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Abstract: Model based control approaches require an accurate and computationally fast prediction model 

to solve the governing equations in real time. While numerical approaches based on first principles models 

are accurate, the high computational cost renders them unsuitable for online estimation and model 

predictive control (MPC). On the other hand, the reduced order models can provide real time solutions, but 

there is invariably a trade-off between the accuracy and computational time. Machine learning based 

approaches such as physics informed neural networks (PINN) that are based on incorporating physics-based 

knowledge into NNs, can provide faster and accurate solutions in such scenarios. This work demonstrates 

the control-oriented modeling of process systems governed by ODEs and DAEs using residual PINN that 

is trained using neural tangent kernel update. Such PINN models can replace the conventional numerical 

time integration of the process dynamics and facilitate accurate and faster predictions. We present our 

results for setpoint tracking via MPC using the PINN model to demonstrate the capability of the proposed 

approach. 

Keywords: Model Predictive Control, Physics Informed Neural Networks, Machine Learning, 

Optimization, State Estimation. 

 

1. INTRODUCTION 

Model-based approaches for the control of chemical processes 

require accurate dynamic process models. Chemical process 

systems are generally nonlinear and complex in nature. First 

principles modeling these dynamic process systems results in 

a set of ordinary differential equations (ODE), partial 

differential equations (PDE), or differential algebraic 

equations (DAE). Analytical solutions for such systems are 

usually unavailable, and one has to rely on numerical methods 

to obtain accurate solutions. These numerical methods are 

typically discretization based and have high computational 

costs. However, process models need to be solved faster and 

in real time for applications in estimation and control. Hence, 

using numerical methods to solve differential equations (DE) 

becomes challenging for real processes. 

 

Another aspect is that first principles dynamic models are 

expensive to obtain and may require significant data to obtain 

parameters for accurate predictions. The alternative of 

obtaining data driven dynamic models is therefore widely 

practiced. For real time control, even though reduced order 

modeling (ROM) approaches exist, there is invariably a trade-

off between model complexity, accuracy, and computational 

time. Machine Learning (ML) algorithms such as Neural 

Networks (NN) can represent the knowledge inferred from 

these process systems in the form of nonlinear mappings that 

can overcome the issue of high computational cost. However, 

these approaches are primarily data-driven and are biased to 

represent the information available from the training data. NNs 

can suffer from poor generalization on unseen data in case of 

a small amount of training data that could also be corrupted 

with noise.  

 

Since model-based approaches, such as Model Predictive 

Control (MPC), require the repetitive and recursive solution of 

the underlying nonlinear DEs in real time, use of an accurate, 

robust, and computationally inexpensive model becomes 

inevitable in such cases. NNs can be regularized by the 

available knowledge from the physics of the system to provide 

an accurate and fast prediction model. Recently, Raissi et al. 

(2019) introduced Physics Informed Neural Networks (PINN) 

to train the NNs by using the governing equations of the 

physical system. PINNs incorporate the governing DEs in the 

loss function to train the NNs. The quantity of data required to 

train the NN model can be reduced using this physics-based 

regularization while ensuring that the trained model is 

constrained to satisfy the underlying physical laws. PINNs 

have been shown to solve the DEs accurately and have found 

applications in areas related to high-speed aerodynamic flows, 

nano-optics and metamaterials, and heat transfer problems. 

PINNs rely on automatic differentiation (AD) to compute the 

derivative, hence providing an efficient and accurate 

alternative to conventional approaches (Baydin et al., 2018).  

 

Conventionally, PINNs are trained on the spatial variables and 

time as inputs to the NN to solve DEs, and does not require 

solution data to be trained. These NNs are trained on a fixed 

values of manipulated variables (MV), initial conditions (IC), 

other process parameters, and a specified time horizon and 

cannot predict outputs for varying MVs and longer time 

horizons as encountered in process control systems. Antonelo 

et al. (2021) proposed a PINN-based approach to simulate for 
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longer time horizons. The MVs and ICs are fed as inputs to the 

