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Abstract: As oil fields mature, an increasing volume of water is produced alongside the oil
and gas due to the injection of water to maintain reservoir pressure. The control of de-oiling
hydrocyclones in produced water treatment on offshore oil and gas facilities is typically based
on the pressure drop ratio (PDR). While PDR relates to the flow split in the hydrocyclone
and affects the separation efficiency, it is only an indirect way to control the steady-state de-
oiling efficiency. When the separation facility is subjected to disturbances, e.g., changing inlet
concentration or production volume, the separation efficiency changes dynamically. The PDR
responds to changes in flow rate, but it cannot sense changes in inlet oil content. By deploying
online oil-in-water monitors, the separation efficiency could, in principle, be measured and
used for dynamic feedback. This work developed a plant model based on previously published
models of PDR, separator water level, and hydrocyclone separation efficiency. A nonlinear model
predictive controller is designed and placed in cascade with the existing PDR-based PI controller
to optimize the hydrocyclone separation efficiency. The results indicate an increased separation
efficiency and, thus, a potential reduction in discharged oil of approximately 12 percentage
points.

Keywords: De-oiling hydrocyclone, separation efficiency, nonlinear model predictive control,
produced water treatment

1. INTRODUCTION

Although green energy production is increasing globally,
oil and gas will remain a significant component of the
global energy demand for decades. As the oil fields mature,
water makes up an increasing proportion of the total
produced volume, straining the produced water treatment
(PWT) facility.

An offshore PWT facility often consists of three-phase
separator tanks, where gas, oil, and water are separated
based on their density difference. The oil skims over a
weir plate into the oil compartment while the water is
further treated downstream. De-oiling hydrocyclones are
used extensively as the secondary treatment process in
offshore treatment facilities before the remaining oil is
discharged into the ocean or re-injected into the reservoir.

The produced water (PW) discharge is subject to reg-
ulations to reduce its impact on the marine environ-
ment. In the North Sea, the concentration limit of PW
is currently 30 mg/L (approximately 30 ppm) based on a
monthly average of manual samples. Installation of online
oil-in-water (OiW) monitors is also required for reporting
(Miløstyrelsen (2018)).

The coupled three-phase separators and hydrocyclones in
PWT facilities are typically controlled using separate PID
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controllers, as seen in Fig. 1 (Husveg et al. (2007b); Yang
et al. (2013)). The interface level between oil and gas in
the three-phase separator is controlled by manipulating
the underflow valve of the hydrocyclone, and the system
is subjected to disturbances dLevel, such as changes in
production rates, e.g., caused by slug flow (Sivertsen et al.
(2010)).
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Fig. 1. Block diagram of the typical control of a PWT
facility using separate PID controllers for the water
level in the three-phase separator and the pressure
drop ratio in the hydrocyclone system.

Conventional control relies on maintaining a fixed flow
split defined as
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Fs =
Qo

Qi
, (1)

where Qi, Qo, and Qu are the inlet, overflow, and un-
derflow flow rates, respectively. Typically, the overflow is
much smaller than the underflow Qu ≫ Qo, thus, the flow
rate of the underflow is often considered as Qu ≈ Qi.
Instead of measuring Fs directly, the pressure drop ratio
(PDR) is typically used as the controlled variable (CV)
due to the approximate linear relationship between PDR
and Fs as studied by Husveg et al. (2007b), where

PDR =
Pi − Po

Pi − Pu
. (2)

The Pi, Po, and Pu are the pressures at the inlet, overflow,
and underflow, respectively. This type of control strives to
achieve a sufficient steady-state separation efficiency while
reducing the amount of water exiting through the overflow
(Husveg et al. (2007b)).

The hydrocyclone separation efficiency is often represented
by the concentration-reducing efficiency given by

ε = 1− Cu

Ci
, (3)

where Ci and Cu are the OiW concentrations at the inlet
and underflow (discharge), respectively.

