
 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
 

Modern industrial systems are often characterized by their 

large scale, involving numerous components and variables, 

which create a complex system topology. This complexity can 

result in fault propagation, which can cause a problem called 

alarm flood. Identifying critical alarms for each alarm flood is 

essential for effective operator response. As industrial 

facilities expand, detecting the causes of alarm propagation 

becomes more challenging. Managing alarm systems is crucial 

for ensuring safety since alarms serve as indicators of process 

abnormalities (Alinezhad et al., 2022). However, the growing 

complexity of these systems has led to more alarms during 

alarm floods, making it difficult for operators to prioritize 

responses. Relying solely on human operators becomes 

increasingly difficult as industrial systems evolve. This 

necessitates the integration of automated tools with advanced 

analytical and visualization capabilities to interpret complex 

data patterns (Alinezhad et al., 2023). 

The development of effective alarm systems has been a topic 

of significant research interest in industrial process control. 

Over the years, various approaches and techniques have been 

proposed to address the challenges associated with the 

increasing number of alarms and the need for operators to 

efficiently handle them. One common aspect of alarm system 

research is the identification of most critical alarms, which are 

alarms that require immediate attention and action to prevent 

adverse consequences. Several studies have focused on 

developing methods to prioritize alarms based on their impact 

on process safety and operational performance, which are 

reviewed as follows.  

One prominent approach is the use of data-driven techniques 

to analyze alarm data and extract meaningful insights. For 

instance, Abele et al. (2013) proposed a method combining  

 

 

 

 

 

 

 

 

 

 

 

 

 

statistical analysis and machine learning to identify most 

critical alarms in a chemical plant. They used a clustering 

method to group similar alarms and applied a decision tree 

algorithm for prioritization. In addition to data-driven 

approaches, researchers have explored the use of knowledge-

based methods for alarm identification. Fukui et al., (1989) 

proposed a knowledge-based approach using process 

knowledge and expert rules for alarm prioritization, improving 

most critical alarms identification and reducing false alarms. 

Another vital aspect is visualizing alarm patterns and 

dependencies in alarm systems. Jiang et al., (2023) introduced 

a graphical method using directed acyclic graph (DAG) plots 

to visualize alarm hierarchy and propagation paths, aiding 

operators in understanding the alarm system and identifying 

most critical alarms based on their positions within the graph. 

Rodrigo et al. (2016) presented a comprehensive approach for 

identifying the root causes of alarm floods in large-scale 

industrial systems. Noroozifar et al., (2019) demonstrated the 

application of alarm data for root cause analysis of process 

faults, providing valuable insights into the causes of process 

faults and data trends, and ultimately enhancing the reliability 

of industrial systems. Zhang et al., (2022) proposed a novel 

causal fusion method was combined with process topologies 

and alarm data to identify alarm root causes. However, a 

potential drawback is the complexity of the method and 

computational demands. Recently, hidden Markov models are 

utilized to diagnose plant alarms early by analyzing fault 

propagation paths during abnormal conditions 

(Venkidasalapathy et al., 2019 and Hu et al., 2018). However, 

these studies have two potential limitations: the model 

accuracy and the suitability for handling multi-fault situations.   

Although progress has been made in fault diagnosis, complex 

industrial processes require more comprehensive and effective 

approaches. A key challenge is classifying faults, diagnosing 
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them, and identifying most critical alarms to provide operator 

assistance in case of alarm floods. Unlike conventional 

methods that assign priority based on the impact of specific 

process variables, this study employs a data-driven analysis to 

identify critical alarms using a simple method and with low 

computation time. 
 

This paper is structured as follows: Section 2 gives the 

problem statement of this research. Section 3 presents the 

methodology and the various steps employed to achieve the 

objectives. In Section 4, a case study is presented to validate 

the effectiveness of the proposed methodology. Finally, 

Section 5 provides concluding remarks.  
 
