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Abstract: Industrial soft sensing has gained widespread use in industrial processes due to its advantages 
in terms of low cost and easy maintenance. However, as industrial processes become increasingly 
complex, characterized by high dimensionality, coupling, and nonlinearity in the data, traditional data-
driven soft sensing models often fall short of achieving the required level of accuracy. In this paper, a 
novel and enhanced variant of the Broad Learning System (BLS) called the Distributed Broad Seasonal 
Trend Learning System (DBSTLS) is proposed for the development of industrial soft sensing with 
improved accuracy. In the proposed DBSTLS, a distributed structure based on Seasonal-Trend 
Decomposition Procedure Based on LOESS (STL) is established. Through STL, dynamic process data 
can be mainly separated into two distinct components: the trend feature and the season feature. The 
distributed structure is built separately for the trend feature and the season feature. Subsequently, a fast 
learning strategy, based on BLS, is applied to both the distributed trend feature and the season feature. 
This integrated approach culminates in the development of the DBSTLS for industrial soft sensing. To 
validate the effectiveness of the proposed DBSTLS-based industrial soft sensing, the process data 
collected from the Pure Terephthalic Acid production process are used. Simulation results confirm that 
the DBSTLS-based industrial soft sensing outperforms other models in terms of accuracy. 
Keywords: Industrial soft sensing; soft sensor; data-driven modeling; broad learning system; process 
industry. 

1. INTRODUCTION 

Soft sensing has been applied to predict product quality, 
monitor machinery health, and optimize energy usage, all of 
which help ensure product consistency and quality, minimize 
waste, and improve manufacturing efficiency (Kadlec et al., 
2009; Jiang et al.,2020). Industrial soft sensing often refers to 
virtual sensing, signifying a shift from conventional, sensor-
based data acquisition to a more flexible and sophisticated 
approach. Instead of relying solely on physical sensors, soft 
sensing harnesses the power of computational methods, 
algorithms, and data analytics to estimate, predict, or infer 
critical process variables, product characteristics, or system 
states (Zhu et al., 2020; Chen et al.,2023). Traditional sensors 
may have limitations in their ability to capture all relevant 
information accurately, often resulting in incomplete data. 
Soft sensing addresses this limitation by amalgamating 
diverse data sources, incorporating historical data, machine 
learning, and statistical models, enabling industries to 
monitor and control processes with high accuracy (Chin et al., 
2020; Shih et al., 2020). Moreover, the installation and 
maintenance of physical sensors can be expensive and 
logistically challenging, especially in hazardous or remote 
environments. Therefore, soft sensing has gained widespread 
use in industrial processes. 

Generally, for industrial soft sensing, there are two types:  
mechanism based soft sensing and data-drive soft sensing 
(Guo et al., 2022). As industrial systems become more 

intricate and interconnected, it is difficult to build mechanism 
based soft sensing models due to the complexity in obtaining 
process knowledge and solving differential equations. In 
modern process industry, distributed control systems have 
been widely utilized (He et al., 2023). Therefore, more and 
more historical process data can be easily collected. The data-
driven soft sensing models can be effectively established 
using the collected process data.  Hence, data-driven soft 
sensing has become a hot research filed (Yan et al., 2016; 
Curreri et al., 2020). Data-driven soft sensing uses 
computational methods, algorithms, and data analytics to 
estimate, predict, or infer critical process variables. Among 
the data-driven models, neural networks has been widely 
studied and utilized as industrial soft sensing (Rani et al., 
2013). Back propagation neural network (BPNN) has been 
used as soft sensing to predict key process variables. Radial 
basis function neural network shortened as RBFNN was 
developed as industrial soft sensing in industrial processes 
(Wang et al., 2022). Although the former mentioned two 
neural networks have been successfully used as industrial soft 
sensing, there is still limitation. In BPNN and RBFNN, much 
training time is required for training, which reduces the 
application ability of BPNN and RBFNN as industrial soft 
sensing. Extreme learning machine shortened as ELM as a 
feed forward neural network solves this limitation. ELM has 
extreme learning speed, which make the training process fast. 
Zhang et. al has used ELM as soft sensing in industrial 
processes (Zhang et al., 2018). The ELM based soft sensing 
achieved high accuracy with fast training speed. However, 
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with the increasing complexity of process data in the term of 
high dimension, coupling and nonlinearity, the traditional 
ELM cannot obtain acceptable accuracy in soft sensing 
modeling due to the shallow structure of ELM. Luckily, 
broad learning system (BLS) can handle complex data with a 
broad manner.  On one hand, BLS has the good feature of 
fast learning. On the other hand, BLS can achieve high 
accuracy when dealing with complex data, which has the 
handling ability of deep learning. BLS has been successfully 
and widely used in the fields of classification and modeling 
(Chen and Liu, 2017; Gong et al., 2021).  