NN, and the trained model is used recursively to predict over 

a longer time horizon. In our earlier work, we used these 

physics augmented NNs for state estimation and demonstrated 

the advantages of PINNs for cases with a) noisy plant 

measurements and b) corrupted plant models (Patel et al., 

2022a, b).    Nicodemus et al. (2022) demonstrated MPC on a 

multi-ink manipulator governed by first order ODE solved 

using PINN. Similarly, (Zheng and Wu, 2023) demonstrated 

MPC using physics informed recurrent neural network, but the 

derivatives of the states were not obtained by AD. In another 

work, the ability of PINNs to solve PDEs and use the closed 

analytical form for temperature trajectory optimization of a 

tubular reactor was explored (Patel et al., 2023). These studies 

show the effectiveness of PINNs for representative problems 

in systems engineering. 

PINNs usually require many layers for better training and can 

suffer from convergence issues due to the nature of the 

multiple nonlinear constraints resulting from representing the 

physics related equations. To overcome this, we propose to use 

the Residual Neural Networks (ResNet) for PINNs for 

improved training, coupled with a Neural tangent kernel 

(NTK) update based gradient descent to address the 

convergence issues (Wang et al., 2022). We propose to use this 

high-fidelity PINN model as the prediction model instead of 

ROMs for online optimization in MPC. Such PINN based 

model can replace the conventional numerical time-integration 

of the nonlinear dynamics while being computationally faster 

and retaining sufficient accuracy. While there have been a few 

applications of conventional PINNs to model ODE and PDEs, 

their use to model stiff systems such as a DAE system and also 

to demonstrate their use for MPC applications has not been 

fully explored in literature.  

 

In this paper, we evaluate the proposed Residual-PINN based 

control modelling approach on a representative system of 

Continuous Stirred Tank Reactor (CSTR) governed by 

nonlinear ODEs and an electrochemical system governed by 

DAE and demonstrate MPC. In this regard, the highlights of 

this work are as follows: 

1. Dynamic modeling of nonlinear ODE and DAE system 

using residual PINN with an NTK update strategy. 

2. Model predictive control of a CSTR represented by a 

system of ODEs. 

3. Model predictive control of an electrochemical system 

represented by DAEs. 

The remainder of the paper is structured as follows: Section 2 

outlines the methodology applied. Section 3 discusses the 

representative ODE and DAE systems to be modeled by PINN. 

Section 4 discusses PINN modeling and MPC results, 

followed by summarizing conclusions in Section 5. The 

supplementary information (SI) containing the Tables of 

model parameters and MPC parameters is available at: 

https://github.com/SCEPTRE-Lab/ADCHEM/ 

2. METHODOLOGY 

This section briefly introduces the NN and its ResNet variant 

to represent the physics based governing equations and 

generate a PINN model. Further, we present short 

preliminaries on MPC that is based on the PINN model for 

model predictions. We refer the reader to Bishop and 

Nasrabadi (2006) and Rawlings et al. (2017) for more details 

on NN and MPC. 

2.1 PINN preliminaries 

Consider a system governed by DAEs, collectively 

represented by function 𝐹 given by (1) where the independent 

variable is time 𝑡 and the solution of the DAE is 𝑌 (consisting 

of differential and algebraic states). Here 𝑈 is exogenous input, 

also referred to as the MV of the system.  

𝐹 (
𝑑𝑌

𝑑𝑡
, 𝑌, 𝑈, 𝑡, … ) = 0 (1) 

The initial conditions of the states for the DAEs are given as: 

𝑌(0) = 𝑌0 (2) 

In the proposed PINN approach, the solution of any system of 

DAEs is obtained by considering a trial solution �̅�, given by 

the NN as in (3). 

�̅�(𝑋) = 𝑁𝑁(𝑋, 𝜃) (3) 

Here 𝑁𝑁(𝑋, 𝜃) represents a feedforward NN with input 𝑋 

(having initial states,  𝑈, and 𝑡) and 𝜃 are the parameters of the 

NN. For deep NNs, providing a skip connection to the hidden 

layers improves the training. Such an NN that stacks residual 

blocks on top of each other to form a network is called a 

ResNet 𝒩(𝑋, 𝜃), defined by (4) 

�̅�(𝑋)  =  𝒩(𝑋, 𝜃) = 𝑁𝑁(𝑋, 𝜃)  +  𝑋 (4) 

The parameters of the NN are obtained by minimizing the loss 

function to accurately capture the relationship 𝐹: 𝑋
            
→   𝑌. For 

a DAE system represented by the general form as given by (1), 

the loss function to train the PINN is formed by considering 

this as the trial function, as shown in (5). 

