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Abstract: A novel big data-predictive control approach for nonlinear multi-timescale processes
is presented in this paper. Multiple Dynamical Latent Variable Autoencoders (DLVAEs) are
employed to approximate multi-timescale dynamics, utilizing timescale-based low-pass filtering
and resampling of historical input-output data. The encoder in each DLVAE projects the
nonlinear physical variable space onto a linear latent variable space, represented by a kernel
space in behavioral system theory. During training, we not only impose kernel spaces and
reconstruct data but also establish connections among latent variables from different DLVAEs
at matching time-steps. Collectively, these multi-level latent variables span a wide prediction
time horizon with limited (non-uniformly spaced) steps encompassing the current, near, and
distant future. In online tracking control, we guide the latent variables from each DLVAE to
their respective setpoints (derived from physical variable setpoints) while maintaining consistent
physical variable values at matching time-steps, all within a linear framework.

Keywords: Data-based control, nonlinear processes, multi-timescale dynamics, behavioral
systems theory, autoencoder

1. INTRODUCTION

Multi-timescale dynamics properties are common in vari-
ous chemical processes due to the coexisting mechanisms
of different timescales (e.g., Lévine and Rouchon (1991)).
Additionally, the dynamics of boundary conditions in most
distributed parameter systems typically span a wide range
of time constants. For instance, industrial thickener pro-
cesses, governed by consolidation, convection, and sedi-
mentation, exhibit dynamics with a continuum of time
constants ranging from seconds to 10 hours (Tan et al.,
2016). A similar scenario can be observed in fuel cells
and flow batteries with time constants ranging from mil-
liseconds to seconds (Radisavljević-Gajić et al., 2019). To
design control system for multi-timescale processes, it is
imperative to consider the dynamics of different timescales
to prevent deterioration in control performance and the
process instability (Christofides and Daoutidis, 1996).

In model-based control, the focus often revolves around
processes with explicitly separable dual timescales, where
methods employ various techniques, including singular
perturbation theory (Christofides and Daoutidis, 1996;
Kumar et al., 1998) and, more recently, neural networks
(Jian et al., 2023). However, these approaches can yield
intricate nonlinear models that are prone to issues such as
convergence problems and numerical stiffness (Ma et al.,
2018). To address these challenges, one approach is to mit-
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igate ill-conditioning by partitioning models into reduced-
order subsystems and designing multi-stage controllers
(e.g., Ellis et al. (2013)). Additionally, model predictive
control (MPC) encounters difficulties with multi-timescale
dynamics, necessitating extended prediction horizons to
accommodate slow dynamics, which can lead to com-
putational expenses. To tackle this issue, strategies like
hierarchical MPC (Zhang et al., 2022) and MPC with non-
uniform optimization horizons (Tan et al., 2016) have been
proposed. It’s important to note that these model-based
control approaches require dynamic process models, which
can be costly to develop and may introduce biases and
modeling errors due to predetermined constraints (Huang
and Kadali, 2008).

With the widespread use of sensors and control systems,
modern chemical processes generate large volumes of data
(e.g., Huang and Kadali (2008)). Data-based control has
gained attention in process industries due to its direct
use of process data for control, contrasting model-based
approaches like MPC (Coulson et al., 2019; Markovsky
and Rapisarda, 2008). Data-based control is particularly
advantageous when process models are challenging to de-
velop due to complex dynamics or a lack of process under-
standing. Data Predictive Control (DPC) utilizes process
data directly, employing Hankel matrices (Coulson et al.,
2019; Wei et al., 2020) or equivalently a kernel space (Zhao
et al., 2022), grounded in the system behavioral framework
(Willems, 1986a,b). A novel control method based on the
behavioral systems framework, employing distributed big
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data analysis, was recently introduced by Yan et al. (2023).
However, designing data-based control for multi-timescale
processes is challenging due to unknown timescales, sim-
ilar to the system identification problem (Yang and Zhu,
2021). Noise and quantization errors make capturing slow
dynamics within short horizons difficult, requiring, long
trajectories that makes DPC computationally complex.
Furthermore, extended prediction horizons may lead to
error accumulation. Recently, a big data-driven control
approach was developed by the authors for linear multi-
timescale processes Tang et al. (2022, 2023) to use a
multi-level DPC with each level capturing dynamics of
different timescales using resampling of filtered process
data. Notably, addressing data-based control for nonlinear
multi-timescale processes remains an open challenge.