 

2. PROBLEM STATEMENT 
  

An effective alarm system is essential to ensure the secure and 

smooth operation of complex industrial processes. This 

research aims to enhance alarm system management and 

decision support for operators by developing a comprehensive 

approach based on alarm prioritization. Let a set of unique 

alarm variables in a process system be represented by 𝒜 = 

{𝒶𝓃: 𝑛 = 1,2, . . . , |𝒜|}, where |𝒜| is the total number of 

alarm variables. An individual alarm variable is assigned with 

a criticality level, denoted by ℂ(𝒶𝓃), which quantifies its 

importance or impact on process safety and performance. The 

criticality levels are classified into three categories: Low, 

High, and Critical. An alarm flood can be identified using the 

concept of alarm rates with predefined thresholds within a 

time bin of size T = 10 min (ANSI/ISA-18.2, 2016). Each alarm 

flood can be denoted as 𝜙𝑘, where k is the index of the alarm 

flood, with starting and ending time denoted by 𝑡𝑠
𝑘 and 𝑡𝑒

𝑘, 

respectively. The set of alarms in 𝜙𝑘 is denoted as 

ℱ𝑘={𝒶𝓍 ∈ 𝒜, 𝓍 = 1,2, . . . , |ℱ𝑘|}, where |ℱ𝑘| represents the 

total number of unique alarm variables in 𝜙𝑘, such that alarm 

𝒶𝓍 occurred at least once in the time period [𝑡𝑠
𝑘 −T, 𝑡𝑒

𝑘]. It is 

obvious that ℱ𝑘 ⊆ 𝒜.  
 

We aim to construct a likelihood matrix, denoted by ℒℳ, to 

represent the probability of transitioning from one alarm 

variable to another in an alarm flood. Then, a directed acyclic 

graph plot can be created for each alarm flood using the 

constructed ℒℳ. As a result, the most critical alarm, denoted 

by 𝒶𝑘
∗ , can be determined by analyzing the directed acyclic 

graph plot and counting the number of outgoing edges from 

each alarm 𝒶𝓍, denoted as 𝜉(𝒶𝓍). The alarm with the 

maximum number of outgoing edges can be considered the 

most critical alarm for that alarm flood which can be 

represented as follows:    

                         𝒶𝑘
∗  =  argmax

𝒶𝓍

{𝜉(𝒶𝓍)}                                    (1) 

This analysis contributes to enhancing operator decision 

support by enabling the prioritization of critical alarms, 𝒶𝑘
∗  for 

alarm flood 𝜙𝑘 and thus improving the overall management of 

alarm systems in complex industrial environments.  

 

 

3. METHODOLOGY   
  

This section presents the proposed methodology, which 

encompasses a series of interconnected steps aimed at 

addressing the complexities inherent in industrial processes. 

The detailed architecture of the methodology is shown in Fig. 

1.  

 

 

 

 

Figure 1. The detailed architecture of the proposed 

methodology. 
 

This is intended to improve the decision-making capabilities 

of operators and reduce alarm floods. In the following, a 

detailed explanation of the proposed methodology is provided.   
 
 

3.1. Process flow diagram analysis 

The graphical representation of a complex process topology is 

shown in Fig. 2. The analysis of the process flow diagram 

involves examining the diagram to identify the process units 

and several distinct process elements (nodes) connected to 

each unit. The 𝐺𝑈 represents the process topology, where U = 

{𝓊1, 𝓊2, . . . , 𝓊𝑔, . . . |𝑈|} indicates unit (or plant area) set, 𝓊𝑔 is 

the gth unit, |𝑈| is the total number of units; 𝐸𝑣 is the 

undirected edge set. Here, 𝐺𝑈 = (𝑈, 𝐸𝑣) is represented by the 

process topological adjacency matrix ℳ, i.e.,  
 

ℳ𝑔ℎ = {
1,
0,

  
if (𝑢𝑔, 𝑢ℎ) ∈ 𝐸𝑣

otherwise
,                           (2) 

               

 

Figure 2. An example of a complex process topology. 
 