ℒ𝑃𝐼𝑁𝑁(𝑋, 𝜃) 

=∑
∥∥
∥∥𝐹 (

𝑑�̅�𝑗

𝑑𝑡
, �̅�𝑗 , 𝑈, 𝑡)

∥∥
∥∥
2

 + 

𝐷

𝑗=1

∑∥∥�̅�𝑖0 − 𝑌𝑖0∥∥
2

𝐶

𝑖=1

     
(5) 

The first term in (5) captures the residuals from the DAE 

evaluated at the internal collocation points for inputs 𝑋, and 

second term ensures that the initial conditions are satisfied. 𝐷 

and 𝐶 are the number of internal collocation points and initial 

points for 𝑡 = 0, respectively. The same approach to formulate 

NN and its loss function applies to an ODE system. Such a loss 

term penalizes the deviation of predicted values if they violate 

the governing equation by evaluating the residual and gives 

better predictions.  

 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic representation of the PINN training framework 
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Fig. 1 shows the PINN training framework where an NN 

predicts the outputs whose derivatives are obtained using AD 

to further evaluate the residuals that form the loss function. 

Backpropagation algorithms, such as the gradient descent 

method, are widely used to optimize the loss function. The loss 

terms can be weighed suitably to give more importance to a 

specific output and the initial condition. However, this 

optimization problem to obtain the PINN parameters could be 

non-convex due to the nonlinear constraints resulting from 

representing the governing equations. To address these 

convergence issues, Wang et al. (2022) proposed a novel 

gradient descent using the NTK.  

𝒦(𝑌, 𝑌′; 𝜃) = 𝛻𝜃𝒩(𝑌; 𝜃) ∙ 𝛻𝜃𝒩(𝑌′; 𝜃) (6) 

For an NN, the NTK denoted by 𝒦 can be written as a dot 

product between inputs with the gradient of the NN function 

as shown in (6). The PINN training algorithm utilizes 

eigenvalues of the NTK to adaptively calibrate the 

convergence rate of the total training error. 

2.2 Basics of Model Predictive Control 

MPC refers to a class of control approaches developed initially 

in the process industry for applications such as disturbance 

rejection, reference tracking, or general cost function 

optimization. They are widely popular due to their capability 

to handle operating constraints and multi-variable interactions.  

 

 

 

 

 

 

 
 

Figure 2. Representative diagram for MPC using the PINN model. 

Any MPC formulation requires a prediction model that 

predicts the future behaviour over a horizon P at each sampling 

instant. For setpoint tracking application, the MPC problem at 

the sampling instant 𝑘, can be defined as a constrained 

optimization problem, whereby the future M manipulated 

inputs are obtained by minimizing a quadratic objective 

function defined as follows: 

𝐽 =  𝛼 ∗∑‖𝑋𝑅𝑘+𝑗 − �̂�𝑘+𝑗‖
2

𝑃

𝑗=1

+  𝛽 ∗ ∑‖∆𝑈𝑘+𝑖‖
2

𝑀−1

𝑖=0

 
(7) 

The optimization problem becomes, 

𝑈𝑘,𝑜𝑝𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝑈

 ൛ 𝐽(𝑋𝑅𝑘+𝑗, �̂�𝑘+𝑗, ∆𝑈𝑘+𝑖 ൟ 

While being subject to, 

�̂�𝑘+𝑗 =  𝒩(𝑋𝑘+𝑗−1, 𝑈𝑘+𝑗−1, 𝑘)  

∆𝑈𝑘+𝑖  =  𝑈𝑘+𝑖  −  𝑈𝑘+𝑖−1  ≤  ∆𝑈𝑀𝑎𝑥   

𝑈𝑙𝑜𝑤  ≤  𝑈𝑘+𝑖   ≤  𝑈ℎ𝑖𝑔ℎ  

 

