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Abstract: This work introduces a methodology to design and optimize chemical process flowsheets through 

a novel hybrid Proximal Policy Optimization (HPPO) agent. The novelty of this work lies in the use of 

masking, a technique never considered before in the design of process flowsheets capable of finding 

correlations between the composing unit-operations (UOs). The performance of this novel agent is tested 

using case studies, one of which employs ASPEN Plus. The results obtained from both cases demonstrate 

significant learning on the part of the agent, yielding outcomes in line with the problem’s specifications. 
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1. INTRODUCTION 

Process flowsheets are a fundamental tool in chemical 

engineering, offering a graphical description of a chemical 

process, involving the arrangement of unit-operations (UOs), 

their underlying interconnections through streams, and the 

materials involved. This visual representation provides an 

understanding of the process and facilitates the identification 

of potential challenges and optimization opportunities. 

Typically, process flowsheet design follows a structured 

approach, often initiated by focusing on the process's core 

units followed by the incorporation of purification and 

separation processes and the addition of units for mass and 

energy integration. With the development of novel 

optimization tools, process flowsheet designs underwent 

significant improvements, enabling engineers to tackle 

increasingly complex design challenges. When optimal 

process flowsheet design is attempted, the optimization 

formulation often results in a Mixed-Integer Nonlinear 

Programming (MINLP) problem. In this context, discrete 

decisions often involve UO selection, their placement, and 

design specifications (e.g., the number of plates in a distillation 

column); in contrast, continuous decisions consider the 

specification of operational conditions, e.g., flowrates, 

temperatures, pressures, as well as equipment sizing, e.g., 

capacity of mixing tanks. Note that the solution of MINLPs 

involving optimal flowsheet design is particularly challenging 

due to the interplay of discrete and continuous variables, the 

inherent process nonlinearity, consideration of disjunctive 

decisions, etc. Specialized algorithms and significant 

computational resources are thus typically required, with no 

assurance of achieving an optimal solution. 

Reinforcement Learning (RL) is a Machine Learning 

framework that specializes in training agents to make 

sequential decisions through their interaction with an 

environment. This framework is often used to optimize 

complex processes (Sutton and Barto, 2018). Significant 

advancements have been made in combining RL techniques 

with chemical process flowsheet design. Midgely (2020) 

tackled the challenge of non-azeotropic mixture distillation 

trains by employing a soft actor-critic agent in conjunction 

with the COCO simulation suite. Khan and Lapkin (2020) 

introduced a hierarchical RL strategy for process flowsheet 

design, allowing for improved agent-process interaction and 

achieving superior results compared to baseline methods. 

Stops et al. (2022) employed graph neural networks to model 

process flowsheets and combining them with a hybrid 

proximal policy optimizer (PPO) agent to generate process 

flowsheets for an esterification process. Furthermore, van 

Kalmthout et al. (2022) extended Midgely's work (Midgely, 

2020) by adapting their framework to the widely used ASPEN 

Plus simulation suite, revealing challenges in the complexity 

of convergence of the distillation trains and the extended 

training times. 

An unexplored area, which is tackled in this work, involves the 

use of masking, a technique positioned to improve decision-

making and strengthen the learning process of the agent. 

Huang and Ontañón (2022) introduced and applied the concept 

of masking by employing a masked Proximal Policy 

Optimization (mPPO) algorithm, shedding light on its efficacy 

in enhancing RL. This innovative technique allows for the 

consideration of logically constrained actions, which are often 

present when performing process flowsheet design. The 

primary objective of this work is to create an agent capable of 

autonomously design and optimize process flowsheets through 

the utilization of deep RL techniques. The major contribution, 

distinguishing this work from previous studies, revolves 

around the deployment of a masked hybrid Proximal Policy 

Optimization (mHPPO) agent. The innovative use of masking 

not only enhances the efficiency of process optimization but 

also offers a unique advantage in terms of unraveling the 

intricate relationships between various UOs within the 

flowsheet design process. In this work, a RL agent has been 

trained to make decisions with the goal of performing optimal 

process flowsheet design. The agent is also tasked with 

adhering to general process design, operational, environmental 

and safety constraints while generating feasible designs.  
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2. PROBLEM STATEMENT 