Much research has focused on improving PDR-based con-
trol since the de-oiling efficiency of the hydrocyclone is
affected by changes in the feeding flow rate disturbing the
PDR (dPDR) Husveg et al. (2007b,a); Durdevic and Yang
(2018b); Hansen et al. (2018). Some PDR-based multiple-
input-multiple-output control solutions have been pro-
posed in recent years, such as robust H∞ control by Dur-
devic and Yang (2018b); Jespersen et al. (2021) and model
predictive control by Hansen et al. (2018); Jespersen et al.
(2021) where OiW monitors were used for performance
evaluation.

OiW-based control has also been considered in recent
years. In Vallabhan K.G. et al. (2020), a nonlinear first
principles model was developed based on droplet trajec-
tory analysis and the Bernoulli equation. A PI controller
was then tuned using the Skogestad internal model control
(SIMC) method to control the discharge concentration in
simulation. In addition, Vallabhan et al. designed numer-
ous control solutions for the discharge concentration, such
as sliding mode control, feedback linearization (Vallabhan
K.G. and Holden (2020)), feedforward, cascade PI, and
nonlinear model predictive control (NMPC) (Vallabhan
K.G. et al. (2021)). The authors also tested a feedforward
and cascaded PI on an experimental setup (Vallabhan
K.G. et al. (2022)). Common for these solutions is that
they relied on controlling the discharge concentration to a
fixed reference. However, when the discharge concentration
fell below the reference, the controller actuated Vo to reach
the reference, leading to a larger discharge than necessary.

While the model in Vallabhan K.G. et al. (2020) has
proven capable of modeling the steady-state efficiency
of hydrocyclones, the dynamics have not been validated.
In Jespersen et al. (2023a,b), the authors identified
Hammerstein-Wiener models of the dynamic separation
efficiency, volumetric rate of oil discharge and discharge
concentration based on online OiW measurements. The
identification experiment emulated an offshore oil and gas

platform subjected to production flow disturbances while
the existing level and PDR controllers were active. A
SIMC-tuned PI-controller was used to demonstrate that
the discharge concentration could be controlled to a fixed
reference. However, ideally, the system should achieve the
best possible separation performance at any given time
without negatively impacting production, which is not
guaranteed by a fixed reference of discharge concentration.

In this work, a plant model is developed by combining
existing models of the three-phase separator water level
and PDR from Hansen et al. (2018) and Durdevic and
Yang (2018a), and the separation efficiency model from
Jespersen et al. (2021). A NMPC - that optimizes the
separation efficiency of the hydrocyclone - is designed
and placed in cascade with the existing PDR-based PI
controller. The purpose of this idea is to add the OiW-
based control as a layer on top of the existing PDR-based
control, which, instead of a fixed flow split, optimizes the
PDR reference to improve the separation efficiency with
no negative effects on production.

The rest of the paper is organized as follows: Section 2
presents the combined plant model and model validation
and the NMPC design, and Section 3 presents the simula-
tion results. Section 4 discusses the results and methods,
and Section 5 concludes the paper.

2. METHODS

2.1 System model

A diagram of the system considered in this study with
the cascaded NMPC is given in Fig. 2. The plant model
consists of a separator water level model, a model of
the hydrocyclone PDR, and a model of the separation
efficiency, as well as classical PI controllers of the level and
PDR normally existing on a PWT facility. The inputs to
the separator level model are the underflow valve opening
degree Vu as the manipulated variable (MV) and the
production flow rate Qin as a disturbance input. The
inputs to the PDR and efficiency model are the underflow
and overflow valve opening degrees Vu and Vo, with Vo

as MV and the hydrocyclone inlet concentration Ci as a
disturbance.
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Fig. 2. Block diagram of the combined system model.

The Water level model block in Fig. 2 is a linear model of
the water/oil interface level in the three-phase separator,
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while the Hydrocyclone PDR model is a Hammerstein
PDR model used in Hansen et al. (2018). The level and
PDR dynamics are described by a state-space representa-
tion

ẋ = Ax+Bu (4a)

y = Cx+Du, (4b)

where A ∈ R5×5, B ∈ R5×3, C ∈ R2×5, and D = 03,3.
The first state represents the evolution of the water level,
while the states 2-5 are black-box states representing the
evolution of PDR. The non-zero coefficients of the state-
space model are given in Table 1.

Table 1. The coefficients of the state-space
matrices for the level and PDR model in (4).

