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Abstract: Soft sensors experience an increasing interest in recent years, as they can replace
expensive hardware meters and the required embedded computing hardware has become cheap
and powerful. We report results for the implementation of a soft sensor for the flow rate
estimation in centrifugal pumps that achieves root mean square errors of about 5%. The
proposed soft sensor is based on generic models for the drive and hydraulic part of the pump
to ensure widespread applicability. We show the soft sensor and the models it is based on
can be parametrized with simple measurements. All theoretical considerations are corroborated
with measurements on a real industrial pump in a laboratory setup. The results show that the
proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model
mismatch and uncertain hardware components.
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1. INTRODUCTION

Pumps are ubiquitous devices and their importance for
chemical engineering processes is evident. Pumps con-
sume nearly 22% of the electromotoric energy on a global
scale (Arun Shankar et al., 2016). In particular centrifu-
gal pumps account for 16% of the global electromotoric
consumption, leveraging already minor efficiency improve-
ments to an immense long-term impact. Modern centrifu-
gal pumps are generally optimized to a certain operating
point, where the efficiency approaches up to 94% in certain
setups (Elsey, 2023). Operating the pump at or near its
best efficiency point (BEP) results in the lowest energy
consumption and reduced operational costs, but this is
only possible if the current operating point is known. Hard-
ware flow meters are traditionally employed to measure
the operating point, however, have the obvious drawbacks
of being expensive, difficult to maintain, and sometimes
impossible to install into an existing setup (Doraiswami
and Cheded, 2014; Martin et al., 2021). Soft sensors have
become a relevant alternative in recent years, as they
typically need only easy to acquire measurements, and a
mathematical system model to infer the operating point or
parameters of the plant (Wang et al., 2009; Leonow and
Mönnigmann, 2013). Since obtaining a comprehensive and
accurate first principles model is generally challenging due
to the complexity of a pump system with a large number
of uncertain parameters, pump manufacturers use data-
driven models, which are easily parameterized during the
scheduled test stand runs of newly manufactured pumps
(Leonow and Mönnigmann, 2013). While many recent aca-
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demic results and laboratory and field tests of soft sensors
with different and improved approaches are available (e.g.,
Leonow and Mönnigmann, 2016; Lima et al., 2022; Wu
et al., 2023), the commercial availability of ready-to-use
soft sensors is limited to a very few, mainly from large
pump manufacturers (Pauly, 2011). One important factor
for this discrepancy of laboratory to real-world applica-
tions is the inhomogeneous nature of pump installations,
where pump and electric drive usually come from different
manufacturers and are finally assembled on-site (cf. Fig.
1). Consequently, the pump manufacturer, who usually
offers and parameterizes the soft sensor, is not able to
take precise models for motor and plant into account. The
resulting plant model mismatch can lead to a significant
inaccuracy of the soft sensor that would require a complete
re-design, in particular when a data-driven model is used.
This re-design can usually not be accomplished by the
pump user, due to a lack of equipment and knowledge.
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Fig. 1. Model parameterization split between pump man-
ufacturer and user to reduce plant model mismatch.
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The aim of this work is twofold. First, we develop a
component-wise, holistic model to address the uncertainty
that is introduced by assembling the pump system on site
with components from different manufacturers and by the
hydraulic plant itself. Second, the model must be simple
enough for the pump user to adapt it to the current plant
setup. We introduce the modeling and parameterization
in Section 3, followed by a performance evaluation in a
standard soft sensor setup based on the Unscented Kalman
Filter in Section 4.

2. NOTATION AND PRELIMINARIES

We introduce i as the effective stator current of the motor
(in A), P as the motor and pump mechanical power and
Pel as the electrical power (in W), q as the actual flow
rate (in m3/h), n as the rotational speed (in 1/min), f
as the frequency of the electrical current (in Hz), and
M as the torque (in Nm). Indices min and max denote
the corresponding intervals that represent the respective
operating ranges, e.g. i ∈ [imin, imax]. The index 0 indicates
a nominal value, i.e. a value that is associated to the
nominal, or intended operation of the pump.