In this work, we propose a novel big data-predictive control
method for nonlinear multi-timescale processes using Dy-
namic Latent Variable Autoencoders (DLVAEs) (similar to
Zhao et al. (2022)) in a system behavioral framework. DL-
VAEs approximate multi-timescale dynamics by employ-
ing timescale-based filtering and resampling of historical
input-output data. Using the encoder of each DLVAE, the
physical variable nonlinear space is projected onto a linear
latent variable space that is described by a kernel repre-
sentation in the behavioral system theory. During training,
we discover kernel spaces, reconstruct data, and establish
connections among latent variables from different DLVAEs
at corresponding time-steps. The latent variables span
the prediction horizon with non-uniformly spaced steps,
encompassing current, near, and distant future values. In
online tracking control, we guide latent variables from
DLVAEs to their respective setpoints, ensuring consistent
(equivalent) physical variable values at matching time-
steps, all within a linear framework.

The structure of the paper is as follows. Section 2 outlines
the preliminaries regarding behavioral systems theory and
DLVAE. Section 3 showcases the control structure of DPC
with multi-level latent variable optimization horizons. An
illustrative example using this control framework can be
found in Section 4. The paper ends with a conclusion
outlining its implications in Section 5.

2. NOTATIONS AND PRELIMINARIES

2.1 Notation

R and Z represent the sets of real numbers and integers,
respectively, with Z+ denoting the set of positive integers.
The space V is associated with the variable v with dimen-
sion v. For a positive definite symmetric matrix P , ∥x∥P
is the weighted Euclidean norm of x, i.e., ∥x∥P =

√
x⊤Px;

and col(A,B) :=
[
A⊤ B⊤

]⊤
denotes the concatenation of

matrices A and B.

2.2 Behavioral Systems Theory

In this section, we provide a summary of behavioral sys-
tems theory, with more comprehensive insights available in
Willems (1986a,b), and the references therein. In the be-
havioral systems framework, dynamical system denoted as
Σ is defined as Σ = (T+,V,B) (Polderman and Willems,

1998), where T represents the time axis, V is a signal space,
and B corresponds to the system’s behavior. According
to this definition, a dynamical system is defined by its
admissible trajectories, in line with the rationale of data-
driven analysis. Given that process data is often discrete-
time, we usually assume T = Z+. The set of collected tra-
jectories with a finite length L, denoted as ṽ|[1,L], defines
the behavior within the interval [1, L]:

B|[1,h] := {ṽ ∈ V | ∃ṽ′ ∈ B, ṽ = ṽ′|[1,h]}, (1)

where ṽ|[1,h] := col(v(1), v(2), . . . , v(h)).

One key feature of the behavioral framework is the absence
of causality presumption among the elements within the
variable v. Nevertheless, it is feasible to establish an
input/output partition for v, taking into account the
‘freeness’ of its elements. Consider the system’s variable
v = col(u, y) ∈ B as a partition of v. For each trajectory
of u, there is a corresponding y such that (u, y) ∈ B,
classifying u as a free variable. An input/output partition
is defined when all elements of the vector variable u are
free, while none of y are. We also denote m(B) as the
number of inputs and n(B) as the state cardinality, which
is the smallest state-space dimension among various state
representations.

The behavior B is considered time-invariant if it satisfies
the condition σB ⊂ B, where σv(k) = v(k + 1). In the
context of time-invariant systems, a finite lag represents
the minimum number of time steps required for the past
and future trajectories to become independent. This lag
is denoted as l(B) (Maupong et al., 2017). This property
allows for the construction of a trajectory based on the
behavior within a shorter time interval, as demonstrated
by the following lemma.

Lemma 1. (Weaving Response (Markovsky et al., 2005)).
Let Σ be a time-invariant system with lag l(B) and ṽ1, ṽ2 ∈
B|[1,L] be two L-step trajectories. If ṽ1|[L−l(B)+1,L] =
ṽ2|[1,l(B)], then

ṽ′ := col
(
ṽ1, ṽ2|[l(B)+1,L]

)
∈ B|[1,2L−l(B)]. (2)

This insight is important for receding horizon control
algorithms that require past steps larger than l(B).