A B C

a11 = −1.2300·10−5 b11 = −1.3685·10−3 c11 = 1
a22 = −9.7445·10−1 b13 = 1.7000·10−3 c23 = 2.7204
a23 = −7.6063·10−1 b21 = −1 c25 = 1.6872
a32 = 1 b42 = 1
a44 = −9.3155·10−1

a45 = −6.5396·10−1

a54 = 1

The inputs and outputs of the state-space model with the
equilibrium point subtracted are

u =

[
uVu

uVo,h

Qin

]
−

[
0.4168
0.1657
0.4

]
(5a)

y =

[
l

PDR

]
−
[
0.15
2

]
, (5b)

where Qin is the production flow rate and UVo,h
is given

by the Hammerstein function

uVo,h
= arctan(uVo

k1)k2, (6)

with k1 = 6 and k2 = 0.2118.

The level controller is given by

UVu
(s)

El(s)
= −58.37− 1.067

s
, (7)

and the PDR controller is given by

UVo
(s)

EPDR(s)
= 0.1 +

0.1

s
. (8)

These PI controllers were tuned in Durdevic and Yang
(2018a) to represent the current offshore control solution.

In Fig. 2, the Hydrocylone OiW Model block consists of
a black-box Hammerstein model of separation efficiency,
by Jespersen et al. (2023a,b). This is a discrete-time
Hammerstein model, which can be represented as

h(k) = fh(uε(k)) (9a)

xε(k + 1) = Aεxε(k) +Bεh(k) (9b)

yε(k) = Cεxε(k) +Dεuε(k), (9c)

where Aε ∈ R7×7, Bε ∈ R7×3, Cε ∈ R1×7 and Dε = 03,3.
The coefficients of the state-space matrices are given in
Table 2. The sampling time of the model is Ts = 0.2 s.

The input to the model uε with equilibrium values sub-
tracted is

uε =

[
uVu

uVo

Ci

]
−

[
0.5053
0.6490
96.263

]
, (10)

The output yε in (9) is the ratio of concentrations in (3)
and the separation efficiency in Fig. 2 is therefore given by

ε = 1− (yε + 0.6237) = 0.3763− yε. (11)

Table 2. The coefficients of the state-space
matrices for the efficiency model in (9).

Aε Bε Cε

a11 = 1.9773 b11 = 1 c11 = 1
a12 = −9.7771·10−1 b32 = 1 c13 = 1
a21 = 1 b53 = 2 c15 = −5.0571·10−1

a33 = 1.9257 c16 = 5.0000·10−1

a34 = −9.2653·10−1

a43 = 1
a55 = 1.8884
a56 = −1.0015
a57 = 4.3143·10−1

a65 = 1
a76 = 2.5000·10−1

The Hammerstein function is comprised of three one-
dimensional third-order polynomials, i.e., one for each
input

fh,i(ui, αi) = αi,0 + αi,1ui + αi,2u
2
i + αi,3u

3
i , (12)

where i denotes the ith input. The polynomial coefficients
are given in table 3.

Table 3. Polynomial coefficients in the Ham-
merstein part of the separation efficiency

model.

fh,Vu fh,Vo fh,Ci

α0: −4.4771·10−5 1.1890·10−5 3.2580·10−2

α1: 1.7127·10−4 −7.1076·10−5 1.7473·10−3

α2: 2.8924·10−4 5.5993·10−4 −3.7555·10−5

α3: −2.8959·10−4 4.1371·10−4 −1.8688·10−6

2.2 Model Validation

For the validation of the model, experimental data is used
from a lab-scaled pilot plant with the level and PDR
control active, while the system is subjected to varying
production flow rate Qin emulating slugging flow into the
three-phase separator tank. For more information about
the testing facility, refer to Jespersen et al. (2023b).

In Fig. 3, the comparisons between the experimental data
and the plant model for water level and the Vu are
presented. The match between the measured water level
and the model is good, except around t = 750 s, where the
level data and the model deviate as Vu fully opens. The
shape of Vu also resembles the data nicely, but the model
seems to overestimate the effect of Vu.