where, 𝑢𝑔,  and 𝑢ℎ represent two individual edge connecting 

units. ℳ𝑔ℎ=1 represents that the gth row 𝓊𝑔 connects with the 
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hth column 𝑢ℎ. The matrix ℳ is always symmetric, i.e., 

ℳ𝑔ℎ = ℳℎ𝑔. The relationship between process units (𝑢𝑔) and 

process elements, denoted as 𝑒𝑟, is hierarchical (Zhang et al., 

2022) and depends on various factors such as material flow, 

energy transfer, and control logic. In real industrial systems, 

there are typically a few units corresponding to different 

processes, and each unit comprises multiple process elements.  

Consider 𝐸 = {𝑒𝑟: 𝑟 = 1,2, . . . , |𝐸|} representing the set of 

distinct process elements, where |𝐸| is the total number of 

process elements. A hierarchical mapping matrix, ℳ𝑈𝐸, of 

dimensions |𝑈| × |𝐸|, can be created to represent the 

relationship between units and process elements. Each entry 

of  ℳ𝑈𝐸 will indicate whether unit 𝑢𝑔 contains process 

elements 𝑒𝑟. Similarly, an alarm mapping matrix, ℳ𝒜 , of 

dimensions |𝐸| × |𝒜|, can be created to represent the 

relationship between process elements and alarms. Each entry 

in ℳ𝒜  will indicate whether process element 𝑒𝑟 generates 

alarm 𝒶𝓃 or not. Each entry in these matrices signifies the 

presence or absence of a connection, with a value of “1” 

indicating a connection and “0” indicating no direct 

relationship.  
 

Following the above procedure, the process elements and units 

associated with the analyzed alarms are identified. This 

information can be used to validate the identified most critical 

alarm responsible for specific faults within interconnected 

systems. 

 
 

3.2. Process data to alarm data conversion and formation of 

alarm floods 
 

One of the most challenging problems in industrial alarm 

management revolves around the occurrence of alarm floods. 

These floods often result from the propagation of process 

abnormalities (Rodrigo et al., 2016). The ISA-18.2 standard 

(ANSI/ISA-18.2, 2016) provides a concise definition of an 

alarm flood as "a condition in which the alarm rate exceeds the 

operator's ability to effectively handle." It further recommends 

a benchmark threshold of 10 alarms per 10 minutes per 

operator to identify the presence of alarm floods. The detailed 

conversion procedure of process data to alarm data is 

mentioned in (Parvez et al., 2022). Consider the signal form 

of an alarm 𝒶𝓃 ∈ 𝒜 given by   
 

               𝓍𝒶𝓃
(𝑡)={

1
0

 
if 𝑝𝑣(𝑡) ∉ 𝑃𝑣

otherwise
,                                      (3) 

 

where 𝑃𝑣 indicates the normal operating specification of a 

process variable 𝑝𝑣(𝑡). The signal form of alarm occurrence 

of 𝒶𝓃 ∈ 𝒜 is  

     𝑥′
𝒶𝓃

(𝑡)= {
1
0

 
if 𝓍𝒶𝓃

(𝑡 − 1) = 0 and 𝓍𝒶𝓃
(𝑡) = 1  

otherwise
.          (4) 

 

Identifying the existence of an alarm flood can be based on the 

alarm rate after removing the chattering alarms (Cheng et al., 

2013), which is a widely used key index to evaluate the 

performance of an alarm system. It represents the alarm count 

over a time period of certain length. Mathematically, the alarm 

rate 𝛼(𝑡) at time instant t in the past time bin of size T is 

defined as  

𝛼(𝑡) =  ∑ ∑ 𝓍𝒶𝓃
′ (𝑔)

𝑡

𝑔 = 𝑡−𝑇+1

.                           (5)

|𝒜|

𝑛 = 1

 

 

The start and end time of an alarm flood can be identified by 

comparing 𝛼(𝑡) with predefined threshold, 𝛿. An indexing 

variable 𝜙 can be denoted as the presence of alarm floods, 

which is defined as  
 

𝜙(𝑡) = {
1
0

𝜙(𝑡 − 1)
     

if 𝛼(𝑡) ≥ 𝛿𝑠, and 𝜙(𝑡 − 1) = 0 

if 𝛼(𝑡) < 𝛿𝑒 , and 𝜙(𝑡 − 1) = 1
otherwise

,       (6) 

 

where “1” and “0” represent the presence and absence of alarm 

floods, respectively. The initial sample 𝜙(0) is set to be 0. 