In this section, a general definition of the process flowsheet 

design problems that can be addressed with the methodology 

shown in the next section is presented. To illustrate the 

approach, the minimization of the costs of a sequential process 

flowsheet is considered. Note that this problem can be readily 

adapted to consider other types of sequential flowsheets; 

however, ramifications or the handling of two separate 

pathways is currently outside the scope of this work.  

Problem (𝑃1) shown below can be formulated as a MINLP 

problem, having as a primary goal the minimization of a 

function 𝑓(𝒙𝒅, 𝒙𝒄) that may represent a combination of 

process economics, environmental requirements, 

sustainability incentives, etc.  

𝑃1   

 min 𝑓(𝒙𝒅, 𝒙𝒄) (1.a) 

𝑠. 𝑡. 𝒈(𝒙𝒅, 𝒙𝒄) ≤ 0 (1.b) 

 𝒙𝒅  ⟹ 𝒙𝒅 (1.c) 

 𝒙𝒅 𝜖 𝑋𝐷 ⊂ {0,1}𝑛𝑑, 𝒙𝒄 𝜖 𝑋𝐶 ⊂ ℝ𝑛𝑐  

Variables in this study can be classified into discrete and 

continuous variables. The discrete variables, 𝒙𝒅, are binary 

decision variables belonging to a bounded set 𝑋𝐷 ⊂ {0,1}𝑛𝑑, 

where 𝑛𝑑 represents the number of discrete variables. These 

variables often specify the inclusion or exclusion of discrete 

components in the process flowsheet design problem, which in 

this context represent the UOs to be considered in the 

flowsheet. The continuous variables, 𝒙𝒄, belong to a bounded 

set 𝑋𝐶 ⊂ ℝ𝑛𝑐, where 𝑛𝑐 represent the number of continuous 

variables. The process flowsheet design optimization problem 

is subject to a set of inequality constraints represented by 

𝒈(𝒙𝒅, 𝒙𝒄). For process flowsheet design problems, these 

inequalities often involve process design goal requirements, 

e.g., reactant conversion and product purity, as well as specific 

constraints related to UO design and operational limitations, 

e.g., allowed operating pressure or temperature of a UO. 

Logical and disjunctive constraints that delineate the 

interdependencies among the UOs are also considered (1.c). 

Given that these are binary variables formulated in linear 

constraints, there is no need for any reformulation. 

In addition to the specification of the optimization formulation, 

an educated initial guess is needed to solve 𝑃1. For the 

problem at hand this initial data comprises comprehensive 

information regarding the inlet stream, featuring essential 

parameters such as temperature, pressure, and the molar flow 

rates of reactants. After previously addressing the challenges 

associated with MINLP problems, the inclusion of logical 

constraints within the formulation introduces an augmented 

degree of complexity. These complexities, in turn, motivate 

the exploration of alternative approaches for addressing these 

problems, with one such approach being the utilization of RL. 

3. SOLUTION FRAMEWORK 

This section presents a RL approach to solve the flowsheet 

design problems described in the previous section, delving into 

the key elements of the implementation: environment and 

agent. For the former, it will delve deeper into the action space, 

observation, and reward mechanisms, whereas for the latter, 

the agent's structure will be elucidated. Both sections 

emphasize the novel masking technique introduced in this 

work, describing in detail the respective modifications 

required for the proper functioning of both the environment 

and the agent, and the advantages of the proposed framework. 