𝑋𝑅𝑘+𝑗 is the reference setpoint (j=1, 2,…P) for horizon P,  �̂�𝑘+𝑗 

is the prediction (by solving nonlinear DEs or by PINN), and 

𝑈𝑘+𝑖 is the manipulated input (i=1, 2,…M) for horizon M at 

𝑘𝑡ℎ instant. 𝛼 and 𝛽 are matrices to suitably weigh individual 

states and penalize sudden large changes in the manipulated 

inputs, respectively. The MV and the predictions are bounded 

by the range [𝑈𝑙𝑜𝑤 , 𝑈ℎ𝑖𝑔ℎ]. The maximum move that a MV can 

make is constrained by ∆𝑈𝑀𝑎𝑥. 

 

The PINN-based model is used recursively to predict the future 

for any given time horizon. As illustrated in Fig. 2, these 

predictions are fed to a controller that performs online 

optimization to generate the sequence of MVs to track the 

reference setpoint. The plant measurements obtained by 

implementing the first MV move is fed back to the PINN to 

give recursive predictions.  

3. REPRESENTATIVE CASE STUDIES 

We discuss representative process systems to evaluate the 

proposed control oriented modeling in this section.  

3.1 Case Study A:   Non-isothermal CSTR represented by a 

system of ODEs 

A non-isothermal CSTR governed by a system of nonlinear 

ODEs has been considered to demonstrate the control-oriented 

modeling using PINN (Marlin, 1995). The dynamic model for 

a CSTR undergoing an irreversible first-order reaction: 

𝐴 
                  
→      𝐵 

is given by (8) and (9) as follows: 

𝑑𝑋1
𝑑𝑡

=
𝑈2
𝑉
(𝐶𝐴0 − 𝑋1) − 𝑘0𝑋1 𝑒𝑥𝑝 (−

𝐸

𝑅𝑋2
) 

(8) 

𝑑𝑋2
𝑑𝑡

=
𝑈2
𝑉
(𝑇0 − 𝑋2) +

(−𝛥𝐻𝑟)𝑘0
𝜌𝐶𝑝

𝑋1 𝑒𝑥𝑝 (−
𝐸

𝑅𝑋2
)

−
𝑄

𝑉𝜌𝐶𝑝
 

(9) 

Where, 𝑄 =
𝑎(𝑈1)

𝑏+1

𝑈1+(
𝑎(𝑈1)

𝑏

2𝜌𝑐𝐶𝑝𝑐
)
(𝑋2 − 𝑇𝑐𝑖𝑛)  

 

𝑋1 and 𝑋2 are the reactor concentration of species A and the 

reactor temperature. 𝑈1 and 𝑈2 are the coolant flow rate and 

feed flow rate. The dynamic characteristics of the system 

depend on the set of parameter values given in Table S1.  

Equations (8) and (9) represent the ground truth of the system. 

The plant model is assumed to be same as the ground truth for 

this study. For demonstrating the control-oriented modeling of 

the ODE system, the states 𝑋 = [𝑋1, 𝑋2] are assumed to be fully 

observable and input MV are 𝑈 = [𝑈1, 𝑈2]. The plant 

measurements are obtained by corrupting both the differential 

states with process noise of mean 0 and standard deviation 

[2.64e-4, 3.93-1] (i.e., 0.1% of nominal steady-state values 

(SS)). The prediction model is obtained by training the PINN 

model on the ground truth. 

3.2 Case Study B: An Electrochemical system represented by 

DAEs 

An electrochemical system to represent the galvanostatic 

charge/discharge process of a thin film nickel hydroxide 

electrode can be modeled by DAEs (Çelik et al., 2002). The 

species balance equation gives a differential equation that 

shows the rate of change of the mole fraction of nickel 

hydroxide given by (10). The charge balance equation gives an 

algebraic equation (11) where 𝑗1 and 𝑗2 are derived using the 

𝑡 

𝑋𝑘 

𝑈𝑘 
Process 
system 

Plant Measurements 
Predicted MVs 
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setpoint 

𝑿𝒌| 𝒌+𝑷 
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Butler–Volmer kinetics. Depending on the value of 𝑖𝑎𝑝𝑝 the 

operation can be charging, open-circuit, or discharging. 