Based on the ISA-18.2 standards (ANSI/ISA-18.2, 2016), the 

benchmark thresholds to identify the start and end of alarm 

flood are ten and five alarms over a 10-min period for each 

operator. Thus, two thresholds in (6) are 𝛿𝑠=10 and 𝛿𝑒 = 5 

based on a time bin of size T = 10 min in (5). Finally, in a 

multiple alarm flood scenario, each alarm flood can be 

identified as  𝜙𝑘, where k is the index of alarm floods.   
 

3.3. Alarm flood analysis 
 

In this subsection, we introduce two fundamental analyses of 

alarm floods: the determination of individual alarm flood 

durations and the process of forming alarm flood clusters. The 

variable 𝜙𝑘 is used to find the start and end time stamps of 

each alarm flood: An alarm flood is said to begin at time 

instant 𝑡𝑠
𝑘 if   

                     𝜙𝑘(𝑡𝑠
𝑘) = 1 and 𝜙(𝑡𝑠

𝑘 − 1) = 0                        (7) 

which indicates the alarm rate 𝛼(𝑡) reaching the threshold 𝛿𝑠 

over a 10-min period, and end at time instant 𝑡𝑒
𝑘 if  

                  𝜙𝑘(𝑡𝑒
𝑘) = 0 and 𝜙(𝑡𝑒

𝑘 − 1) = 1                           (8) 

which indicates the alarm rate 𝛼(𝑡) dropping below the 

threshold 𝛿𝑒 over a 10-min period.   
 

   Once the alarm flood time intervals are isolated and the 

alarm flood sequences are built, similar alarm flood sequences 

are clustered using sequence pattern matching. A similarity 

matrix is built using pairwise similarity indices obtained from 

the modified Smith-Waterman algorithm (Cheng et al., 2013). 

Finally, agglomerative hierarchical clustering is applied to 

cluster the alarm flood sequences. The detailed steps were 

mentioned by Rodrigo et al., (2016). Alarm flood clusters can 

be denoted as 𝒞 = {𝑐𝑑: 𝑑 = 1,2, . . . , |𝒞|}, where |𝒞| is the total 

number of clusters. If multiple alarms are associated with one 

alarm flood cluster, there may be one or two alarms that trigger 

other alarms, resulting in the propagation of abnormalities 

within interconnected process systems. Consequently, alarm 

flood cluster analysis can serve as a means to validate the 

identification of the most critical alarm.  
 
 

3.4. Likelihood matrix construction 
 

A likelihood matrix, denoted as ℒℳ can be obtained using a 

Markov chain model (Venkidasalapathy et al., 2022) that 

focused on the sequential relationships of alarms within 

individual alarm flood. In the context of Markov chain model, 
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each unique alarm variable within an alarm flood represents a 

state in the Markov chain. Hereby, |ℱ𝑘| is the total number of 

unique alarm variables in the 𝑘th alarm flood, that represents 

the number of Markov chain states.  The number of times each 

alarm variable transitions to another alarm variable within the 

same alarm flood can be calculated as 𝜌(𝒶𝑖 → 𝒶𝑗) where 

𝒶𝑖  and 𝒶𝑗 are alarm variables.  ℒℳ serves as a representation 

of transition probabilities of alarm variable pairs. For each pair 

of alarm variables 𝒶𝑖  and 𝒶𝑗, calculation of the transition 

probability is conducted as follows:  