Fig. 4 compares the data and plant model for separation
efficiency, PDR, and Vo. The fit to the separation efficiency
is reasonable, except for the deviation around t = 750 s. At
this period, the PDR model also has its largest deviation.
The oscillations seen in the data are due to the chattering
of Vo when Vu is almost closed. Except for these variations,
the model captures most of the dynamics.
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Fig. 3. Comparison between experimental data and the
model for the water level (top) and the underflow
valve opening degree Vu (bottom).
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Fig. 4. Comparison between experimental data and the
model for the hydrocyclone separation efficiency
(top), the PDR (middle), and the overflow valve open-
ing degree Vo (bottom).

2.3 Nonlinear Model Predictive Control

The NMPC extends the existing PDR control structure as
a cascaded control solution with the PDR controller in the
inner loop and the MPC in the outer loop. The resulting
MPC is a single-input-single-output controller with the
PDR reference as the MV and the separation efficiency as
the CV. The prediction model inputs are the commanded
underflow valve opening Vu, the measured hydrocyclone
inlet concentration Ci, and the PDR reference.

For NMPC, a prediction model of the following form is
needed

x(k + 1) = f(x(k),u(k)) (13)

y(k) = h(x(k),u(k)). (14)

The prediction model is the Hydrocyclone PDR model
with the PDR controller CPDR and the Hydrocyclone OiW
model in Fig. 2.

The continuous-time PDR model and the PDR controller
are converted to discrete-time with sampling time Ts = 0.2
s. The states of the separation efficiency model remain
unchanged as the model is already discrete.

The general objective of the hydrocyclone is to operate
with maximum separation efficiency with as little water
entering the overflow as possible (high de-watering ef-
ficiency). To achieve this, a multiobjective optimization
problem could be posed with the simultaneous maximiza-
tion of separation efficiency and minimization of flow split.
As PDR is correlated with Fs, this could be posed as the
minimization of the cost function

J(k) =

Hp∑
i=1

(
−w1ŷε(k + i|k)2 − w2

ŷPDR(k + i|k)2

)
, (15)

where ŷε and ŷPDR are the model predictions of separation
efficiency and PDR while w1 and w2 are suitable weights.
In this work, the weights w1 = 1 and w2 = 0 are
chosen as a direct optimization of separation efficiency.
The optimization problem is solved using the sequential
quadratic programming method.

The prediction horizon was increased until insignificant
improvements were seen, resulting in Hp = 40 samples,
which corresponds to 8 s. The control horizon was selected
as Hc = 0.25Hp corresponding to 2 s.

The prediction model must know the system state at
the kth time step. An extended Kalman filter (EKF)
estimates the system state based on measurements of the
PDR and separation efficiency, as illustrated in Fig. 2.
The EKF assumes additive Gaussian noise features. The
measurement covariance is

R =

[
σ2
ε 0
0 σ2

PDR,

]
(16)

with σε = 0.0234 and σPDR = 0.0835 determined from
measurements. The process noise variance Q ∈ R12×12

where only non-zero element is assumed to be q10,10 =
2.9533, corresponding to the measurement noise of Ci.
The initial state covariance is assumed to be small, i.e.,
P0|0 = 0.001.

3. RESULTS

The simulation experiment is a scenario with varying pro-
duction rate Qin and the resulting varying inlet concentra-
tion to the hydrocyclone Ci, as seen in Fig. 5. The hydrocy-
clone inlet concentration would generally be a function of
the inlet flow rate to the hydrocyclone Qi, and effectively
Vu as it governs the residence time of the separator. In
principle, Ci could be modeled, but filtered data from the
testing facility subjected to the same inlet flow disturbance
is used instead.

The level controller is kept identical in both simulations,
and the level and Vu are therefore identical in Fig. 6.
Because the level controller is strict, the level only varies
about 0.01 m around the reference of 0.15 m, causing
significant variations in Vu.
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Fig. 5. The inlet flow to the separator tank Qin and the re-
sulting inlet oil concentration Ci to the hydrocyclone.
The inputs are filtered data from the real process.
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Fig. 6. The separator water/oil interface level and under-
flow valve (Vu) opening degree. The level controller
gives the same response in both simulations.