 
𝜌𝑉

𝑊

𝑑𝑦1
𝑑𝑡

=
𝑗1
𝐹

 
(10) 

𝑗1 + 𝑗2 − 𝑖𝑎𝑝𝑝 = 0 (11) 

𝑗1 = 𝑖01 [2(1 − 𝑦1)ex p(
0.5𝐹

𝑅𝑇
(𝑦2 − 𝜙𝑒𝑞,1))−2𝑦1

× ex p(
−0.5𝐹

𝑅𝑇
(𝑦2 −𝜙𝑒𝑞,1))] 

(12) 

𝑗2 = 𝑖02 [ex p (
𝐹

𝑅𝑇
(𝑦2 − 𝜙𝑒𝑞,2))

− exp(
−𝐹

𝑅𝑇
(𝑦2 − 𝜙𝑒𝑞,2))] 

(13) 

Here, the differential state 𝑦1 is the mole fraction of nickel 

hydroxide and the algebraic state 𝑦2 is the potential difference 

at the solid-liquid interface. The parameter values used in the 

model are available in Table S2.  

 

Equations (10) – (13) represent the ground truth of the DAE 

system. Further, to demonstrate the control-oriented modeling 

of the DAE system, the full observable states are 𝑋 = [𝑦1 , 𝑦2] 
and temperature (T) is considered as the MV (𝑈). The plant 

measurements are obtained by corrupting both the differential 

and algebraic states with process noise of mean 0 and standard 

deviation [9.06e-4, 4.77e-4] (i.e., 0.1% of SS values).  

 

The capability of the trained PINN model to represent the 

nonlinear dynamics of the process system is evaluated using 

these ODE and DAE systems. For this purpose, we develop a 

control-oriented PINN model that takes the current state and 

MV as input and predicts the future state at any given timestep. 

Such a control-oriented model is evaluated to estimate the 

states of the system for changes in MV and ICs. The following 

section discusses the results of this control-oriented modeling 

for estimation and control.  

4. RESULTS AND DISCUSSION 

The PINN model for the ODE system is trained on a dataset of 

12800 samples with an NN of 4 layers with 64 neurons. 

Similarly, PINN to model the DAE system is trained on a 

dataset of 10000 samples with an NN of 4 layers with 64 

neurons. Dataset refers to the randomly generated input 

collocation points. Hyperbolic tan was used as an activation 

function in both cases. The PINN was implemented and 

trained using Adam optimizer from Python's SciANN package 

(Haghighat & Juanes, 2021). The details on the input dataset 

to train the NN can be obtained in SI. 

4.1 Case Study A:   Non-isothermal CSTR represented by a 

system of ODEs 

The multi-input multi-output (MIMO) CSTR system is 

modeled using PINN to predict future states and study the 

effects of MV. The PINN was trained on a timestep of 0.6 

minutes and used recursively to predict the states for a longer 

time horizon. The initial states 𝑋𝑘 of the system at every instant 

𝑘 are obtained from the plant model, i.e. ground truth 

corrupted with noise (refer to Section 3). Fig. 3a and 3b shows 

the recursive PINN estimates for 90 timesteps subject to the 

changes in MV given by Fig 3c and 3d. The actual states 

(shown by the violet line) are obtained by solving the nonlinear 

ODE model numerically using the LSODA algorithm and 

compared with the predictions obtained from the trained PINN 

model (dashed red line).  

 

The results illustrated in Fig. 3 demonstrate that the PINN 

model can predict for longer time horizons and capture the 

effect of changes in both MVs. The bounds of MV on which 

the PINN model is trained are shown by dashed green lines. 

The region bounded by the dashed orange lines is when the 

MVs are beyond the range on which PINN was trained. It is 

seen that the PINN model performs poorly for extrapolation, 

and its predictions deviate from the actual states.  