                          𝒫(𝒶𝑖 → 𝒶𝑗) = 
𝜌(𝒶𝑖→𝒶𝑗)

|ℱ𝑘|
.                             (9) 

The calculated transition probabilities can be used to construct 

the element of a matrix, ℒℳ as  
 

                   ℒℳ(𝑖, 𝑗) = {
𝒫(𝒶𝑖 → 𝒶𝑗)

0
 
if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

.                     (10) 

 

It quantifies the sequential dependencies between alarms 

within each alarm flood, representing the fundamental concept 

of sequential dependency analysis. However, several factors, 

such as inaccurate records and missed alarms in dynamic 

processes, can significantly reduce the model accuracy. 
 

 

3.5. Application of hidden Markov models  
    

A hidden Markov model (HMM) is a probabilistic model that 

stands as a well-established tool for recognizing patterns and 

analyzing sequences in various fields. The fundamental 

theoretical explanation about the model parameters is 

discussed in Venkidasalapathy et al., 2022. In this subsection, 

we delve into the core components of the HMM and how they 

contribute to uncovering meaningful insights within complex 

data sequences. In an HMM, a sequence of unique alarm 

variables belonging to each alarm flood is taken into account. 

The set of observed alarm variable in each alarm flood can be 

denoted as 𝒪 = {𝑜𝑇: 𝑇 = 1,2, . . . , |𝒪|}, where |𝒪| is the total 

number of observed alarm variables. Similarly, the set of 

hidden states can be denoted as 𝒬 = {𝑞𝑇: 𝑇 = 1,2, . . . , |𝒬|}, 

where |𝒬| is the total number of hidden states. The HMM 

comprises two essential sets of parameters, referred to as 

"transition probabilities" and "emission probabilities." 

Transition probability: The transition probability, denoted as  

𝒯𝑖𝑗 , is the likelihood of transitioning from alarm 𝒶𝑖  to alarm 𝒶𝑗 

within each alarm flood. The estimation of the element of 𝒯𝑖𝑗 

can be obtained as follows: 

                 𝒯𝑖𝑗  = {
𝒫(𝑞𝑡+1 = 𝒶𝑗|𝑞𝑡 = 𝒶𝑖)

0
 
if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

.                   (11) 

Emission probability: The emission probability, denoted as  

ℰ𝑖𝑗 , is the probability of observing alarm 𝑜𝑗 given state 𝒶𝑗  at 

time step t within each alarm flood. The estimation of the 

element  ℰ𝑖𝑗  can be obtained as follows:  

                 ℰ𝑖𝑗  = {
𝒫(𝑜𝑡 = 𝑜𝑗|𝑞𝑡 = 𝒶𝑖)

0
 
if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

.                  (12) 

The details of the parameter estimation procedure can be 

found in Venkidasalapathy et al., 2022. Finally, a modified 

likelihood matrix is introduced based on (11) and (12), where 

each matrix element is defined as follows: 

                   ℒℳ(𝑖, 𝑗) = { 
𝒯𝑖𝑗  ×  ℰ𝑖𝑗

0
 
if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

.                               (13) 

This matrix ℒℳ combines the joint influence of transition 

probabilities and emission probabilities for each pair of alarm 

variables. The ℒℳ is utilized to construct a DAG plot for each 

alarm flood, providing a visual representation of the influence 

relationships among the alarm variables.    
 

3.6. DAG plot and critical alarm identification 
 

The likelihood matrix is utilized to construct a DAG plot for 

each alarm flood, providing a visual representation of the 

influence relationships among the alarm variables. The DAG 

represents the alarm variables as nodes, and the directed edges 

indicate the influence between variables. Through visual 

examination of the constructed DAG, significant alarms can 

be identified, and the propagation of the influence of alarm 

variables throughout the network of alarm variables can be 

observed. Consider G as the DAG representing the influence 

relationships within one alarm flood. Each alarm variable is 

represented as a node in G. An edge from node i to node j in 

G indicates that 𝒶𝑖  influences 𝒶𝑗, where the direction and 

strength of influence are captured from the elements of ℒℳ.   
 