Pumps and motors are characterized by various input-
output relations, also known as characteristics. For exam-
ple, for a given rotational speed n, the P → i characteristic
describes the effective stator current i of a motor as a
function of the mechanical power P .

2.1 Hydraulic affinity laws and energy balances

Hydraulic affinity laws are fundamental principles that
describe how changes in key parameters affect the per-
formance of hydraulic systems. The hydraulic affinity laws
allow a transformation of characteristics to different rota-
tional speeds and therefore reduce the amount of data to
be measured for modeling a pump system. We will use the
scaling laws

q = q0 ·
n

n0
, P = P0 ·

(
n

n0

)3

· ηP
ηP,0

(1)

for flow rate q and mechanical power P , respectively
(Gülich, 2010, p. 134).

In addition to the affinity laws, we will use simple energy
balances of mechanical and electrical energy

P = M · n · π · (30)−1 , Pel = U · i . (2)

3. COMPONENT WISE MODELLING

The components of a typical pump system are depicted in
Fig. 1. We aim to develop a model structure reflecting this
setup, resulting in a model structure as depicted in Fig. 2.
We claim that the underlying assumption on the specific
pump system setup will hold for a wide range of real-
world systems. The input to the model is the frequency
setpoint f which determines the amplitude and frequency
of the voltage U provided to the motor. The frequency
is the primary control input of the pump system. The
motor current i, which is assumed to be measured by the
inverter, will be used as the primary measurement for the
soft sensor.

The motor is coupled to the pump via a stationary
coupling, therefore torque M , rotational speed n, and the
resulting mechanical power P are equal for pump and
motor. The flow rate q is obviously affected by the pump.
However, the flow rate does not only depend on the pump
type and operation, but it results from the interaction
of the pump with the hydraulic plant it is connected
to. Since the actual plant is usually unknown during the
design phase of a soft sensor (carried out by the pump
manufacturer before the actual plant is known), and since
the pump characteristics are theoretically independent of
it (Gülich, 2010, pp. 665), the plant is often excluded from
the model. However, secondary effects like vortices at the
inlet or cavitation have shown to significantly influence
the pump efficiency and affect its characteristics (Gülich,
2010, pp. 687). Therefore, it is worth considering the plant
to improve the soft sensor performance (see Sec. 3.4 and
Fig. 6).

We summarize the modeling assumptions in the following
subsections. We try to assume the most widespread setup
of the modeled components to ensure a wide range of
applications.

3.1 Inverter model

In open loop mode, the inverter receives the frequency
setpoint, for example from an external source, and supplies
electrical current with the desired frequency to the motor.
The output voltage U depends on the frequency f and
is defined in the inverter parameters. Typical functions
U(f) are linear or quadratic, usually chosen according to
the power demand of the machine that is connected to the
motor. A quadratic function U(f) is common for pumps.
We therefore implement

U(f) = U0 ·
(
f

f0

)2

(3)

as inverter model, with the supply grid voltage U0 and the
supply grid frequency f0 as parameters. We omit the case
of non-quadratic U(f) functions here but note that the
corresponding parameters can usually be acquired easily
from the inverter user interface.

The inverter also serves as a sensing device, as it usually
monitors the motor current. It depends on the inverter
if the apparent current or the true current is measured,
which we will address in the motor modeling in section
3.2. Independent from the type of measurement we can
assume that it undergoes a lowpass filtering, and condense

inverter

motorpump

plant

in:

performance
influence

sensor and
inertia model

out:
in:

nonlinear static

linear dynamic

Fig. 2. The model structure reflects the connections be-
tween the real pump system components.
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all dynamics of motor, pump, and current sensors into one
first-order, linear dynamic model

di∗(t)

dt
= − 1

Tc
· i∗(t) +

1

Tc
· i(t) , (4)

where i(t) results from the steady state model and i∗ is
the measured current. The parameter Tc in (4) holds the
combined lag time of the response of i∗(t) on a change in
i(t), respectively f(t), and can be identified from a step
response measurement or even set equal to the filter time
constant of the inverter. For large pumps with a significant
inertia of the rotating components, a more elaborate model
for (4) may be required (Leonow and Mönnigmann, 2016).