3.1 Environment 

The environment serves as the external context for RL agent 

interactions and represents the part of the algorithm where 

optimization problem is translated into RL terms to be 

understandable to the agent (Sutton and Barto, 2018). The 

action space is defined in the environment and contains all the 

discrete and continuous actions, i.e., 𝒜 = [𝒙𝒅 𝜖 ℕ , 𝒙𝒄 𝜖 ℝ]. 
For the flowsheet design problem, the discrete actions 

encompass all the UOs specified in the problem’s definition, 

which in contrast to the optimization formulation, each UO 

correspond to an integer value. The continuous actions contain 

all the normalized ranges of  𝒙𝒄. Normalizing the values is 

essential as the RL agent's continuous section operates with a 

Beta distribution that ranges from 0 to 1, per continuous action. 

An episode is composed of steps (𝑖) – a single interaction with 

the environment – and ranges from 0 up until 𝑖𝑚𝑎𝑥 , which is a 

user-defined hyperparameter that determines the maximum 

number of steps in an episode. At each step, an action, 𝑎𝑖, is 

sampled from set 𝒜 and applied to the environment, note that 

the continuous part of 𝑎𝑖 is interpolated into its respective 

domains. For instance, the addition and definition of a UO in 

the flowsheet is equivalent to a step. The observation vector at 

step 𝑖 (𝑜𝑖) shown in (2) is generated by the environment and 

sent to the agent to produce an action.  

 𝑜𝑖 = [𝑇𝑖 , 𝐹𝑖,𝑠, 𝑖] 
𝑖 𝜖 {1, 𝑖𝑚𝑎𝑥} 

𝑠 𝜖 {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠} 
(2) 

Depending on the optimization problem’s configuration, the 

structure of 𝑜𝑖  may vary but common features are kept. The 

information gathered at each step is: a) process operating 

variables, e.g., temperature (𝑇𝑖); b) a chemical components 

(reactants or products → 𝑠) tracker, which could be molar 

flowrates or molar fractions (𝐹𝑖,𝑠); iii) the step of the current 

observation (𝑖), to add temporal context to the vector and 

differentiate identical action responses. All the elements in 𝑜𝑖  

are normalized, thus preventing larger values from having a 

greater influence on data processing within the agent’s neural 

network. The step reward, 𝑟𝑖, used in this problem is 

decomposed into 𝑚-individual sub-rewards, i.e., 𝑟𝑖 = ∑ 𝑟𝑚𝑚 . 

To apply this approach, 𝑃1 is broken down into its constituent 

objectives and constraints, assigning a separate reward to each 

of these new elements, as illustrated in Table 1. The constraints 

dealing with the interdependencies between discrete variables 

are not considered in distinct sub-rewards, primarily because 

their influence is embedded within the other functions. On the 

other hand, an additional sub-reward is considered, referred to 

as driving force. This term is defined as the difference in one 

distinctive parameter (Δ), e.g., conversion, molar flowrate. The 

driving force encourages the agent to convert the reactant into 
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product and avoid remaining in an idle state. To motivate the 

agent to complete the process in as few steps (𝑖) as possible, 

an additional sub-reward is introduced. This sub-reward adds 

the unused steps (𝑖𝑚𝑎𝑥 − 𝑖) to 𝑟𝑖, ultimately promoting the 

generation of shorter and more efficient process flowsheets. 

Table 1. Reward shaping 

Optimization problem RL reward function term 

Minimization of 𝑓(𝒙𝒅, 𝒙𝒄) 

(1.a) 

The penalty decreases as the values 

obtained from evaluating the 
function become less negative. 

Process design goal requirement 

constraints 
(1.b) 

The penalty lowers as the constraint 

violation approaches the desired 
value.  

Specific design constraints 

(1.b) 

Constant reward provided for 

constraint satisfaction. 

- 
Varying reward depending on the 
magnitude of the driving force. 

- 
Varying reward depending on the 

remaining steps. 

The total costs obtained from the objective function are set to 

negative values in order to consider them as a penalty. 