In Fig. 7, the separation efficiency of the NMPC is higher
than the PI controller alone over the whole simulation.
The PI controller saturates Vo either fully open or fully
closed, attempting to maintain PDR at the fixed reference
of 2. The NMPC lets the PDR vary and only makes minor
adjustments to Vo to keep it around the optimum value.

In Table 4, the mean and variance of the separation
efficiency and the total valve travel of Vo are given. The
NMPC achieved a mean separation efficiency of 50.77%,
which is 11.7 percentage points (p.p.) better than the
PI controller. The standard deviation of the separation
efficiency achieved by the NMPC is also 1.85 p.p. larger
than the efficiency of the PI controller. The overflow
valve travel with the PI controller was 10.32 times the
full valve travel, while with the NMPC it was only 0.45,
corresponding to a reduction of 95.6% and thus effectively
reduced valve wear.
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Fig. 7. The separation efficiency ε (top), the PDR and
PDR references (middle), and the overflow valve open-
ing degree Vo (bottom).

Table 4. Mean and standard deviation of sepa-
ration efficiency and total overflow valve travel.

Performance metrics Unit NMPC PID

Efficiency
mean (%) 50.78 39.09
SD (%) 8.29 6.44

Total overflow valve travel (-) 0.45 10.32

4. DISCUSSION

The addition of the NMPC improved the separation effi-
ciency by 11.7 p.p. and reduced overflow valve actuation
by 95.6%. While this represents a significant performance
improvement, it is subject to some system assumptions.
While the physical plant is interdependent, where almost
every process change in one sub-system affects the rest
of the system, this work has implemented simplifications.
The model of the interface level is based on a mass balance
using the orifice equation of the underflow valve. Typically,
the overflow flow rate is only a couple of percent of the
inlet flow rate, and the effect of Vo on the level is therefore
neglected, as illustrated in Fig. 2. The level model is
linearized around 0.15 m and a valve opening degree of
Vu = 0.4 and assumes a constant pressure drop across
the valve. The PDR model is linear in Vu and uses a
Hammerstein black-box model to represent the effect of
Vo with the equilibrium point of PDR = 2, Vu = 0.4,
Vo = 0.1657, and Qin = 0.4. The separation efficiency
model is a nonlinear model identified on data from the pro-
cess with the level and PDR controllers active. Therefore,
the identification data only covered a subset of the possible
valve combinations. In general, such black-box models may
be less accurate when extrapolating outside the estimation
data, but the model was deemed reasonable over most of
the MV space (Jespersen et al. (2021)). Although the plant
model used here may not perfectly describe the actual
system, the PDR and level models have been successfully
used to design advanced controllers (Hansen et al. (2018);
Durdevic and Yang (2018a)), and the combined model
captures most of the dynamics as seen in Fig. 4 and 3.
Due to these model simplifications, the actual increase
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in separation efficiency will likely be lower. Additionally,
as seen in Fig. 7, the difference between the separation
efficiency of the PI controller and the NMPC is largest
when Vu is fully open, which causes the PI controller to
open Vo completely. When Vo is fully open, the model re-
ports a reduced separation efficiency, which is not typically
observed. This may be due to the identification experiment
discussed in Jespersen et al. (2021). Most authors report
that the separation efficiency reaches a plateau in the
overflow direction. This would reduce the improvement in
separation efficiency additionally. However, in the North
Sea, operators discharged approximately 4000 tonnes of
oil between 2009 and 2019 (OSPAR (2022)). Thus, even
minor improvements in separation efficiency can lead to
significant reductions in produced water discharge.

5. CONCLUSION

In this work, a NMPC was designed to control the sep-
aration efficiency of a de-oiling hydrocyclone in a scaled
version of a PWT facility. The NMPC is added on top of
the existing PDR controller, and the comparison with and
without the NMPC indicates significant improvements in
separation efficiency and reduced valve wear. Due to the
model simplifications and the scaled size of the testing
facility, improvements on an offshore facility will likely
be smaller. Still, the results show promising potential for
OiW-based control of PWT systems.

Future works will include the separation efficiency of the
three-phase separator to optimize the efficiency of the
combined system to reduce the PW discharge even further.
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