 

3.7. Alarm ranking and validation 
    

The total standing time (TST) can be calculated from alarm 

and event (A&E) log database for each unique alarm variable. 

Consider 𝑡𝑎
𝑞
 and 𝑡𝑟

𝑞
 as the timestamps of the qth occurrence 

and return to normal states of a unique alarm. The TST of the 

qth alarm occurrence for a specific alarm variable is denoted 

as 𝒟𝑞 which can be calculated as  

                            𝒟𝑞 = 𝑡𝑟
𝑞

− 𝑡𝑎
𝑞

.                                  (14) 

If ℛ represents the total number of occurrences of the specific 

alarm variable, then the TST can be calculated by taking the 

summation of all occurrences for that alarm variable as 

follows:    

𝑇𝑆𝑇 = ∑ 𝒟𝑞

ℛ

𝑞=1

.                                    (15) 

According to Noroozifar et al., 2019, if multiple alarms are 

annunciated simultaneously, then an alarm with a longer TST 

is considered a critical alarm. Therefore, all alarms within the 

A&E log can be ranked based on their TST, which can be used 

to validate the identified most critical alarm.  
 

4. CASE STUDY 
 

A case study is presented to validate the proposed method. A 

well-known process simulator named vinyl acetate monomer 

(VAM) simulator is used in this case study. Details of the 

operation and introduction of various units were discussed in 

Machida et al., 2016. The basic process units are the reactor, 

column, decanter, separator, compressor, absorber, buffer 

tank, and raw materials feed. An adjacency matrix is 

constructed from the process flow diagram based on (2). In the 

simulation steps, steady state data is extracted from the 

standard steady state simulation for a certain time. Several 
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malfunctions are introduced in the VAM process and the 

responses are observed. Each disturbance or fault is set to 

occur only once, but it repeats frequently over the given 

duration. Finally, the faulty process data is extracted for 

further analysis. Process data usually consist of timestamps 

and measurement values for all process variables. The 

extracted process data is converted to alarm data by following 

the procedure mentioned in Yang et al., 2020, where a total of 

124 unique alarm tags are identified. An example of A&E log 

data is presented in Table 1.  

Table 1: A&E log data 
 

 

As shown in Table 1, the timestamp indicates the time of 

occurrence. The tag name comprises an asset name and an 

identifier, for example, PDI501.PVLO. The identifier 

indicates the level of abnormality compared to a normal 

operation threshold. The priority column indicates the 

criticality level, ℂ(𝒶𝓃), which quantifies its importance or 

impact on process safety and performance such as Low, High, 

or Critical. Finally, the status represents the state of alarms, 

such as alarm state (ALM) or return to normal state (RTN). 

The formation and analysis of alarm floods are carried out 

following the procedures outlined in Sections 3.2 and 3.3 

respectively. Chattering alarms are eliminated using a 30-

second off-delay timer. As shown in Table 2, a total of 23 

alarm floods are identified from the A&E log, where each 

alarm flood (AF) is considered as a distinct fault.  
 

Table 2: Alarm flood analysis 

 

For demonstration purposes, the most critical alarm will be 

identified from the first alarm flood. The details of the first 

alarm flood, extracted from the A&E log, are provided in 

Table 3. The data is visually represented in Fig. 3. 
 

Table 3: Alarm flood 1 
 

Alarm Tag & ID Time Priority 

QI404.PVHI 03:12:11 High 

TP201PV(6).PVHI 03:13:12 Low 

QI404.PVHI 03:13:35 High 
. 

. 

. 

. 

. 

. 

QI404.PVHI 03:24:54 High 

TP502PV(10).PVHI 03:26:06 Low 
 

A total number of 22 alarm variables are found in the first alar 

flood, among which a total of 12 alarm variables are unique. 

The MATLAB tool “HMMestimate” is used to estimate the 

HMM parameters presented in Section 3.5 (Venkidasalapathy 

et al., 2022).  