We also explore linear time-invariant systems. A dynami-
cal system is linear if V is a vector space, e.g., V = Rv and
B is a linear subspace of VT and closed in the topology
of pointwise convergence (Willems et al., 2005). Alongside
the time-invariant property, the behavior B of a linear
time-invariant (LTI) system can always be expressed using
a kernel representation B = {v : K(σ)v = 0}, where K is

a polynomial matrix. The matrix K̃ = [K0,K1, . . . ,KN ] is
the coefficient matrix, and N is the order of the kernel
representation. The behavior with such a representation is
denoted as B = ker(K). A system within Σ is controllable
if, for any v ∈ B, there exists a corresponding v̄ ∈ B such
that v̄(t) = v(t) for t ≤ t1 and t ≥ t2.

The L-step behavior of an LTI system can be represented
by the column span of the Hankel matrix constructed from
one of its T -step trajectories:
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HL(ṽ) =


v(1) v(2) . . . v(T − L+ 1)
v(2) v(3) . . . v(T − L+ 2)
...

... . . .
...

v(L) v(L+ 1) . . . v(T )

 (3)

if the following lemma is satisfied:

Lemma 2. ((Markovsky and Dörfler, 2022)). Let the data
ṽ generated by a system, i.e., ṽ ∈ B|[1,L]. Then,
colspan(HL(ṽ)) = B|[1,L] for L > l(B) if and only if
rank(HL(ṽ)) = mL+ n.

Lemma 2 generalizes the fundamental lemma in Willems
et al. (2005) by relaxing the persistent excitation require-
ment on the input.

2.3 Dynamical Latent Variable Autoencoder (DLVAE)

A DLVAE (similar to Zhao et al. (2022)) has a structured
latent variable with distinct time-step partitions as shown
in Figure 1. In the context of DLVAE, process trajectories
of length h, denoted as w̃|[k−h+1,k], are reconstructed. Each
step, represented as w(k), corresponds to an encoder ϕ,
a latent variable ℓ(k), a decoder ψ, and a reconstructed
w(k) denoted as ŵ(k). Notably, the same ϕ and ψ are
consistently applied to all h steps of w(k), ℓ(k), and
ŵ(k). The encoder ϕ maps w(k) to ℓ(k) through an M -
layer neural network, defined as ℓ(k) = (ϕM ◦ ϕM−1 ◦
· · · ◦ ϕ1)(w(k)) := ϕ(w(k)). Each intermediate layer in ϕ
follows the structure xm = ϕm(WmXm−1 + bm), where
xm represents the set of variables in the m-th layer, while
ϕm, Wm, and bm correspond to the activation function,
weighting matrix, and bias vector of the m-th layer,
respectively. The decoder ψ which maps ℓ(k) to ŵ(k),
i.e. ŵ(k) = ψ(ℓ(k)), employs a similar set of activation
functions, weighting matrices, and bias vectors.

To maintain linearity within the hidden layer comprising
ℓ̃ = col(ℓ(k − h + 1), . . . , ℓ(k)), a Kernel Representation

layer is introduced. It ensures K̃ℓ̃|[k−h,k] = ϵK, where K̃
is the coefficient matrix of the kernel space K, and ϵK
represents the error in the kernel representation of linear
latent variable dynamics. During DLVAE training, the
following loss function is used:

L = λ1∥K̃ℓ̃|[k−h,k]∥2+λ2
k∑

i=k−h

∥w(i)−ψ(ϕ(w(i)))∥2. (4)

Both error terms, each with its respective weighting con-
stants λ1 and λ2, are optimized simultaneously. This min-
imizes the kernel space error ϵK at time step k and the
reconstruction error ϵA across all h time steps.

3. DPC WITH MULTI-LEVEL LATENT VARIABLE
OPTIMIZATION HORIZON

To approximate multi-timescale dynamics, we employ mul-
tiple DLVAEs with varying sampling periods ∆t, while
limiting the number of time steps. Initially, historical data
undergoes filtering and downsampling to align with these
∆t for DLVAE training. Regarding prediction time hori-
zons, the DLVAE with the largest ∆t captures long-term
dynamics in just a few steps, with this pattern persisting as
∆t progressively decreases. This arrangement of DLVAEs

Fig. 1. The structure of a DLVAE.

in ascending order of ∆t establishes a hierarchical struc-
ture for prediction horizons, exponentially extending the
time span from top to bottom. Notably, this hierarchical
pattern extends not only to the physical variables but also
to the latent variables within the DLVAEs.

During setpoint tracking control, optimization is carried
out by simultaneously accounting for the effects of all ap-
proximated dynamics. Our approach involves controlling
the all i-level of latent variable ℓi to reach an equivalent
setpoint ℓri = ϕ(wr) where wr represents the setpoint of
physical variables. By optimizing ℓi to match this setpoint,
and subsequently decoding it to obtain the control action
ui through ŵi = ψ(ℓi), we achieve control over nonlinear
processes within a linear framework.

