejewski et al., 2017)
is utilized here:

yvst = arcsinh(y) = log(y +
√
y2 + 1) (1)

Where y is the normalized original electricity price and yvst
is the price after VST. This transformation is very effective
at reducing spike severity and stabilizing the variance.

Besides electricity price, the remaining modeling features
are scaled to have a zero mean and unit standard devia-
tion.

3. MODELING STRATEGY

As shown in Figure 2, the proposed framework consists
of four modeling parts (1): Univariate Forecasting Model
for Exogenous Variables; (2): The Temporal Fusion Trans-
former (TFT) model; (3): A K-Nearest Neighbour (KNN)
based peak classification model and (4): a concatenated
fusion between the quantile forecasting from (2) and the
predicted peak likelihood from (3). The details of each part
of the modeling framework is discussed below.

3.1 Exogenous Variable Forecasting

One of the key contribution of the proposed framework in
this work is to include future forecasting of the dynamic
covariates where the actual/measured future value is gen-
erally unknown (Xt−L:t−1). This is especially important as
typically peaks or extreme prices happen on a very short
time frame (i.e. 3-6 hours) compared to the forecasting
horizon of 24 hours. Therefore, if only information from
the past is available, it is very difficult to predict com-
ing price peaks happening within the prediction horizon.
Moreover, many of the exogenous variables especially the
weather properties have significant seasonality thus having
a dedicated forecasting model for these variables can help
better capture their behavior in the next 24 hours.

The univariate Prophet forecasing model proposed by
Taylor et.al (Taylor and Letham, 2018) from FAIR is
used here. On a high level, the Prophet model uses
a decomposable time series that that captures 3 key
components in an additive fashion:

y(t) = g(t) + s(t) + h(t) + ϵt (2)
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where g(t) captures the general non-periodic trend as a
function of time, s(t) accounts for the periodic changes at
multiple resolution such as yearly, weekly and daily, h(t)
represents the effect of pre-programmed holidays with the
flexibility to include custom known past and future events.
Specifically for the trend model, a piece-wise Bayesian
linear growth rate model is used with automatic detection
of the change points using a sparse prior. More details of
the model formulation can be found in the original paper
(Taylor and Letham, 2018).

Example of the prophet model components for the Dew
Point Temperature is shown in Figure 5. Clearly, the base
growth rate is almost constant as quantified by the trend
term with a strong seasonal/yearly periodicity behavior.

Fig. 5. Prophet Model Components of the Dew Point
Temperature: Trend and Seasonality

Not all of the dynamic covariates with unknown future
can be modeled well in this case using the prophet model.
Pressure, precipitation and visibility were found to have
large variation with little periodic trend. Therefore these
variables were not forecasted. The remaining ones that
show typical cyclic trends were well captured by the
univariate forecasting models as shown in Figure 6. To
make sure the forecasted variables are not underestimated,
the forecasted upper bound instead of the mean is fed to
the models discussed in the next section.

Fig. 6. Individual Univariate Model Fit and Forecast on
Dynamic Covariates with Unknown Future

3.2 Temporal Fusion Transformer

Temporal Fusion Transformer (TFT) is first introduced
by Bryan et al (Lim et al., 2021) in 2021. It is a multi-
headed attention model that aims to provide interpretable
insights based on the temporal dynamics of the multi-
variate time series. The structure consists of many GRU

based variable selection blocks before feeding into a LSTM
encoder-decoder structure and makes use of a series of
gating layers to skip over unused components to enable
accurate forecasting performance over a wide range of
situations. By default, the model uses quantile loss for
training and produce quantile prediction at each time
point of the forecasting horizon instead of a point estimate,
which naturally provides uncertainty quantification to bet-
ter capture the true price. TFT implementation in the
pytorch-forecasting package is used for this study which
by default outputs the 2nd, 10th, 25th, 50th, 75th, 90th
and 98th quantile.

3.3 Extreme Price Classification

In practice, often times it is more important to know
if an extreme price (or peak price) point is expected
to show up in the next 24 hours rather than the exact
numerical value of the extreme price. Therefore, on top
of forecasting the price directly, a classification model is
trained separately to predict the likelihood of expecting
an extreme price for every hour of the next 24 hours in
the prediction horizon. Here, extreme price is defined to
be any electricity price above $150. Initially, a time series
classification model is proposed to predict if at least one of
the next 24 hour is expected to be an extreme price using
the backcast 7 day period. However, with a single point
prediction of the likelihood, it is not as straightforward to
perform the fusion step with the 24 hour forecasted hourly
quantile price. Therefore, a regular classification model
that predicts if an extreme price is expected at every hour
is trained using both the known and forecasted dynamic

covariates (Zt:t+H and Xf
t:t+H) instead.

Alternatively, instead of extreme price, it might be more
useful to know if the real-time electricity price will be
above or below the given day-ahead price. In that case, the
classification model can be modified to predict the likeli-
hood of exceeding the provided day-ahead price. We have
also tested that for our study and for this particular case,
we do not see much difference in the final improved model
performance compared to the extreme price classification
model.

3.4 Concatenated Model Fusion

To further improve the performance of the forecasting
model, a fusion strategy is carried out between the fore-
casted quantile prices and the predicted likelihood of ob-
serving an extreme price. Here, simple concatenated model
fusion is adopted which means a regression model is fitted
between the forecasted quantiles, day-ahead price and the
predicted likelihood:

yt = f(yq,t, DAt, Pt) (3)

Various models such as Linear, LASSO, Ridge, Random
Forest (RF) regressions were tried and most of them
give very similar performance with RF models being
slightly better. Therefore, a RF model is chosen for the
concatenated model fusion.
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4. RESULTS

Forecasting performance is discussed in this section. The
impact of including forecasted dynamic covaraites as well
as the fusion strategy is summarized by evaluating the
model performance in terms of three commonly used
metrics for time series forecasting: root mean squared error
(RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE) (Equation (4), (5), (6)).