However, to avoid the agent choosing actions with the lowest 

penalty, the previously defined driving force is used to balance 

out the rewards, thus avoiding trivial solutions. Note that the 

process design goal requirement constraints become relevant 

only in the final step of the episode. If the agent fails to satisfy 

these constraints within the stipulated maximum number of 

steps, it will incur a penalty. Conversely, there are no penalties 

for successfully meeting these requirements. Specific design 

constraints, which are only activated for certain actions, offer 

an additional constant sub-reward to the agent when the 

constraint is not violated. Treating local constraints as 

penalties, where the agent is penalized for any violation 

(similar to a constraint programming approach) may lead to 

poor learning rates. This formulation hinders the agent's 

exploration, resulting in convergence toward suboptimal 

results or, in some cases, it may lead to divergence. 

One distinctive feature of this environment lies in its masking 

feature. This function is subject to the state, the environment’s 

configuration at a specific step (𝑖) and has the capability to 

activate or deactivate discrete actions within the action space. 

This means that the action space changes frequently 

throughout the training process. For example, consider the 

dependency between variables 𝑥𝑑,1, 𝑥𝑑,2 and 𝑥𝑑,3. The 

variables 𝑥𝑑,2 and 𝑥𝑑,3 can only be chosen if 𝑥𝑑,1 has been 

previously selected, i.e., 

 𝑥𝑑,1  ⟹ (𝑥𝑑,2  ∧ 𝑥𝑑,3) (3.a) 

 𝑥𝑑,2 + 𝑥𝑑,3 ≤ 𝑥𝑑,1 (3.b) 

  𝑥𝑑,1, 𝑥𝑑,2, 𝑥𝑑,3𝜖 {0,1}  

In the case of the RL environment, instead of a reformulation, 

a vector of Boolean variables known as the masking vector is 

employed. Depending on the state, the masking vector changes 

values, effectively masking or unmasking the discrete actions. 

Following the previous example, the starting masking vector 

would be: 𝑚𝑣𝑖 = [𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒], corresponding to an 

action space 𝒜 = [𝑥𝑑,1 ]. Once the action 𝑥𝑑,1 is chosen, 𝑚𝑣𝑖  

changes to [𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒], making 𝑥𝑑,2 and 𝑥𝑑,3 

available in the environment for the agent to select and 

changing the action space to 𝒜 = [𝑥𝑑,2 , 𝑥𝑑,3 ].  

3.2 Agent 

The agent used in this work is an adaptation of the hybrid 

Proximal Policy Optimizer (HPPO) proposed by Fan et al. 

(2019), which incorporates the masking methodology 

introduced by Huang and Ontañón (2022). The agent's 

architecture shares most components with the HPPO, with the 

adjustment made to the policy network (actor) to incorporate 

the masking technique. In a policy-based method, discrete 

actions are drawn from a categorical probability distribution 

(discrete actions policy 𝜋𝜃𝑑) based on the current state 

provided by the environment. In a masked framework, along 

with the observation, an additional masked vector is supplied 

to the agent by the environment, i.e., 

 𝑎𝑖 =  𝜋𝜃𝑑(∙|𝑜𝑖 , 𝑚𝑣𝑖) (4) 

To set the probabilities associated with the undesired actions 

to zero, the masking function integrated in the agent sets the 

logit values (𝒍) - output values from the second-to-last layer of 

the neural network - to a large negative number, 𝒍 →  −∞. 

These values are subsequently forwarded through the final 

layer of the actor network, where the SoftMax activation 

function is used to convert these large negative values into the 

probability domain by setting them to 0, i.e., 

 
𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝒍) =

𝑒𝑙𝑚

∑ 𝑒𝑙𝑗𝐾
𝑗=1

 ∀ 𝑚 𝜖 𝑛𝑑 𝑎𝑛𝑑 𝒍 𝜖 ℝ𝑛𝑑 (5) 

 lim
𝑙→−∞

𝑒𝑙𝑚𝑎𝑠𝑘𝑒𝑑 = 0 (6) 

The masking technique allows the agent to prioritize and 

concentrate on the most relevant actions during each step of 

the learning process. This not only accelerates the agent's 

learning but also helps to avoid illogical decisions, e.g., 

starting a flowsheet with a product purification column. Note 

that masking can only be applied to discrete actions. Hence, 

continuous actions cannot be masked, and as a result, the agent 

may persist in selecting certain continuous actions even when 

their associated discrete actions have been masked.  