For industrial soft sensing, there is still limitation in BLS. 
BLS can well handle process data in the static stage. For time 
series process data, BLS cannot well handle this kind of data. 
In industrial processes, most of the process data are dynamic. 
Thus, it is necessary to avoid this limitation when developing 
soft sensing using BLS. In this paper, we propose a novel 
improved BLS named distributed broad seasonal trend 
learning system (DBSTLS) to handle this limitation. In the 
proposed DBSTLS, there is a distributed structure based on 
Seasonal-Trend Decomposition Procedure Based on LOESS 
(STL). The STL is an effective method to extract the features 
of dynamic process data from the following aspect: the trend 
feature and the season feature (Cleveland et al., 1990; Li et 
al., 2020). The trend feature is a linear relationship hided in 
the process data. The season feature contains the dynamic 
information of the process data. Hence, a distributed structure 
can be built using the trend feature and the season feature, 
respectively. Then, the fast learning strategy in BLS is 
utilized in the distributed trend feature and season feature. 
Finally, the proposed DBSTLS can be developed as industrial 
soft sensing. For the sake of verifying the effectiveness of the 
proposed DBSTLS based industrial soft sensing, the process 
data collected from the Pure Terephthalic acid process is used. 
The simulation results verified that the proposed DBSTLS 
based industrial soft sensing could achieve higher accuracy 
compared with other models. 

The rest part of this paper is organized as follows: section 2 
briefly introduces the BLS and STL; section 3 provided the 
details of the methodology of the proposed DBSTLS based 
industrial soft sensing; section 4 gives the simulation results 
and analyses; section 5 contains the conclusions. 

2. PRELIMINARIES 

In this section, two basic models are briefly introduced: STL 
and BLS. 

2.1 Brief introduction to STL 

The Seasonal-Trend Decomposition Procedure Based on 
LOESS (STL) is a time series decomposition algorithm 
relying on local weighted regression. It can decompose time 
series data into trend, seasonal components, and residual 
elements. Specifically, the trend component captures long-
term trends within the data, the seasonal component identifies 
cyclic patterns, and the residual component accounts for 
random noise that is difficult to attribute to either trend or 
seasonality. The inner loop process of STL is illustrated in 
Figure 1. 

The inner loop process of STL is depicted in Figure 1. To 
alleviate the impact of outliers in the residuals, robust 
weights ,  are introduced in the outer loop. In the successive 

iteration steps (2) and (6) within the inner loop, when 
executing Loess smoothing, adjacent weights are multiplied 
by the robust weight  to constrain outliers. This adjustment 

serves to minimize the influence of previously identified 
outliers, consequently fortifying the algorithm's robustness. 
The utilization of STL for decomposing industrial process 
data enables a more comprehensive elucidation of their 
temporal, non-linear, and non-stationary characteristics. 
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Figure 1.The procedure of   STL sequence decomposition. 

2.2 Brief introduction to BLS 

BLS can be considered an alternative approach to deep 
learning models, which is optimized on the basis of a chain 
neural network with random vector functions as the carrier. 
Its capacity for rapid system updates and modifications 
during the training process is facilitated by an incremental 
learning algorithm. The structure of BLS is visually depicted 
in Figure 2, revealing its components, which consist of a 
feature layer, an enhancement layer, and an output coefficient 
matrix. 
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Figure 2. Description of the BLS . 
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Assume that the input data set is  and the output 

data is ,the  feature mappings  can be represented 

as follows: 

  (1) 

where   and  are randomly determined weights and 

bias terms,  indicates linear transformation. While each 

feature mapping consists of nodes, collectively 

represented as . 