 

 

 

 

 

 

 

Figure 3. First alarm flood.     

Once the transition and emission probabilities are obtained, a 

likelihood matrix is constructed. Since the number of unique 

alarm tags are 12 for the first alarm flood, the size of the 

likelihood matrices is 12×12. These matrices establish 

dependency relationships among alarm tags, which are treated 

as vertices of a DAG, and their associated weight represents 

the strength of dependency. The DAG plots for the first alarm 

flood is presented in Fig. 4. From Fig. 4, it is evident that the 

alarm tag “QI404.PVHI” and “TP201PV(6).PVHI” hold 

significant influence and represent potential critical alarms for 

the first alarm flood. 

Figure 4. DAG plot for the first alarm flood 

Based on Noroozifar et al., 2019, when multiple alarms occur 

simultaneously, the potential criticality of an alarm tag can be 

determined by comparing their TST. For instance, a longer 

TST suggests a potentially more critical alarm tag. The 

summary of the TST for all alarm tags from the main dataset 

is depicted in Fig. 5. This summary provides evidence that the 

TST of “QI404.PVHI” is notably higher than that of 

Timestamp Tag Unit Identifier Priority Status 

03:08:36 AM PDI501 Column PVLO Low ALM 

03:08:39 AM PDI501 Column PVLO Low RTN 

03:08:51 AM PDI501 Column PVLO Low ALM 

03:10:01 AM PDI501 Column PVLO Low RTN 

AF 

ID 
Duration # of ALM’s 

# of 

Tags 

Fault 

Label 

1 0h-13m-58s 22 12 1 

2 0h-15m-6s 21 16 2 

3 0h-17m-5s 21 15 3 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

22 0h-16m-35s 18 10 22 

23 0h-12m-27s 22 09 23 
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“TP201PV(6).PVHI”. This observation ensures the high 

criticality of “QI404.PVHI”. 

 

Figure 5. Alarm tags rank based on TST 
 

Constructing the adjacency matrix from the process flow 

diagram involves defining a set of units, denoted as U = {𝓊1

,𝓊2,…,𝓊7}, where  each unit is represented by labels like 

“Absorber”, “Buffer Tank”, “Column”, “Decanter”, “Raw 

material feed”, “Reactor”, and “Separator and compressor”. If 

two units share common alarm tags that satisfy the conditions 

outlined in Section 3.1, then an edge exists between them. This 

relationship can be mathematically represented as  ℳ𝑔ℎ= 1; 

otherwise, ℳ𝑔ℎ is set to 0. Simultaneously, the hierarchical 

mapping matrix, ℳ𝑈𝐸, and the alarm mapping matrix, ℳ𝒜 , 

are also examined. Finally, the total number of alarms per 

process unit is determined. Such alarms can trigger other 

alarms, leading to the propagation of abnormalities within 

interconnected process systems. The identified critical alarm 

can be further investigated manually using the number of 

alarms within the interconnected process units, confirming the 

most critical alarm, 𝒶𝑘
∗  for a specific alarm flood. 

 

5. CONCLUSION 
 

In this paper, a data-driven approach was presented for 

identifying the most critical alarm for each alarm flood within 

complex process systems. By utilizing available alarm data 

and employing various analyses, the proposed method 

successfully pinpointed the alarms with the highest impact on 

overall system behavior. The proposed methodology offered a 

systematic and efficient approach to prioritize alarms, 

focusing on those that require immediate attention. Through 

the application of HMMs, the method identifies alarms 

displaying significant dependencies and influences within the 

system. The obtained results offered valuable insights into 

critical alarms and their relationships, empowering operators 

to make informed decisions and proactively address potential 

faults or abnormalities. Although this study achieved 

considerable progress in critical alarm identification, there 

exist several avenues for further research and improvement. 

One potential future direction involves integrating machine 

learning techniques and anomaly detection algorithms to 

enhance the accuracy of critical alarm identification. By 

incorporating real-time data and continuously updating the 

analysis, critical alarm identification can become more 

adaptive and responsive to evolving system conditions.  
 