4. RESULTS AND DISCUSSION 

The methodology presented in the previous section was tested 

using two case studies involving the design of process 

flowsheets.  

4.1 Case study 1 

The goal for this case study was to design a process flowsheet 

that transforms reactant A into product B up to a specified 

conversion while minimizing the process economics. The UOs 

involved in this case are as follows: a) Mixer: This UO's 

function is to mix material flows; it has two possible inlet 

streams and one outlet. The mixer does not consider enthalpy, 

temperature, or pressure changes during mixing. The mixer is 

one of the two essential components for performing recycling, 

i.e., if this UO is not present in the flowsheet, material 

recirculation cannot be carried out. b) Reactor: A Continuous 
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Stirred-Tank Reactor (CSTR) is used as the reactor type, it is 

assumed that the reactor is non-isothermal, having a constant 

flow of coolant; it is also assumed that the reactor operates at 

steady state and has one inlet and one outlet stream. The CSTR 

model parameters were taken from Schweiger et al. (1998). 

The decision variables for the RL agent are the reactor's 

diameter (𝐷) and height (𝐻). c) Flash: This unit aims to 

separate the A/B mixture, which is assumed to have a relative 

volatility (𝛼) of 4.5. The equations governing the flash 

operation are a modification of the Rachford-Rice equations 

expressed in terms of 𝛼. The design variable for this unit is the 

vapor/feed fraction of the flash tank (𝑞). The flash operation 

constitutes the second part of the recycling process; in this 

case, the entire vapor stream is recycled back to the mixer 

assuming that the stream is subsequently condensed to match 

the composition of the input flow to the mixer. This UO has 

one input and two outputs, the tops and bottoms, being the 

latter, the material stream used to further build the process 

flowsheet. 

The environment for this case study closely follows the 

description provided in the previous section. The action space 

(𝒜) consists of 𝒙𝒅 𝜖 [Mixer,CSTR,Flash], and 

𝒙𝒄 𝜖 [ℝ𝐷, ℝ𝐻 , ℝ𝑞] representing the diameter, height and the 

vapor/feed fraction, respectively. The observation vector 

returned at each step contains information of the outlet stream 

of the selected UO: concentration of reactant A, temperature, 

total molar flowrate, step and achieved conversion, 𝑜𝑖 =
[𝐶𝐴, 𝑇, 𝐹, 𝑖, 𝑥𝐴]. The reward function consists of four sub-

rewards: a step driving-force, defined as the difference of 

conversion between two consecutive steps; UO capital costs; 

the process design goal requirement, which seeks to achieve a 

specific conversion; and the difference between 𝑖𝑚𝑎𝑥 and 𝑖 
reward given for short and effective flowsheets. Note that all 

rewards were normalized to prevent an individual term from 

having a disproportionate impact, e.g., the capital operating 

cost of a UO (𝐶𝐶𝑈𝑂). In this case, due to the lack of 

thermodynamic data for the compounds and the absence of 

intrinsic constraints on the unit operations, the cost of 

operation (𝑂𝐶𝑈𝑂) and specific design constraints are not 

considered. 

Regarding the masking, to prevent the agent from opting to 

select the trivial solution of placing a mixer followed by a 

flash, a condition to unmask the latter required not only the 

presence of a mixer in the flowsheet but also a change of 

concentration between flows in a UO. The latter implies the 

existence of at least one reactor between the mixer and the 

flash. Additionally, to avoid confusion for the agent 

concerning recycling, once the mixer was chosen, that 

operation was masked and unmasked again only after selecting 

the flash. If the agent needed to use another flash, a second 

mixer had to be chosen beforehand. The problem’s 

hyperparameters were specified next. The goal for this 

problem was for the agent to discover an economically 

attractive process flowsheet that can achieve a conversion rate 

of 97.5% or higher while using reactors with diameters and 

heights within the range of 1.68 to 2.36 meters (5.5-7.75 ft.). 