 

 
Figure 3. Recursive PINN predictions for varying MV for CSTR 

The PINN-based prediction model is used in an online 

optimizer to demonstrate the MPC of the CSTR reactor to 

track the setpoint of reactor concentration. The prediction 

horizon (P) for the MPC is 20, and the control horizon (M) is 

6. The MVs are constrained by the bounds given in Table S3 

to limit their values in a given range. Also, the maximum 

change in MV that can occur in a timestep is limited to 1.2 and 

0.2 for 𝑈1 and 𝑈2 respectively. Fig. 4a and 4b compare the 

results for the MPC using the PINN model as the prediction 

model with the MPC using the nonlinear ODE model. Fig. 4a 

shows that the PINN-based MPC can track the setpoint of the 

reactor concentration (shown by the dashed grey line), whereas 

Fig. 4b compares the predicted reactor temperature. The MVs 

predicted by both the MPC formulations are compared in Fig. 

4c and 4d. Fig. 4 thus illustrates that the PINN model can be 
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used in MPC applications to track setpoint changes and predict 

future control action.  

 

 

 

 
Figure 4. MPC results to track the setpoint of reactor concentration 

(PINN model vs Nonlinear ODE model) 

4.2 Case Study B:   An Electrochemical system represented 

by DAEs 

The nonlinear DAE system is a single-input multi-output 

(SIMO) system with temperature as the manipulated variable. 

The solution of DAEs suffers from inconsistent initialization, 

as discussed in Çelik et al. (2002). The PINN model was 

trained on consistent initial values randomly generated using 

MATLAB's decic function for a timestep of 500s. Fig. 5 

demonstrates the capability of the PINN model to predict the 

solution of DAE for different sets of ICs and temperatures. The 

solution of the DAE model is obtained from Gekko's IPOPT 

Solver, and it matches the PINN predictions. 

 

A perturbation of magnitude ± 20 is applied to generate the 

step input signal to study the effect of changes in MV. Fig. 6 

shows the states predicted by the PINN model, PINN in self-

loop and the DAE model for the changes in MV. Self-loop 

refers to the model when the PINN predictions are fed back 

again as an input rather than using the actual plant 

measurements at instant 𝑘. The states predicted for a longer 

time horizon by the PINN model are close to those obtained 

from the DAE model. 

 
Figure 5. Comparison of PINN prediction at different initial 

conditions and manipulated inputs 

 
Figure 6. Recursive PINN prediction for step changes in MV 

Similar to the ODE system, the PINN-based prediction model 

is used to demonstrate the MPC of the DAE system to track 

the setpoint of the mole fraction. The prediction horizon (P) 

for this MPC is 7, and the control horizon (M) is 3. The 

temperature (MV) is constrained to lie in the range of [273, 

343]. Also, the maximum change in MV that can occur in a 

timestep is limited to 10. Fig. 7a and 7b compare the results 

for the MPC using the PINN model as the prediction model 

with the MPC using the Nonlinear DAE model. Fig. 7a shows 

that the PINN-based MPC can track the setpoint of mole 

fraction, whereas Fig. 7b compares the predicted potential 

difference. The MV predicted by both the MPC formulations 

are compared in Fig. 7c. As observed in Fig. 7, the PINN 

model can be used in MPC applications to track setpoint 

changes and predict future control action for the representative 

DAE system.  

The average computational time taken by the MPC at each 

time step has been compared in Fig. 8 for two different MPC 

configurations of the DAE system. The computational time 

taken is significantly less than the prediction timestep. This 

also shows that the PINN model can be efficiently used in an 

online optimizer with smaller timesteps. Thus, the PINN-
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based prediction model can replace the time-consuming step 

of numerical integration and facilitate faster state estimation 

for both the ODE and DAE system. 

 

 

 
Figure 7. MPC results to track the setpoint of 𝑦1 (PINN model vs 

DAE model)  

 
Figure 8. Computational time taken at each timestep by the MPC 

algorithm for DAE system. 

5. CONCLUSION 

PINN is a promising approach for modeling the dynamics of 

complex process systems by using the governing physics. The 

applicability of PINN to develop a control-oriented model was 

explored in this work. We evaluated the approach on a CSTR 

governed by a system of ODEs and an electrochemical system 

governed by DAEs for setpoint tracking using MPC. The 

presented results show that the PINN model can be used as a 

prediction model in MPC formulation since it facilitates faster 

prediction by replacing the time-consuming numerical 

integration. As the PINN model is an approximation, the 

nonlinear mapping obtained will not be as accurate as the 

conventional offline numerical methods to solve DEs. 