3.1 Approximating Multi-timescale Dynamics from
Resampled Process Data

Assuming an adequate original sampling rate that can
capture the fastest process dynamics requiring control, we
can approximate these dynamics at different timescales
by re-sampling time-series process data. This technique
enables the creation of a multi-level structure for predic-
tive control. Specifically, each level’s horizon, denoted as
∆ti, can be a multiple of the previous level’s, such as
∆ti = ni∆ti−1. For instance, in a 3-level configuration
shown in Figure 2, where sampling periods adhere to
∆t3 = 4∆t2 = 16∆t1, each level optimizes for four fu-
ture steps. Consequently, although the optimization within
each horizon extends effectively to 64∆t1 into the future,
the number of steps that require optimization across all
levels remains limited to just 12 (specifically, w̃1|[k+1,k+4],
w̃2|[k+1,k+4], and w̃3|[k+1,k+4]). Moreover, as more levels
are added, the length (time span) of the optimized future
trajectory grows exponentially, while the computational
complexity increases linearly. At each horizon level, we
obtain the latent variable with corresponding kernel space
by training a DLVAE using data downsampled to its sam-
pling period. In the first level, the DLVAE is trained on
data with basic noise filtering. However, starting from the
second level, we apply a low-pass filter before downsam-
pling to eliminate frequency components higher than half
of the reduced sampling frequency, thus preventing aliasing
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Fig. 2. Three-level horizon.

(Proakis, 2001). The low-pass filter for the i-th level can
be represented as follows:

wi(k + 1) =

ni−1∑
j=0

αijwi−1(k − j), (5)

where ni is the order and αij are the coefficients of the filter
respectively. As the scale of horizon increases, low-pass
filtering gradually removes the fast dynamics, revealing
the slow dynamics that require long horizon to show
significant changes. As the horizon scale increases, the low-
pass filtering gradually attenuates fast dynamics, unveiling
the slower dynamics that exhibit significant changes over
longer horizons. Then, we obtain the i-th level latent
variable ℓi where K̃iℓ̃i = ϵi by training DLVAEi from the
filtered downsampled data in the subsequent levels.

While the relationship between the wi of adjacent levels
can be represented by the filtering-downsampling equa-
tion, it is not the case for ℓi. Here, we can establish a
linear map Mi between the ℓi of adjacent levels equivalent
to (5), i.e.

ℓi =M(ℓi−1) ⇔ (5), i = 2, . . . , L. (6)

The linear map Mi can be found by linking the ℓi of the
adjacent levels during the DLVAEs training such that

ℓi(k + 1) =

ni−1∑
j=0

βijℓi−1(k − j), (7)

where ni is the order of the lowpass filter in (5) and βij
is coefficient of the linear mapping at i-th level.

During the DLVAEs training, the weightings and biases
of ϕi and ψi, K̃i, as well as βij in (7), are optimized
(simultaneously) by minimizing the following loss function:

L =

L∑
i=1

(
λ1i∥ϵKi

∥2M + λ2i

k∑
v=k−hi

∥wi(v)− ψ(ϕ(wi(v)))∥2M

)

+

L∑
i=2

(
λ3i

k∑
v=k−

hi−1
∆ti

∥∥∥∥ℓi(v)− ni−1∑
j=0

βijℓi−1(v − 1− j)

∥∥∥∥2

M

)
,

(8)

where ϵKi
= K̃iℓ̃i|[k−hi,k]

, L is the number of levels (or

DLVAEs), hi is the trajectory length of w̃i|[k−hi,hi]
, and λ1i ,

λ2i , and λ3i are the scalar weightings for the reconstruc-
tion errors, kernel space errors and linear mapping error
derived from (7) at i-th level, respectively so that the mean
squared errors denoted as ∥•∥2M are within similar ranges.

The third term of (8) shows that only certain steps of ℓ̃i
that has the matching time steps with the ℓ̃i−1 is linked. As
an illustration, the structure of the linked DLVAEs used to
extract ℓ̃i for three-level horizon in the previous example
is depicted in Figure 3. The multi-level structure allows

distant future predictions within each receding horizon,
serving as trend guidance. Since only the first step of the
first level is executed per time step, approximation errors
have minimal impact on control. We aim to further re-
duce these errors by integrating dissipativity-based design
techniques, as suggested by Zhao et al. (2022).