3.2 Motor model

We assume a squirrel cage asynchronous motor, because it
is the most common drive type for pumps. We introduce
a set of motor parameters for the established steady-
state models, from which we eventually derive a simplified,
easier-to-parameterize model. We introduce the indices 1
and 2 for stator and rotor, and the parameters R and L
for resistance and inductivity, respectively, of the motor
windings. LM describes the mutual inductance, zp is the
number of pole pairs, and the leakage coefficient σ = 1 −
L2
M (L1L2)−1. The nominal mechanical power P0 marks

the design operating point. We consider 0.5P0 < P <
1.5P0 as normal operating range in the following. Following
Schröder (Schröder, 2013, pp. 247), torque M and current
i of an asynchronous motor in steady state are

M = kM ·
U2

f2
· s · sB
s2B + s2

(5)

i = ki · (−j) ·
U

f
· σ · sB + js

sB + js
, (6)

where s = (f − nzp60−1)f−1 is the motor slip, sB =
R2(fσL2)−1 is the breakdown slip, and ki = (σL1)−1 is
constant for a given motor. The factor kM = 2MB in (5)
holds the breakdown torque MB , i.e. the maximal torque
the motor can provide. The breakdown torque scales with
(U/f)2, which we included in (5), and is otherwise constant
for a given motor:

MB =
3

4
· zp ·

L2
M

σL2
1L2

.

The primary connecting variable between motor and pump
is the mechanical power P = M ·n ·π · (30)−1, which, with
n = (1− s)f · 60 · (zp)−1 and (5), can be expressed via

P = kP ·
U2

f2
· s(1− s)
s2B + s2

, (7)

where kP = MB ·(3600πR2)·(zpσL2)−1 is constant. Solving
(7) for s yields

s = ±

√
−4s2BP̃

2 − 4s2BP̃ + 1± 1

2(P̃ + 1)
with P̃ =

P

kP
· f

2

U2
. (8)

The motor current (6) is complex valued and it depends
on the inverter how i is measured (see Sec. 3.1). If the
inverter measures the true current, i.e. <(i), (6) simplifies
to

<(i) = k′i ·
U

f2
· s

s2B + s2︸ ︷︷ ︸
iR

(9)

with constant k′i = R2(1−σ)
σ2L1L2

. In case the apparent current

|i| is measured, (6) becomes

|i| = k′′i ·
U

f2
·

√
σ2 + s2/s2B
s2B + s2︸ ︷︷ ︸
iA

(10)

with constant k′′i = R2

σ2L1L2
. Inserting s from (8) into iR

in (9) and iA in (10) yields the map P → i for given U
and f . The shape of this map depends on sB and σ only,
since all remaining terms in (8), (9), and (10) are constant
scaling factors, independent of P . This allows for a general
statement regarding nonlinearity concerning sB and σ. We
introduce the relative nonlinearity measure proposed by
Emancipator and Kroll (1993), which quantifies the fitness
of a least squares optimal linear approximation y = a·x+b
of a nonlinear function f(x) via

λ =

√∫ xmax

xmin
(f(x)− a · x− b)2 dx

(max (f(x))−min (f(x)))
√
xmax − xmin

(11)

over an interval xmin ≤ x ≤ xmax. Applying (11) to (9)
and (10) with least squares optimal linear fits yields the
results depicted in Fig. 3, where we chose typical ranges
for sB ∈ (0, 0.3) and σ ∈ (0.1, 0.5), and varied s in the
nominal operating range between 0.25sB and 0.5sB .

Evidently, iR shows a very linear behavior and stays
well within the 2.5% limit proposed by Emancipator and
Kroll (1993), while iA shows a higher nonlinearity, in
particular for larger values of σ. We investigated several
motor parameters from various sources (e.g., Schröder,
2013; Allirani, 2009; Benheniche and Bensaker, 2015) in
the power range from 0.75kW to 180kW, which all had
σ, sB < 0.18, supporting the linear modeling approach
also for iA. Nevertheless, for particular motors, a more
elaborate approach may be required.