At the enhancement layer,  serves as the input to the 

nonlinear function of the i-th enhancement node , 

resulting in its expression as follows: 

 (2) 

where   and  are randomly determined weights and 

bias terms,  indicates nonlinear transformation. The total 

number of enhancement nodes is denoted as , with all of 

them defined as . 

The enhancement nodes and feature nodes are combined to 

obtain A, the predicted output  is formulated as follows: 

  (3) 

  (4) 

Where  is the output coefficient matrix, which can be 

obtained by pseudo-inverse calculation. 

3. THE PROPOSED METHOD 

Contemporary industrial process data display intricate 
temporal and coupled characteristics, frequently encumbered 
by residual errors and noise stemming from data acquisition 
lag and equipment limitations. To tackle these challenges, 
this paper introduces a soft sensing model grounded in 
DBSTLS. The STL algorithm is employed to scrutinize the 
dynamic properties of the data, thereby proficiently 
mitigating noise errors. Following this, the amalgamation of 
trend components, seasonal components, and the original 
input is parallelly fed into the width learning system, 
facilitating swift and accurate regression prediction of the 
output variable. The structure of the DBSTLS model is 
visually portrayed in Figure 3.  

Assuming that there are m-dimensional input variables and 1-
dimensional output variables comprising the set of samples 

, where  represent n samples of 

the i-th dimension input variable, and y represents the output 
variable.  is subjected to STL sequence decomposition as 

follows: 

  (5) 

Where ,  and  respectively represent the seasonal 

component, trend component, and residual of t the i-th 
dimension input variable.  

  (6) 

  (7) 

The application of n-group linear eigen-transform to the trend 
component  , is effectuated in the following： 

  (8) 

  (9) 

where   and  are randomly determined weights and 

bias terms,  indicates linear transformation function.  

represents the i-th set of feature transform outputs and  

represents all feature transforms.  

Parallelization of the seasonal component  with the 

original input  results in the generation of  , which is 

subsequently subjected to nonlinear enhancement： 

  (10) 

  (11) 

  (12) 

where   and   are the weight matrices and bias terms 

pertaining to the corresponding dimensions, while  

signifies the nonlinear transformation function. The output of 
the j-th augmented node is denoted as  ， and the 

aggregate output across all augmented nodes is formally 
defined as  . 

Hypothesis that the output matrix of the linear feature 
mapping and enhancement layer is denoted as  , the 

predicted output of DBSTLS can be formulated as follows: 

  (13) 

The output coefficient matrix, represented as , can be 

rapidly calculated through an approximation of the pseudo-
inverse of  in the context of ridge regression applied to 

the actual output Y. The process is the following: 

  (14) 

  (15) 

In summary, the computational development process of the 
DBSTLS model proposed in this paper is as follows: Firstly, 
the input data is decomposed into three components, namely, 
trend, seasonality, and residuals, using the STL algorithm. 
Secondly, considering the highly dynamic and coupled nature 
of the process data, a distributed structure is established. The 
trend component undergoes linear feature mapping, and the 
seasonality component, in parallel with the original input, is 
subjected to nonlinear transformation in the enhancement 
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layer. Finally, the combination of the feature layer output and 
the enhancement layer output undergoes a pseudo-inverse 
operation to yield the predictive output. 

  (16) 
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Figure 3. Structure of the DBSTLS 

  (17) 

 (18) 

To quantitatively analyze the prediction accuracy of the soft-
sensing model, three evaluation indices are chosen in this 
paper: mean absolute error (MAE) and root mean square 
error (RMSE). The calculation formulas for these three 
indices are presented above. 

4. CASE STUDY 

In this section, to further assess the effectiveness of the 
proposed soft sensing model based on DBSTLS, an actual 
industrial process known as the solvent system used for 
purifying terephthalic acid (PTA) was employed. The 
proposed method and other approaches were utilized for 
simulation validation, and the results were subsequently 
analyzed. 

4.1 Brief introduction to PTA   

PTA is a crucial raw material in the production of polyester 
fibers. The process production unit for PTA primarily 
consists of three components: the solvent dehydrator, reboiler, 
and reflux tank. The detailed composition of PTA can be 

found in the literature (Tian et al., 2020). During the 
production process, the consumption of acetic acid reflects 
the progress of the oxidation process. Therefore, online 
measurement of acetic acid content at the top of the 
dehydrator tower is of paramount importance. However, due 
to the presence of residual acetic acid in the tower top 
wastewater, direct measurement is challenging. Therefore, it 
is highly necessary to establish a soft sensor for predictive 
purposes. 