The agent has an 𝑖𝑚𝑎𝑥  of 10 steps (𝑖), 10 reactors, and all the 

required mixers and flash tanks to solve the problem in the 

shortest episodes possible. The agent's architecture features a 

fully connected neural network divided into two parts. The 

first part consists of three layers, which encode the input 

neurons into two output neurons. The second part takes the 

output of the first part, bifurcates into discrete and continuous 

components, and decodes (with one hidden layer in between) 

each section into their respective action sizes. All the hidden 

layers consist of 64 neurons each and employ Tanh activation 

function. The agent was trained for 75,000 instances, with each 

episode's steps adding up to this total number of instances, 

culminating in a total training time of 16 minutes. The network 

was updated every 2048 instances with a discount factor of 

0.99 and optimized using Adam’s optimizer with a starting 

learning rate of 2.5e-4 which was adjusted throughout the 

training.  

 

Figure 1. Learning curve based on the rewards case study 1 

Figure 1 presents a summary of cumulative rewards at the end 

of each episode. The solid blue line represents the running 

average over the last one hundred episodes, while the shaded 

lines denote the rewards obtained at each step thus 

representing the variability in the reward function. The running 

average serves as a reliable indicator of the agent's learning 

progress, showing significant growth within the initial 

thousands of episodes, and reaching a plateau at around 7,500 

episodes. Beyond this point, the agent struggles to find a better 

solution, or refines the already found configuration, oscillating 

around this maximum. From the graph, it is observed that the 

average cumulative reward obtained fluctuates around -0.310. 

However, when evaluating the best-performing agent, this 

value improves further, reaching -0.096.  

  

Figure 2. Best process flowsheet case study 1 

The results shown in Figure 2 offer significant insights into the 

agent's decision-making process to find the best process 

flowsheet for this process. The agent could have reached the 

conversion objective by only placing reactors in series; 
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however, the identified flowsheet highlights the agent's 

proficiency in leveraging recycling, opting for flash tanks 

alongside reactors to not only reduce costs but also improve 

conversion rates. This is precisely the key, innovative feature 

introduced by the masking since it helps to identify these 

correlations between UOs, or alternatively prevents the agent 

from being lost in its learning process by making incorrect 

decisions, guiding the agent to make the correct decisions that 

lead to the specification of attractive flowsheets. The primary 

limitation of the hybrid agent lies in the necessity to adjust the 

learning processes of its discrete and continuous components, 

with the latter presenting the most pronounced challenges. 

Regarding the discrete component, the agent, constrained by a 

finite set of actions, can readily identify an optimal 

configuration. However, in the case of the continuous 

component, where an infinite number of decisions are 

possible, the agent is persistently engaged in the pursuit of 

improvement and exploration of new options, which 

significantly amplifies the variability of the overall process. 

This can be observed in Figure 1, where process variability 

decreases as the training progresses. Despite the pronounced 

variability, the running average tends to plateau towards the 

upper part of the cumulative rewards graph, however it does 

not attain the highest achievable rewards, indicating the 

existence of a potential better flowsheet. To demonstrate the 

masked agent’s ability to discover the optimal solution, the 

continuous variables of the environment were discretized, and 

a discrete masked PPO was trained within the same 

environment. The results of this test are not shown here for 

brevity but it was confirmed that the agent found the expected 

configuration achieving the highest possible rewards, 

outputting a process flowsheet composed by one full recycle 

(mixer-reactor-flash) and an additional reactor at the end. 