However, such PINN based models can offer a better 

alternative in scenarios where we have insufficient historical 

data to train conventional models or when the numerical 

approaches to solve DEs are computationally expensive to be 

used in real time. The limited extrapolation ability of the 

PINNs needs to be addressed, and formal ways to incorporate 

the structure of the governing DEs should be explored in 

further studies. More relevant cases of model plant mismatch 

and online parameter update are a matter of future work.  

REFERENCES 

Antonelo, E.A., Camponogara, E., Seman, L.O., Jordanou, 

J.P., de Souza, E.R. and Hübner, J.F., 2024. Physics-

informed neural nets for control of dynamical systems. 

Neurocomputing, p.127419.  

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. 

M. (2018). Automatic differentiation in machine 

learning: a survey. Journal of Machine Learning, 

18(153), pp.1-43 

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition 

and machine learning (Vol. 4, Issue 4). Springer. 

Çelik, E., Karaduman, E., & Bayram, M. (2002). Numerical 

method to solve chemical differential-algebraic 

equations. International Journal of Quantum Chemistry, 

89(5), 447–451.  

Haghighat, E., & Juanes, R. (2021). SciANN: A 

Keras/TensorFlow wrapper for scientific computations 

and physics-informed deep learning using artificial 

neural networks. Computer Methods in Applied 

Mechanics and Engineering, 373, 113552.  

Marlin, T. E. (1995). Process control: designing processes and 

control systems for dynamic performance. McGraw-Hill 

Education 

Nicodemus, J., Kneifl, J., Fehr, J., & Unger, B. (2022). 

Physics-informed Neural Networks-based Model 

Predictive Control for Multi-link Manipulators. IFAC-

PapersOnLine, 55(20), 331–336.  

Patel, R., Bhartiya, S., & Gudi, R. (2023). Optimal temperature 

trajectory for tubular reactor using physics informed 

neural networks. Journal of Process Control, 128, 

103003.  

Patel, R., Bhartiya, S., & Gudi, R. D. (2022). State Estimation 

Using Physics Constrained Neural Networks. 2022 

IEEE International Symposium on Advanced Control of 

Industrial Processes (AdCONIP), 61–66.  

Patel, R. S., Bhartiya, S., & Gudi, R. D. (2022). Physics 

Constrained Learning in Neural Network based 

Modeling. IFAC-PapersOnLine, 55(7), 79–85.  

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). 

Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems 

involving nonlinear partial differential equations. 

Journal of Computational Physics, 378, 686–707.  

Rawlings, J. B., Mayne, D. Q., & Diehl, M. (2017). Model 

predictive control: theory, computation, and design 

(Vol. 2). Nob Hill Publishing Madison, WI. 

Wang, S., Yu, X., & Perdikaris, P. (2022). When and why 

PINNs fail to train: A neural tangent kernel perspective. 

Journal of Computational Physics, 449, 110768. 

Zheng, Y., & Wu, Z. (2023). Physics-Informed Online 

Machine Learning and Predictive Control of Nonlinear 

Processes with Parameter Uncertainty. Industrial & 

Engineering Chemistry Research, 62(6), 2804–2818.   

0.88

0.9

0.92

0.94

0.96

0 60 120 180 240 300 360 420

M
o

le
 f

ra
ct

io
n

Setpoint
Measurements_DAE
Measurements_PINN

IAE for DAE = 1.126 IAE for PINN = 1.732

0.46

0.47

0.48

0.49

0.5

0.51

0 60 120 180 240 300 360 420

P
o

te
n

ti
al

 D
if

fe
re

n
ce

Measurements_DAE

Measurements_PINN

284

299

314

329

344

0 60 120 180 240 300 360 420

Te
m

p
er

at
u

re
 (

M
V

)

Time (minutes)

DAE

PINN

0
1
2
3
4
5
6

0 10 20 30 40 50

C
o

m
p

u
ta

ti
o

n
al

 
ti

m
e 

ta
ke

n
 (

s)

Timestep

(P = 7, M = 3)
(P = 12, M = 5)

a)  

b)  

c)  

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

783