In the PTA production process, there are 17 variables, 
including flow rate, pressure, and temperature, which are 
closely associated with the acetic acid content at the top of 
the tower. This study utilizes a total of 260 sets of PTA 
sample data to assess the effectiveness of the soft sensing 
model based on DBSTLS. The data is divided into a training 
set, comprising 80% of the total (208 data points), and a test 
set, consisting of the remaining 20% (52 data points). 

4.2 Simulation result analyses 

To ascertain the decomposition periods of process variables 
within the STL decomposition module, the Step was defined 
as {5, 9, 13, 17, 21, 25}. Post-decomposition, input variables 
underwent normalization via min-max scaling to facilitate 
model training. The training process for BLSTL involved the 
application of a grid search method to identify optimal 
hyperparameters. Consequently, the learning rate  was 
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established at 0.05, the number of feature nodes   at 51, the 

number of mapping groups  at 130, and the number of 

enhancement nodes  at 68. 

For a comprehensive evaluation of the soft sensing model 
based on BSTLS, this study conducted a comparative 
analysis with other soft sensing models, namely the Extreme 
Learning Machine (ELM), traditional BLS, GRU, PCA-based 
PCA-BLS, and PCA-ELM. The efficacy of the six soft 
sensing models was gauged using three metrics: Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and R-
squared ( ). 

Table 1. Prediction performance of six models 

  RMSE MAE 

ELM 0.645 0.358 0.286 
BLS 0.686 0.337 0.275 
GRU 0.749 0.307 0.247 

PCA-ELM 0.707 0.326 0.264 
PCA-BLS 0.735 0.311 0.251 
DBSTLS 0.801 0.268 0.216 

 

Table 2 outlines the evaluation results of the six models on 
the PTA dataset. As delineated in Table 1, the soft sensing 
model predicated on the traditional ELM manifests the least 
favorable fit. This outcome is attributed to the inherent 
simplicity of ELM's structure, which precludes the extraction 
of temporal features integral to the nature of PTA. 

In contrast to the soft sensing model rooted in PCA-BLS, the 
innovative soft sensing model proposed in this study, based 
on DBSTLS, attains superior accuracy. A pivotal disparity 
between these models lies in the fact that while the PCA-BLS 
model undertakes linear dimension reduction on the data, 
DBLSTL dynamically decomposes the data, effectively 
eliminating residual noise. 

 

Figure 4. Predicted results of the six soft sensing models 

 
Figure 5. scatter plot of the residual errors by six models  

To lucidly demonstrate the predictive performance, the 
outcomes of the six soft sensing models are visually depicted 
in Figure 4. Unlike the remaining five soft sensing models, 
the model grounded in DBSTLS consistently exhibits the 
closest approximation to the actual values, thus providing the 
most robust fit. Moreover, Figure 5 illustrates the distribution 
of absolute residuals for each model. Notably, the residuals of 
DBSTLS are prominently concentrated near the diagonal, 
indicative of the proposed model possessing the smallest 
prediction error range and the most tightly focused error 
distribution. 

5. CONCLUSIONS 

In this paper, a novel improved BLS named distributed broad 
seasonal trend learning system (DBSTLS) is proposed to 
develop industrial soft sensing with acceptable accuracy. In 
the proposed DBSTLS, there is a distributed structure based 
on Seasonal-Trend Decomposition Procedure Based on 
LOESS(STL). Through STL, the dynamic process data can 
be mainly decomposed into the following two sections: the 
trend feature and the season feature. The distributed structure 
can be built using the trend feature and the season feature, 
respectively. Then, the fast learning strategy in BLS is 
utilized in the distributed trend feature and season feature. 
Finally, the proposed DBSTLS can be developed as industrial 
soft sensing. The process data collected from the Pure 
Terephthalic acid process is used to verify the effectiveness 
of the proposed DBSTLS based industrial soft sensing. The 
simulation results verified that the proposed DBSTLS based 
industrial soft sensing could achieve higher accuracy 
compared with other models. The proposed DBSTLS 
provides an effective way to develop accurate industrial soft 
sensing for complex industrial processes. 
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