3.2 Multi-level DPC Control Algorithm

After the construction of multi-level horizons, we can
perform online tracking control through optimization (as
shown in (9)). During the online tracking control of w,

we are controlling ℓ̃i of all levels simultaneously. Ac-
cording to Lemma 1, each horizon need to have suf-
ficient number of “past” steps to ensure the the opti-
mized trajectory belongs to the behavior. By separat-
ing the total number of steps (trajectory length) hi into
pi past and fi future steps (pi + fi = hi), then pi
must satisfy pi ≥ l(Bi) where Bi = ker(Ki). At the

k-th step, ℓ̃i can be partitioned into the “past” and
“future” trajectories as ℓ̃i|[k−pi+1,k+fi]

= col(ℓ̃pi , ℓ̃fi) =

col(ℓ̃i|[k−pi+1,k]
, ℓ̃i|[k+1,k+fi]

), and the same applies to w̃

(as well as ˆ̃w) where w̃i|[k−pi+1,k+fi]
= col(w̃pi

, w̃fi). To

achieve tracking control such that w(k) approaching the
setpoint wr, we can first obtain the setpoint trajectories
col(ℓ̃pri

, ℓ̃fri ) by encoding the col(w̃pi
, w̃r) using ϕi where

w̃r = col(wr, . . . , wr) is a reference trajectory with a

constant setpoint wr. Then, during the online control, ℓ̃k is
optimized such that ℓ̃pi

= ℓ̃pri
to fulfill Lemma 1 while ℓ̃fi

is approaching ℓ̃fri as reinforced in (9b). At the same time,

the linear mapping (7) between adjacent ℓ̃fi is applied
so that upon decoding, ŵi at corresponding time steps
align with the filtering-downsampling processes (5). The
optimization problem at k-th time step can be formulated
as follows:

min
ℓ̃fi

,...,ℓ̃fL

L∑
i=1

∥ℓ̃fi − ℓ̃fr∥
2
Qi

+ λi∥ϵKi
∥2 (9a)

s.t. K̃i

[
ℓ̃pri
ℓ̃fi

]
= ϵKi

, i = 1, . . . , L (9b)

ℓi(k + 1) =

ni−1∑
j=0

βijℓi−1(k − j), i = 2, . . . , L (9c)

ℓ̃fi ∈ L[k+1,k+fi]
i , i = 1, . . . , L (9d)

where (9c) is incorporated from (7), Qi is the weighting

matrix for ℓ̃fi , and λi is a scalar weighting for ϵKi
. (9d)

includes additional constraints necessary for the system
or controller. The first level optimized future trajectory
ℓ̃∗f1 can then be encoded to produce w̃∗

f1
, and the first

step of the input trajectory u∗(k + 1) of ũ∗f , where w̃
∗
f1

=

col(ỹ∗f , ũ
∗
f ), is implemented.

Remark 3. As ℓi lacks inherent physical properties, its
controllability can be verified post-DLVAE training. We
can use the trajectory ℓ̃i|[1,T ]

, obtained by encoding his-

torical data w̃i|[1,T ]
as ℓi(k) = ϕi(wi(k)), to construct

H1i = H(ℓ̃i|[1,T−1]
) and H2i = H(ℓ̃i|[2,T ]

). Then, we can
apply the controllability test for ℓi proposed in Mishra
et al. (2020). Besides, the partitioning of ℓ̃i into “past”

and “future” (ℓ̃i = col(ℓ̃pi , ℓ̃fi)) is valid as long as Lemma 2
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Fig. 3. The structure of linked DLVAEs for the construction of DPC with three-level horizon.

Model parameters ρ 0.9342 kgL−1

c1 30.828 h−1 Cp 3.01 kJkg−1K−1

c2 86.688 h−1 V 101
c3 0.1 KkJ−1 Operating point
k10, k20 1.287e12 h−1 CAs 1.235 molL−1

k30 9.043e9 m3mol−1h−1 CBs 0.9 molL−1

∆HAB 4.2 kJmol−1 Ts 134.14 ◦C
∆HBC -11.0 kJmol−1 Tcs 128.95 ◦C
∆HAD -41.85 kJmol−1 Fs 18.83 h−1

T0 130.0 ◦C Qs -4495.7 kJh−1

E1 9758.3 K CA0s 5.1 molL−1

E2 8560 K

Table 1. Model parameters & operating points

holds. This negates the requirement to establish causality,
highlighting one of the key benefits of behavioral systems
theory.