Figure 4 depicts <(i) and |i| over P , which result from
inserting (8) into (9) and (10), respectively, for sample
motor parameters from Schröder (2013). The idle current
<(i(P = 0)) is either 0, as iR(0) = 0, while |i(P =
0)| scales with U , as iA(0) = σ. Both <(i) and |i|
show a reasonably linear shape in the nominal operating
range. The relative nonlinearity (11) is 0.2% for <(i) and
2.1% for |i|, so well below 2.5%. The slope of the linear
approximation scales with (1/U), which follows directly

Fig. 3. The blue curves depict λ from (11) applied to iR
from (9) and iA from (10), evaluated over sB and σ.
The red dashed line indicates a relative nonlinearity
of 2.5%.
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Fig. 4. The blue curves depict <(i) and |i| over P resulting
from (8), (9), and (10), for two situations with (f =
50Hz, U = 380V) and (f = 30Hz, U = 137V). The
red lines result from best fitting linear approximations
in the considered operating range 0.5P0 < P < 1.5P0.

from the influence of U and f implied in (8), (9), and (10),
which also coincides with the fundamental power balances
stated in (2). It is important to note that none of the motor
parameters affect the scaling implied by U and f .

Considering the above observations, we propose a universal
linear model

i(U,P ) = bi,0 ·
U

U0
+mi,0 ·

U0

U
· P , (12)

where idle current bi,0 and current slope mi,0 correspond
to the nominal operation at f0 and can be parameterized
by a simple measurement of the current, by characteristics
from the maintenance manual, or ultimately even by using
the datasheet or motor type plate. The last option will
yield the most uncertain parameters since the idle current
is usually not given.

3.3 Pump model

The hydraulic part of the pump system is within the scope
of the pump manufacturer, who usually has sufficient mea-
suring equipment to measure pump characteristics. With
data for the q → P characteristic for nominal frequency
f0 and the scaling laws (1), a polynomial approach

P (f, q) =

(
f

f0

)3

· ηP (f)

ηP,0
·
m∑
k=1

(
cp,k ·

(
q · f0

f

)k)
(13)

maps q to P for variable frequencies f , where the required
polynomial order m depends on the complexity of the
q → P characteristic, and cp are the corresponding polyno-
mial coefficients. The parameterization of ηP (f) requires
an additional measurement for different frequencies f ,
captured e.g. in a polynomial or piecewise linear function.
We again claim that ηP (f) can be parameterized easily
by the pump manufacturer, e.g. during a routine release
measurement on a test bench.

Note that we used the inverter frequency setpoint f instead
of the real speed n in (13) since n is usually not measured.
However, one can reason that, if the on-site setup is well
designed in terms of motor and pump dimensioning, the
encountered slip s, i.e. the error introduced by replacing n
with f , is similar compared to the test stand measurement
and therefore already incorporated in ηP (f).

3.4 Plant model

The plant is the most uncertain part of the design process
of a soft sensor since the actual on-site setup of the
hydraulic process surrounding the pump is usually not
known to the pump manufacturer, in particular when
pumps are interchanged or reused. Consequently, the plant
is commonly excluded from the soft sensor model. The
isolated modeling of the pump system is supported by the
theory to a certain extent, which allows for an estimation
of q based on known n and i, without including the
surrounding process except for its obvious influence on q.
In real-world application, however, secondary effects like
inlet vortices, cavitation, or underdimensioned piping lead
to a considerable change in the pump characteristics (Lin
et al., 2020; Gülich, 2010) which, when not considered, will
degrade the soft sensor performance significantly.

Capturing the plant influence to its full extent is elaborate
and will usually require case-specific, detailed modeling,
as performed by Lin et al. (2020), for example. We limit
the scope here to the frequent effect of cavitation, which
arises, for example, due to underdimensioned piping or
false operating points, and provide a heuristic model which
allows the user to adapt the parameters for a specific plant.