4.2 Case study 2 

The objective of this case study was to develop a process 

flowsheet for the production of propylene glycol using water 

and propylene oxide, using methanol as an inert compound. In 

contrast to case study 1, this case study features the use of the 

ASPEN-Plus platform as part of the simulation environment 

for the propylene glycol production process. The key 

motivation behind the development of this hybrid platform lay 

in harnessing the thermodynamic packages and equations 

governing all declared UOs within the program. Notably, this 

approach facilitated the incorporation of a broader spectrum of 

UOs, resulting in processes that closely emulate real-world 

design procedures. For this case study, the selected 

thermodynamic package was the Non-Random Two-Liquid 

(NRTL) model, and the UOs were as follows: Mixer, Plug-

Flow Reactor (RPLUG in ASPEN), Distillation column 

(DSTWU in ASPEN), Splitter and Heat exchanger (HEATER 

in ASPEN). Note that more rigorous models, such as 

RADFRAC and HeatX, could have been employed in the 

current framework to achieve more accurate results and 

address multicomponent or multiphase situations. However, 

these models were not explored in this study to simplify the 

analysis. 

The action space (𝒜) for this case is as follows: 

𝒙𝒅 𝜖 [𝑀, 𝑃𝐹𝑅, 𝐶𝑂𝐿, 𝐶𝑂𝐿 + 𝑆, 𝐻𝐸𝑋]; note that, 𝐶𝑂𝐿 + 𝑆 is a 

DSTWU column coupled with a splitter; similarly, 

𝒙𝒄 𝜖 [ℝ𝐷, ℝ𝐿 , ℝ𝑛𝑠𝑡 , ℝ𝑟𝑟 , ℝ𝑇𝐻𝐸𝑋
], i.e., reactor’s diameter and 

length, column’s number of stages, splitter’s reflux ratio and 

heater’s outlet temperature, respectively. The observation 

vector returned at each step (𝑖) contains information of the 

outlet stream of the selected UO, i.e., temperature, molar 

fractions (𝜒) of water (𝐻2𝑂), propylene oxide (𝑃𝑂), propylene 

glycol (𝑃𝐺), and methanol (𝑀𝑒𝑂𝐻), and the current iteration; 

thus, 𝑜𝑖 = [𝑇, 𝜒𝐻2𝑂, 𝜒𝑃𝑂 , 𝜒𝑃𝐺 , 𝜒𝑀𝑒𝑂𝐻 , 𝑖 ]. The reward function 

consists of the following terms, i.e. 

 𝑟𝑖 = −𝐶𝐴𝑃𝐸𝑋𝑈𝑂 − 𝑂𝑃𝐸𝑋𝑈𝑂 +  Δ𝑥𝐴 − (𝑐𝑜𝑛𝑣 − 𝑥𝐴)
+ 𝑐𝑡𝑒𝑇 + (𝑖𝑚𝑎𝑥 − 𝑖) 

(7) 

𝐶𝐶𝑈𝑂, user defined function and 𝑂𝐶𝑈𝑂, term obtained from the 

heat requirements of each UO. A step driving force (Δ𝑥𝐴), a 

goal designed requirement, which seeks to achieve a certain 

purity of the product while maximizing the conversion of the 

reactant. Also, a constant reward (𝑐𝑡𝑒𝑇) set for a specific 

design constraint, which for this case is the operation’s 

temperature under which the reactors should operate to avoid 

runaway reactions, 77°C, and the step difference reward, for 

short and effective flowsheets. The masking approach in this 

case closely resembles that of the previous case study. 

However, instead of the mixer-flash pair, now a mixer-column 

with recycle pair is considered. Additionally, a masking 

mechanism has been introduced for the simple distillation 

column, triggering its activation once a substantial amount of 

reactant has been converted into the product. This was 

implemented to prevent the agent from selecting short 

sequences of UOs that would result in reactant wastage, 

particularly given that this column lacks recycling capabilities. 