4. ILLUSTRATIVE EXAMPLE

We use a 2-input 2-output nonisothermal CSTR with the
reaction A → B → C and A → D as a case study. The
CSTR can be described in the following equations (Klatt
and Engell, 1998):

dCA

dt
=
F

V
(CA0 − CA)− k1CA − k3C

2
A (10a)

dCB

dt
=−

F

V
CB + k1CA − k2CB (10b)

dT

dt
=
F

V
(T0 − T ) + c1(Tc − T )−

k1CA∆HAB + k2CB∆HBC + k3C2
A∆HAD

ρCp
(10c)

dTc

dt
=c2(T − Tc) + c3Q (10d)

where T is the reactor temperature, Tc is the coolant
temperature, T0 is the inlet temperature, Q is the amount
of heat removed by the coolant, and the reaction rate co-
efficients ki, for i = 1, 2, 3, are described by the Arrhenius

law ki = ki0e
−Ei

T+273.15 . The values of the model parameters
and operating point are given in Table 1. The model
is presumed to be unknown during the control design.
Amongst the variables, F (Input 1, u1) and Q (Input 2,
u2) are manipulated to control the CB (Output 1, y1) and
T (Output 2, y2). To begin the controller design, the model
is employed to generate a noisy dataset w̃ comprising
25,000 data points. This dataset is created by applying
random input trajectories of u1 and u2 to produce output
trajectories of y1 and y2. The resulting process data, w̃,

level ∆T (min) No. of Past Steps No. of Future Steps

1 1 4 4
2 4 4 4
3 16 4 4

Table 2. Three-level horizons structure.

Parameter Value

Number of steps (hi) 8
Dimension of Input (wi(k)) at i-th step (4,1)
Dimension of Encoder (ϕi) per input (8,1)
Dimension of Latent/Hidden Layer (ℓi) per Encoder (4,1)
Dimension of Decoder (ψi) per Hidden Layer (8,1)
Dimension of Output (ŵi(k)) per Decoder (4,1)
Dimension of Kernel Layer (Ki) (8,32)
Dimension of Kernel Space Error (ϵKi

) (8,1)
Weightings for ϵKi

(λℓ1i
) 10/i

Weightings for reconstruction error ϵAi
(λ2i ) 1/i

Weightings for linear mapping error (λ3i ) 5/i

Table 3. Structure of DLVAEi. (m,n) defines
the dimension.

is then normalized. From the 25,000 data points, 20,000
are allocated for training, while the remaining 5,000 are
reserved for validation. For training and validation, the
linked three DLVAEs, as depicted in Figure 3 correspond-
ing to the three-level horizon structure in Table 2, are
employed with specifications outlined in Table 3. In this
setup, the Encoder layer (ϕi) and the Decoder layer (ψi)
utilize the leaky-ReLU activation function with a slope of
2. As shown in Figure 4, the process output is able to track
the setpoint during online control. We also implement a
single-level DPC with a sampling interval of ∆t1, featuring
12 future steps, which has an equivalent computational
complexity as the three-level DPC. However, this approach
leads to diverging trajectories, primarily because it strug-
gles to account for the long-term inverse dynamics.

5. CONCLUSION

In this novel data-predictive control approach for nonlinear
multi-timescale processes, we employ a series of DLVAEs
to approximate the multi-timescale dynamics of nonlinear
processes. Through training with low-pass filtering and
resampling of historical input-output data, we create dy-
namical latent variables. These latent variables belong to
LTI systems or kernel spaces, effectively restores the pro-
cess nonlinearity through encoding and decoding. During
the training phase, our focus extends beyond imposing
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Fig. 4. Control performance of three-level DPC with out-
puts tracking the setpoint (dotted line)

kernel spaces and data reconstruction; we also establish
connections among latent variables from different DLVAEs
at matching time-steps. This collective approach allows us
to span a wide prediction time horizon with limited, non-
uniformly spaced steps, encompassing the current, near,
and distant future. During online tracking control, our
method guides latent variables from each DLVAE to their
respective setpoints, derived from desired physical vari-
able values, while ensuring consistency in physical variable
values at matching time-steps. This approach enables us
to control nonlinear multi-timescale systems effectively in
a linear framework. Future work includes the design of
stabilizing conditions for the proposed DPC method, such
as incorporating trajectory-based dissipativity conditions.
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