Cavitation usually leads to a sudden drop in the power
demand of the pump, as it fails to build up pressure. We
propose a heuristic model based on observations on several
pumps and results from the literature (Cao and Mao, 2019;
Al-Obaidi, 2019), which yields a corrected pump power
P ∗ = P − P− with P from (13) and

P− = Pcav
f3ηP
f30 ηP,0

(
1 + tanh

((
q

√
f0
f
− qcav

)
ccav

))
,

(14)
where qcav is the flow rate where cavitation starts influ-
encing the power for f = f0, and Pcav follows as the
corresponding power P at q = qcav. The factor ccav � 1
scales the onset of the cavitation effect, where lower values
lead to a smoother onset.

3.5 Parameterization and performance

We parameterize the separate models from the previous
sections 3.1 to 3.4 individually, using test stand and
datasheet information for a 7.5kW standard industrial
pump in a hydraulic test stand, depicted in Fig. 5. For

M
~

~

motorinverter

valve

to
tank

from
tank

MATLAB PC
with i/o-card

pump

pump

motor

inverter

flow meter

valve

Fig. 5. Laboratory test setup with a 7.5kW standard
industrial pump.
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the inverter, the required parameters can be read from
the operator interface. They are U0 = 380V, f0 = 50Hz,
and a quadratic U/f -curve, as assumed in (3). Regarding
the dynamic model part (4), the inverter has a filter time
constant Tc = 0.5 seconds and measures the apparent
current |i|. For simplicity, we will use i for |i| in the
following.

The motor model (12) requires the idle current bi,0 and the
slope mi,0 of the current over P . We acquired the idle cur-
rent from a no-load test resulting in bi,0 = 2.3A. The cur-
rent slope was identified using the motor datasheet, which
states nominal power Pnom = 7.5kW and nominal current
inom = 14A, resulting in mi,0 = (inom − bi,0)/Pnom =
0.0016A/W. Figure 6 depicts the results of the combined
inverter and motor models in the upper left diagram, com-
pared against test stand measurements. Sufficient model
accuracy is evident for all depicted frequencies and over the
whole measured power range, which is confirmed by the
lowest root mean squared error (RMSE) of 0.1A for 50Hz,
and the highest RMSE of 0.34A for 20Hz, which is 2.5%
when compared to the nominal current Inom = 14A. The
results support the linear modeling approach proposed in
section 3.2.

The polynomial part of the pump model (13) was parame-
terized using the datasheet provided by the manufacturer,
which holds the q → P characteristic for the nominal
operation at f0 = 50Hz. We chose a 4th-order polynomial,
depicted as the black curve in the upper right diagram in
Fig. 6. The efficiency factor ηP (f) was measured at the
test stand by comparing the model to the measured P
for frequencies 20 to 50Hz, at q = 0m3/h, resulting in
a decreasing efficiency from ηP (50)/ηP,0 = 0.98 for 50Hz

Fig. 6. Combined models against test stand data. Upper
left: Inverter and motor, P, f → i. Upper right: Pump
and plant, q, f → P . Lower: Full pumpset, q, f → i.

to ηP (50)/ηP,0 = 0.64 for 20Hz. As discussed in Sec. 3.3,
ηP (f) also holds the difference in the motor slip between
the datasheet measurement and our test stand measure-
ment, which leads to the unexpected nominal efficiency
ηP (50)/ηP,0 < 1.

Finally, the cavitation model required a single test stand
measurement at 50Hz with a manually adjusted flow rate,
revealing a cavitation onset at qcav ≈ 60m3/h, and an
according Pcav = 5.5kW. We chose ccav = 0.1 manually by
comparing the model output to the measured P .