 

REFERENCES 
 

Alinezhad, H. S., Roohi, M.H., and Chen, T. (2022). A Review of 

Alarm Root Cause Analysis in Process Industries: Common 

Methods, Recent Research Status and Challenges. Chemical 

Engineering Research and Design, 188, 846-860.  
 

Alinezhad, H. S., Shang, J. and Chen, T. (2023). Open Set Online 

Classification of Industrial Alarm Floods with Alarm 

Ranking. IEEE Transactions on Instrumentation and 

Measurement, 72, 1–11. 

Abele, L., Anic, M., Gutmann, T., Folmer, J., Kleinsteuber, M., and 

Vogel-Heuser, B. (2013). Combining Knowledge Modeling 

and Machine Learning for Alarm Root Cause Analysis. IFAC 

Proceedings Volume,s 46(9) 1843–1848. 

Fukui, Y., and Masuzawa, M. (1989). Knowledge-based Approach to 

Intelligent Alarms. Journal of Clinical Monitoring, 5(3), 211–

216. 

Jiang, W., and Bai, Y. (2023). APGNN: Alarm Propagation Graph 

Neural Network for Fault Detection and Alarm Root Cause 

Analysis. Computer Networks, 220, 109485. 

Rodrigo, V., Chioua, M., Hagglund, T., and Hollender, M. (2016). 

Causal Analysis for Alarm Flood Reduction. IFAC-

PaperOnline, 49(7), pp. 723–728. 

Noroozifar, A., and Izadi, I. (2019). Root Cause Analysis of Process 

Faults Using Alarm Data. 27th Iranian Conference on 

Electrical Engineering, 1118–1122. 

Zhang, P., Hu, W., Zhang, X., and An, J. (2022). A Causal Fusion 

Inference Method for Industrial Alarm Root Cause Analysis 

Based on Process Topology and Alarm Event Data. Journal of 

Beijing Institute of Technology, 31(4), 371-381.  

Venkidasalapathy, J. A., and Kravaris, C. (2022). Hidden Markov 

Model Based Fault Diagnoser Using Binary Alarm Signals 

with an Analysis on Distinguishability. Computers & 

Chemical Engineering, 160, 107689. 

Venkidasalapathy, J. A., and Kravaris, C. (2020). Hidden Markov 

Model Based Approach for Alarm Rationalization. 21th IFAC 

World Congress, 13767–13770. 
Hu, W., Chen, T., and Shah, S. L. (2018). Detection of Frequent 

Alarm Patterns in Industrial Alarm Floods Using Itemset 

Mining Methods. IEEE Transactions on Industrial 

Electronics, 65(9), 7290–7300. 

ANSI/ISA-18.2, 2016. ANSI/ISA-18.2: American National Standard 

Institute (ANSI)/International Society of Automation (ISA), 

Management of Alarm Systems for the Process Industries.  

Cheng, Y., Izadi, I., and Chen, T. (2013). Pattern Matching of Alarm 

Flood Sequences by a Modified Smith–Waterman Algorithm. 

Chemical Engineering Research and Design, 91 (6), 1085–

1094. 

Yang, G., Hu, W., Cao, W., and Wu, M. (2020). Simulating Industrial 

Alarm Systems by Extending the Public Model of a Vinyl 

Acetate Monomer Process. 39th Chinese Control Conference, 

6093–6098. 

Parvez, M. R., Hu, W., and Chen, T. (2022). Real-time Pattern 

Matching and Ranking for Early Prediction of Industrial 

Alarm Floods. Control Engineering Practice, 120, 105004. 

Machida, Y., Ootakara, S., Seki, H., Hashimoto, Y., Kano, M. (2016). 

Vinyl Acetate Monomer (VAM) Plant Model: A New 

Benchmark Problem for Control and Operation Study. IFAC-

PaperOnline, 49(7), 533–538.  

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

843