For the 𝐶𝑂𝐿 + 𝑆 a different approach is taken, the UO is 

unmasked once some reactant has been converted. In order to 

avoid reactant wastage in the distillate stream, the 

concentration of reactant in the purge (complementary stream 

to the recycle) needs to have a certain concentration to end the 

flowsheet; otherwise, it will be utilized to further extend the 

flowsheet. Similarly, masking has been applied to the heat 

exchangers (HEX), where once one is selected, another cannot 

be chosen consecutively. This restriction serves to deter the 

agent from placing HEX units in series without a specific 

purpose. Note that masking does not fix or predefine a 

chemical process flowsheet. Instead, masking is used solely to 

simplify the agent's learning process and, most importantly, to 

prevent simulation errors in ASPEN Plus, which could 

otherwise hinder the agent's learning. 

The objective was for the agent to find the optimal process 

flowsheet to produce the highest amount of 𝑃𝐺 at a purity of 

99% or higher. The agent had a maximum of 10 steps, 10 

reactors and all the required heaters, distillation columns (with 

or without recycle) and mixers to solve the problem in the 

shortest episode possible. The agent’s specifications were the 

same as those presented in case study 1, with the sole 

difference that the agent was trained for 50,000 instances and 

the network was optimized every 512 instances. Unlike the 

previous case, the agent's training time lasted approximately 

one day. This was due to the complexity of the environment, 

where for each instance, a flowsheet needed to be simulated in 

ASPEN Plus. The results presented for this case study are 
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shown in Figures 3a and 3b. The plateau reached by the 

running average shown in Figure 3a closely aligns with the 

agent's maximum rewards achieved during training, 

suggesting that the configuration found by the agent is near 

optimal. The slight deviation from the maximum rewards 

represents the margin of error in the continuous component of 

the hybrid agent.  

 

 

Figures 3a and 3b. Learning curve based on the rewards and best 

process flowsheet for case study 2 

As shown in Figure 3b, the flowsheet found by the agent did 

not require recycling. This decision is reasonable because, 

unlike the previous case, the overall costs of a distillation 

column were much higher than those of a PFR. Thus, the agent 

chose to fully convert the reactant first, meeting the reactor 

design constraints, operating the reactors below 77°C, before 

proceeding with the separation process. A closer look at the 

flowsheet reveals that the agent aims to maximize reactant 

conversion in the initial stages. However, to avoid violating 

the specific design constraints, it acknowledges the need to 

employ medium sized reactors and incorporate a heat 

exchanger between the two PFRs. A distillation column is 

chosen at the end to obtain the desired product with a purity of 

99% in the bottoms. Note that tests were conducted with the 

inclusion of a recycling column. However, the rewards 

obtained under those conditions were lower, e.g., the agent 

needed more than just a single column, the reactors were not 

able to meet the constraints, or the simulation failed. One 

notable aspect from the learning curve is the significant 

reduction in reward variability. Unlike the previous case study, 

once the agent found the optimal configuration, it focused on 

exploring the continuous part while exploiting the discrete 

component. To prevent flowsheets that had runs with warnings 

or errors in ASPEN, a penalty of -10 was assigned to the agent 

when faced with these issues. Note that as the agent learned, 

such flowsheets were mitigated, with only a few remaining in 

the later stages of learning. To improve the computational 

process, episodes were terminated as soon as an error or 

warning was encountered, and the entire flowsheet was reset. 

5.  CONCLUSIONS AND FUTURE WORK 

This study presented a novel agent designed for the purpose of 

chemical process flowsheet optimization, with a specific focus 

on producing a policy capable of simultaneously minimizing 

both capacity and operational costs while adhering to the 

design constraints of the UOs and the overall process 

conditions. The key innovation in this work lies in the 

utilization of a masking method, a previously unexplored 

approach in chemical process flowsheet design. By accounting 

for the intricate interdependencies among UOs, this technique 

significantly enhances the agent's decision-making 

capabilities. Complex simulation environments were utilized 

during this work allowing the incorporation of diverse UOs 

into the optimization process, thereby augmenting both 

solution diversity and framework versatility. Future work will 

involve the implementation of this method in the design and 

optimization of flowsheets that are subject to uncertainty. 

Also, consideration of process dynamics while performing the 

optimal process flowsheet design is considered as future work. 
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