Figure 6 depicts the combined pump and cavitation model
results in the upper right diagram, where, again, a suf-
ficient accuracy is evident. The significant difference be-
tween the datasheet characteristic (i.e. the black curve)
and the measured P (in blue) is noteworthy, as this would
lead to a severe model error if the plant influence was ne-
glected. The combined pump and cavitation model yields
the highest RMSE of 76.5W for 50Hz and the lowest RMSE
of 58.6W for 20Hz. Compared to the maximal power Pcav

for each frequency, the relative RMSE is below 5% for 30
to 50Hz, but increases to 13.5% for 20Hz. Further tuning
of ηP (f) can reduce this relative error but also requires
more elaborate measurements. We leave ηP (f) here as is
and evaluate the impact of the model errors on the soft
sensor performance in the following section.

The lower plot in Fig. 6 depicts the full pumpset model,
i.e. the combination of (3), (12), (13), and (14), resulting
in a map from q and f to i. The error becomes larger for
lower frequencies, due to the large gradient in the P → i
map (Fig. 6 upper left). The RMSE is lowest at 1.46% for
50Hz and highest at 5.87% for 20Hz, when compared to
Inom = 14A. We further discuss the achieved accuracy in
the following sections 4 and 5.

4. SOFT SENSOR IMPLEMENTATION

We choose an Unscented Kalman filter (UKF) (Julier and
Uhlmann, 1997) as the basis for the soft sensor. The model
outlined in the previous sections is transformed into a
state-space model

dxi(t)

dt
=

1

Tc

−xi(t) + i(

(3)︷ ︸︸ ︷
U(f), (

(13)︷ ︸︸ ︷
P (f, xq)−

(14)︷ ︸︸ ︷
P−(f, xq)︸ ︷︷ ︸

(12)


dxq(t)

dt
= 0 (15)

and
y(t) = i∗(t) = xi(t), q̂(t) = xq(t) (16)

with augmented state vector x = (xi xq)
T , where xq

equals the estimated flow rate q̂ and replaces q in the state
equations (15). The augmented state xq is adjusted by the
estimator to achieve convergence of y(t) and measured i(t).
We choose tuning matrices

Q =

(
0.05 0

0 0.2

)
, r = 2 , (17)

and the remaining tuning parameters as proposed in Wan
and Van Der Merwe (2000). The update of the state
with (15) is implemented using the RK4 algorithm. The
update rate of the UKF is TS = 0.1 seconds and equals
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Fig. 7. Test run of the soft sensor.

the sampling rate of the measuring equipment. Figure 7
depicts the results from a test run of the UKF in the
laboratory plant from Fig. 5. The upper diagram depicts
the primary estimation of i, while the middle diagram
depicts the estimation of the desired flow rate q. The
lower diagram holds the frequency f , which deliberately
changed several times during the recorded interval. The
valve opening (cf. Fig. 5) was also changed during the
measured interval to vary the downstream flow resistance.
The valve opening variation is not recorded but apparent
from the flow rate change.

The measured i shows a considerable measurement noise,
which is less obvious in the standard deviation of 0.316A,
but in a high peak-to-average value of 1.63A. The tuning
matrices (17) were chosen concerning this noise, and are a
compromise between noise suppression and agility of the
q̂ estimation.

The resulting q̂ follows the true flow rate well, also during
the transients. A certain noise is present in q̂, resulting
from the mentioned compromise in the tuning. The q̂
estimation shows a comparable quality for all frequencies
recorded in the interval. The RMSE over the whole time
series is 2.86m3/h, or 4.76% relative to qcav = 60m3/h, i.e.
the maximal admissible flowrate before cavitation starts.

5. CONCLUSION

We outlined a simplified modeling approach for a centrifu-
gal pump and motor system and evaluated the parameter-
ization process and the model quality in a flow rate soft
sensor application. The soft sensor is less precise than a
modern hardware flow meter, where deviations of ±1%
or less are usually guaranteed. The precision achieved by
the soft sensor certainly suffices, however, for nonprecision
closed-loop control and efficiency improvement measures.
The results support the simplified modeling approach and
suggest future activities to enable digital machine twins

to incorporate the individual models and thus envision
an approach towards a standardized flow rate soft sensor.
Future works also include a reliability evaluation of the
approach in different setups and a quantification of the
errors induced by parameterization and their propagation
through the soft sensor.
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