RMSE =

√√√√ 1

H

t+H∑
i=t

(yi − ŷi)2 (4)

MAE =
1

H

t+H∑
i=t

|yi − ŷi| (5)

MAPE(%) =
1

H

t+H∑
i=t

|yi − ŷi
yi

| × 100 (6)

All models’ training and testing were performed on a
Macbook with M1 Chip, 8G of memory and 8-core CPU.

4.1 Model Performance with Forecasted Future Covariates

TFT is selected for this study not only due to its ability
to account for different types of data sources, but also due
to its better baseline performance compared to other state
of the art methods such as AE-LSTM and PatchTST. For
these two models, an RMSE of 49 and 42 were obtained
on the testing period, which is worse than the vanilla TFT
model (RMSE of 38).

The performance of the TFT model with and without in-
cluding the forecasted future covariates were summarized
in table 1. Two examples of a 5-day period (a moving win-
dow of 24 hours is applied during forecasting) randomly
selected from the testing period is shown in Figure 7. Over-
all, the model with the forecasted covariates performed
better based on all three metrics. For certain regions such
as region 1, the relative improvement of RMSE, MAE and
MAPE are over 50%.

Region
RMSE MAE MAPE

Without With Without With Without With

1 14.21 7.67 12.02 5.97 16.90% 8.04%

2 15.79 14.25 9.25 7.95 15.99% 13.85%

Overall 38.42 37.12 15.17 14.81 20.04% 18.04%

Table 1. Model Forecasting Performance with
and without Forecasted Future Covariates

Additionally, with the forecasted quantile price, 84% of
the time the 90th quantile contains the true real-time
price, and this number increases to 97% if the 98th
quantile is used. This uncertainty quantification provides
valuable information for market participants in making
more economically beneficial decisions of wholesale power
the day before the operating date.

4.2 Extreme Price Classification Model Performance

As discussed in section 3, a K-nearest neighbour (KNN)
classification model is suggested with number of neigh-
bours = 10 selected from a 5-fold cross-validation on the

(a) Without Forecasted Co-
variates, Region 1

(b) With Forecasted Covari-
ates, Region 1

(c) Without Forecasted Covari-
ates, Region 2

(d) With Forecasted Covari-
ates, Region 2

Fig. 7. Model Forecasting with and without Forecasted
Future Covariates, 2 Examples of a 5-day Period from
the Testing Set

training set. KNN is selected among various classification
model types due to its simplicity and overall performance.
The performance of the model on the test set is shown in
table 2. Overall, the accuracy for correctly predicting an
extreme price (a.k.a price >$150) is only slightly over 50%
as the dataset is extremely unbalanced with roughly 1:10
ratio between the number of extreme peaks and non-peaks.
Other types of classification models such as random forest
or ridge classifier with ROCKET (convolutional kernels)
transformation (Dempster et al., 2020) of the features were
also tried but no better performance is obtained.

True Label/Predicted Label Peak None-Peak

Peak 0.51 0.49

None-Peak 0.04 0.96
Table 2. Accuracy of KNN Model on Test Set

With the rather poor model performance, it might not
be desired to include the classification model as part
of the proposed framework. However, we have tested
if the accuracy of the extreme price classification can
be improved from the current 51% to 80-90%, it will
drastically increase the final model performance after
fusion. This is because as mentioned above, the upper
quantile forecasting contained the true real time price for
more than 97% of the time. Hence if a better knowledge
regarding when to use the upper quantile for prediction is
present, the proposed framework would be more effective.

4.3 Concatenated Model Fusion Performance

The performance of the proposed framework with and
without fusion were summarized in table 3 (TFT model
with future covariates were used for both cases). Two
examples of a 5-day period selected from the testing
set is shown in Figure 8. Overall, the model with the
concatenated fusion performed better based on all three
metrics. For certain regions such as region 2, the relative
improvement of RMSE, MAE and MAPE are over 10%.
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Region
RMSE MAE MAPE

Without With Without With Without With

1 62.22 57.16 21.07 19.89 23.09% 22.67%

2 32.71 28.07 17.94 14.53 24.34% 20.3%

Overall 37.12 35.57 14.81 12.84 18.04% 17.21%

Table 3. Model Forecasting Performance With-
out and With Fusion

(a) Without Fusion, Region 1 (b) With Fusion, Region 1

(c) Without Fusion, Region 2 (d) With Fusion, Region 2

Fig. 8. Model Forecasting with and without fusion, 2
examples of 5-day period from the Test Set.

5. CONCLUSION

A new modeling framework that takes forecasted upper
bound of exogenous variables to predict both real-time
prices with uncertainty using a TFT model and likelihood
of having extreme prices in the forecasting horizon is
proposed. Additionally, a model fusion strategy is applied
on top of the model predictions to further increase the
framework’s capability of accurately forecasting extreme
prices. Our proposed method showed better performance
on the same testing period in all metrics. For certain
regions, more than 50% relative improvement is observed
with the inclusion of forecasted covariates. With the pro-
posed fusion strategy, an additional 10% relative improve-
ment is achieved for certain testing period. Moreover, we
were able to quantify the uncertainty of the predictions
leveraging the quantile output from the TFT model and
found that almost 97% of the time, the 98th quantile
of the forecasting horizon contains the actual real time
price. Our proposed framework provided an accurate and
robust approach for forecasting extreme electricity prices
that could have significant economic benefits to electricity
market participants. Even though the study is conducted
using ERCOT data from only the Houston load zone, the
framework can be applied to other ERCOT regions.
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